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Introduction: Renal cancer is known for its aggressive progression and resistance
to standard treatments, underscoring the need for novel therapeutic strategies.
This study explores the potential of combining 6-shogaol (6-SHO), a bioactive
compound derived from ginger (Zingiber officinale), with hyperthermia to
enhance anticancer efficacy in ACHN renal cancer cells.

Methods: ACHN cells were treated with 6-SHO and exposed to hyperthermic
conditions. We evaluated the combined effects on apoptosis, cell cycle arrest,
and cell proliferation, as well as the role of reactive oxygen species (ROS) and heat
shock proteins (HSPs) in mediating these responses.

Results: The combination of 6-SHO and hyperthermia significantly increased
apoptosis, induced G2/M phase cell cycle arrest, and reduced cell proliferation
more effectively than either treatment alone. ROS played a critical role in these
effects, with modulation of HSPs and heat shock factor 1 (HSF1) further disrupting
cancer cell survival mechanisms.

Discussion: These findings highlight the synergistic potential of 6-SHO and
hyperthermia as a novel therapeutic approach in renal cancer treatment,
supporting the need for further research and clinical evaluation.
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1 Introduction

The incidence of kidney cancer has been steadily increasing worldwide, making it a
major health concern in the field of oncology (Cheng et al., 2018; He et al., 2018; Sun et al.,
2016; Ahn et al., 2020). Renal cancer, known for its fast progression and considerable
resistance to standard therapy, is a significant challenge to both patients and physicians. The
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search for more effective treatment options has become more
pressing, prompting a paradigm shift toward novel approaches
that can overcome the limitations of present therapy modalities.
This urgency highlights the need for medicines that not only more
precisely target cancer, but also address the mechanisms that drive
tumor growth, metastasis, and treatment resistance.

Renal cell carcinoma (RCC), the most common type of kidney
cancer, is particularly notable for its complex pathophysiology
(Allison, 2017; Rini et al., 2019; Soares et al., 2020). The
development of RCC is often associated with mutations in the
von Hippel-Lindau (VHL) gene, leading to the activation of
hypoxia-inducible factors (HIFs) that promote angiogenesis, cell
proliferation, and survival (Fenner, 2017; Schmid et al., 2019;
Thoma, 2016). Other genetic alterations such as mutations in
PBRM1, BAP1, and SETD2 further contribute to the
heterogeneity and aggressiveness of the disease. RCC is marked
by its ability to invade locally and metastasize early to distant organs,
including the lungs, bones, and brain, facilitated by a rich vascular
network within the tumor driven by angiogenic factors (Cao et al.,
2019; Haibe et al., 2020). Additionally, RCC exhibits resistance to
apoptosis and evasion of the immune system, partly through the
expression of immune checkpoint proteins such as PD-L1
(Kelsey, 2018).

These pathophysiological aspects complicate the management of
renal cancer and highlight the need for novel therapeutic options.
Understanding the underlying mechanisms is critical for creating
medicines that might better target and manage RCC, perhaps
improving patient outcomes.

In recent years, the focus has shifted towards exploring the
potential of natural compounds with anticancer properties, among
which gingerol, particularly 6-SHO, has garnered significant
attention. 6-SHO, a bioactive component found in ginger
(Zingiber officinale), has been widely recognized for its broad
spectrum of pharmacological effects, including anti-inflammatory,
antioxidant, and, most notably, anticancer activities (Hsu et al.,
2023; Kim and Lee, 2023; Nina Nina et al., 2024). The anticancer
effects of 6-SHO are particularly intriguing due to its ability to
induce apoptosis, inhibit cell migration and proliferation, and
disrupt the cancer cell cycle across various cancer cell lines
(Bawadood et al., 2020; Wozniak et al., 2020; Zhang et al., 2021).
These properties make 6-SHO a promising candidate for cancer
therapy, including the treatment of renal cancer.

Moreover, the application of hyperthermia as a therapeutic
strategy has shown promise in cancer treatment. Hyperthermia
involves the controlled application of heat to cancerous tissues
and has been found to enhance the efficacy of certain anticancer
drugs (Logghe et al., 2024; Qi et al., 2024). The mechanism behind
hyperthermia’s effectiveness lies in its ability to induce stress within
the tumor environment, leading to the upregulation of heat shock
proteins (HSPs) and the activation of various cellular stress
responses, which can sensitize cancer cells to chemotherapy and
radiation treatment (Yi et al., 2022; Kwon et al., 2023).

Given the potent anticancer properties of 6-SHO and the
synergistic potential of combining natural compounds with other
therapeutic strategies, such as hyperthermia, there is a compelling
case for exploring this combination as a novel approach to renal
cancer treatment. This research aims to investigate the synergistic
effects of 6-SHO and hyperthermia on renal cancer cells, specifically

focusing on their ability to induce apoptosis, inhibit cell
proliferation, and affect the cellular stress response mechanisms.
By elucidating the molecular and cellular mechanisms underlying
these effects, this study seeks to contribute to the development of
more effective and targeted therapeutic strategies for renal cancer,
addressing the critical need for innovation in cancer treatment.

2 Materials and methods

2.1 Drugs

6-shogaol (6-SHO) (BP0095, Biopurify, Chengdu, Sichuan,
China) is a compound extracted from ginger (Zingiber
officinale). Solutions of 6-SHO were prepared at concentrations
of 10 and 15 μM using dimethyl sulfoxide (DMSO) acquired from
Samchun Chem in Seoul, Korea. These solutions were then stored at
a temperature of 4°C until needed.

2.2 Cell culture

Regarding the cell culture, the ACHN cell line (Korean Cell Line
Bank, Seoul, Korea) was procured. These cells were cultured in
DMEM medium, which was enriched with 10% heat-inactivated
fetal bovine serum (FBS) and 1% Pen-Strep (10,000 U/mL) (Gibco,
Grand Island, NY, United States). The culture conditions were
maintained at 37°C in a humidified atmosphere with 5% CO2.

2.3 Hyperthermia treatment

For the hyperthermia experiments, ACHN (0.3 × 106 cells) were
seeded in 6-well plates, each containing 3 mL of the growth medium.
These were then placed in a water bath set to maintain a temperature
of 37 or 42°C for a duration of 30 min, unless specified otherwise.
The 6-SHO was introduced to the culture at predetermined
concentrations 1 hour before the treatment.

2.4 MTT assay

The MTT assay was employed to gauge cell proliferation post 6-
SHO and hyperthermia exposure. ACHN cells (0.3 × 106 cells) were
plated in 96-well plates at a defined concentration and incubated
with varying doses of 6-SHO (0, 10 and 15 μM), followed by water
bath treatment at either 37 or 42°C in a CO2-enriched atmosphere.

2.5 Trypan blue assay

Following Trypan blue (Sigma-Aldrich, St. Louis, MO,
United States) staining (0.4%, 1:1 dilution in the cell-containing
PBS), the cells’ vitality was measured using a hemocytometer.
ACHN cells (0.3 × 106 cells) were planted in 6-well plates,
followed by 1 h of 6-SHO treatment and hyperthermia (30 min).
After 24 h of post-treatment incubation, cells were collected, diluted
1:4 with PBS, stained, and counted. The cell survival rate was

Frontiers in Pharmacology frontiersin.org02

Ahn and Baek 10.3389/fphar.2025.1522285

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1522285


calculated as follows: Cell survival rate is calculated as the ratio of
viable cells to total cells multiplied by 100%.

2.6 Morphology assay

The morphology assay was used to detect cell proliferation.
ACHN cells were planted in a 6-well plate at a density of 0.3 × 106

per well. After adhering to the plates, the cells were treated to 10 and
15 μM 6-SHO for 1 h, then incubated for 30 min at 37 or 42°C. Cells
were examined under a microscope and photographed after 24 h
(CX-40, Olympus, Tokyo, Japan).

2.7 Wound healing assay

ACHN cells were plated in a 6-well plate with a density of 1 × 106

cells per well and stored at 37°C. Once the cells had reached
confluence, a thin scratch was made in each well with a yellow
pipette tip. Images were taken 0 h (CX-40, Olympus, Tokyo, Japan).
After 24 h, the culture material disappeared, the cells were washed
with PBS, and additional images were obtained.

2.8 Colony formation assay

In a 6-well plate, 400 cells were seeded per well, and the plates
were incubated for a full night. The cells were treated with 15 μM 6-
SHO for 1 h, then incubated at 37 or 42°C for 30 min for
hyperthermia therapy. Following a 2-week period, the cells were
stained for 10 minutes at room temperature using a crystal violet
solution (Sigma-Aldrich, St. Louis, MO, United States), and then
they were cleaned with PBS. Using a standard light microscope (CX-
40, Olympus, Tokyo, Japan), images of colonies were captured.

2.9 Western blot analysis

Following the extraction from ACHN cells, protein levels were
determined. The lysates, post SDS-PAGE separation, were uniformly
transferred onto a polyvinylidene difluoride (PVDF) membrane. This
membrane was then blocked using TBS that included 0.1% Tween 20%
and 5% non-fat milk at ambient temperature. After the blocking phase,
the membrane was incubated with various primary antibodies,
including anti-caspase-3, anti-caspase-8, anti-caspase-9, anti-survivin,
anti-HSP27, anti-HSP70, anti-HSP90, anti-p-ERK (Thr202/Tyr204),
anti-ERK, anti-p-p38 (Thr180/Tyr182), anti-p38, anti-p-JNK (Thr183/
Tyr185), anti-JNK, anti-p-AKT (Ser473), anti-AKT (Cell Signaling
Technology, Danvers, Massachusetts, United States), anti-β-actin,
anti-Bcl-2, anti- Bcl-xL, anti-Cyclin B1, anti-Cyclin D1, anti-VEGF,
anti-MMP9, anti-MMP2 (Santa Cruz Biotechnology, Inc., Dallas,
Texas, United States), as well as anti-HSF1 and anti-pHSF1 from
Abcam, including anti-cleaved caspase3 (Genetex, Irvine, California,
United States). This incubation occurred overnight at 4°C. Post-
incubation, the membranes underwent triple washes with 1x TBS-T
and were then exposed to appropriate diluted secondary antibodies
(Santa Cruz Biotechnology, Inc., Dallas, Texas, United States) for an
hour at room temperature. Following three additional 10-minute

washes in TBS-T, the detection was performed using an enhanced
chemiluminescence (ECL) technique courtesy of a kit (EMD Merck
Millipore, Billerica, MA, United States).

2.10 Annexin V assay

The apoptosis ratio was calculated using a Muse® Annexin V and
Dead cell kit (Part Number: MCH100105) (EMD Merck Millipore in
Billerica, MA, United States). ACHN cells were planted and allowed to
adhere overnight (0.3 × 106 cells). ACHN cells were subjected to 6-SHO
(1 h) and heat treatment (30 min) and then reacted in a 37° incubator
for 24 h. After collecting the cells, 100 μL of AnnexinV and Dead cell
reagent was added to each tube according to the instructions provided
by the manufacturer, reacted at room temperature for 20 min, and the
cells were analyzed using a Muse® Cell Analyzer (EMD Merck
Millipore, Billerica, MA, United States).

2.11 Mitochondrial membrane potential

To assess the mitochondrial membrane potential, ACHN cells
(0.3 × 106 cells), post-treatment, were stained according to
guidelines provided by the MitoPotential assay kit (Part Number:
MCH100110) (EMDMerck Millipore, Billerica, MA, United States)
using prescribed concentrations of MitoPotential working solution
and 7-AAD. Analysis was conducted using the Muse® Cell Analyzer.

2.12 Cell cycle analysis

The cell cycle phase of ACHN cells (0.3 × 106 cells) in 6-well
plates was evaluated after 24 h of co-treatment. After collecting the
cells, they were fixed in 70% ice-cold EtOH for an overnight period,
washed in PBS, and resuspended in PBS containing 1 mg/mL PI and
10 mg/mL RNase A in a dark room for 10 min. The cell cycle was
determined using the Muse® Cell Analyzer (EMD Merck Millipore
in Billerica, Massachusetts, United States).

2.13 Analysis of reactive oxygen
species (ROS)

The production of ROS was measured using a ROS assay kit (Part
Number: MCH100111) (EMD Merck Millipore in Billerica,
Massachusetts, United States). ACHN cells were treated with an
oxidative stress working solution and incubated for 30 min at 37 °C
4 hours after the last treatment. TheMuse® Cell Analyzer (EMDMerck
Millipore, Billerica, MA, United States) was used tomeasure ROS levels.
Before receiving a 6-SHO and hyperthermia combination treatment,
N-acetylcysteine (NAC) was treated for 1.5 h.

2.14 Statistical analysis

All numerical values are shown as the mean ± SD. The t-test was
used to determine whether the data were statistically significant when
compared to the untreated control. *p < 0.05, **p < 0.01; ***p < 0.001.
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3 Results

3.1 Enhanced reduction of ACHN cell
growth by combined 6-SHO and 42°C
hyperthermia treatment

In our study, the dual application of 6-SHO (Figure 1A) with
hyperthermia at temperatures of 37°C and 42°C was examined for its
effect on ACHN cell proliferation, utilizing MTT assays. Our
research showed that combining 6-SHO with a 37°C temperature
environment had low effect, while providing 6-SHO at 42°C
significantly reduced cell viability at the same quantity (15 µM)
(Figure 1B). To assess the specificity of this effect, we performed the

same MTT assay on 786-O cells, a normal renal cell line, under
identical conditions. The results demonstrated no significant
reduction in cell viability in 786-O cells with the combined
treatment of 6-SHO and hyperthermia at either 37°C or 42°C,
indicating that the observed inhibitory effect is specific to ACHN
cancer cells (Figure 1C). The dual treatment markedly increased the
proportion of dead cells, as verified by trypan blue assay results
(Figure 1D). Moreover, when compared to the dual application of 6-
SHO with 37°C, the treatment involving 6-SHO and 42°C
temperature substantially reduced colony formation, as illustrated
by crystal violet staining in ACHN cells (Figure 1E). Morphological
examination further confirmed that the combination of 6-SHO at
the tested concentration and elevated temperature effectively

FIGURE 1
The effect of 6-SHO and hyperthermia co-treatment on ACHN cell viability. ACHN cells were treated with varied 6-SHO concentrations (0, 10, and
15 μM) for a day at 42°C, with or without hyperthermia (A) The chemical structure of 6-SHO (B, C) MTT was used to determine the percentage of cell
viability (D) The trypan blue test was administered (E) The clonogenic experiment utilized crystal violet staining (F)Morphological alterations suggestive of
apoptosis were observed under a microscope (G) A wound healing test was performed. *p < 0.05, **p < 0.01, ***p < 0.001 vs. control group; #p <
0.05, ##p < 0.01, ###p < 0.001°C vs. 42°C + 0 μM group.
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hindered the proliferation of cells (Figure 1F). Additionally, a
decrease in cell migration was observed in the assay following the
co-treatment, indicating a synergistic effect in limiting the
proliferative and migratory capabilities of ACHN cells under
these conditions (Figure 1G). These results collectively
underscore the enhanced effectiveness of combining 6-SHO with
elevated temperatures in inhibiting ACHN cell proliferation.

3.2 Apoptosis induction in ACHN cells by
combined 6-SHO and 42°C
hyperthermia treatment

To uncover the mechanisms behind the synergistic effects of 6-
SHO and hyperthermia on ACHN cells, we examined the expression
levels of various molecules involved in apoptosis, cell growth,
metastasis, and angiogenesis. Our results revealed that treating

cells with 6-SHO at 42°C notably increases the levels of active
caspase-3, a key marker of apoptosis, in a dose-dependent
manner, significantly more so than at the standard body
temperature of 37°C (Porter and Janicke, 1999; Srivastavaa and
Saxena, 2023). The concurrent administration of 6-SHO and 42°C
also led to a reduction in caspase-8 and caspase-9 expressions
(Figure 2A). Furthermore, this combined treatment significantly
decreased the levels of anti-apoptotic proteins within the B-cell
lymphoma (Bcl)-2 family, specifically Bcl-2, Bcl-xL, and survivin,
also in a dose-responsive manner (Figure 2B) (Kale et al., 2018).
Additionally, we explored the expression of Cyclin D1, associated
with cell adhesion and migration, along with VEGF, crucial for
angiogenesis and cellular movement, and the roles of MMP-9 and
MMP-2 in metastasis (Ferrara, 2005; Hosseini et al., 2019; Choi
et al., 2023; Reddy et al., 2023). The cotreatment effectively curtailed
the metastatic potential and proliferation of ACHN cells by
diminishing the levels of Cyclin D1, VEGF, MMP-2, and MMP-9

FIGURE 2
Effect of combined 6-SHO and hyperthermia treatment on apoptosis, cell survival, proliferation markers, and angiogenesis in experimental and
control groups. After administering 6-SHO, either with or without hyperthermia, ACHN cells (0.3 × 106) were cultured for a day. Western blot analysis was
then done on equal amounts of lysates fromwhole-cell extracts. Western blots were used to examine the protein expression of (A) caspase-3, caspase-8,
and caspase-9 (B) Bcl-2, Bcl-xL, and survivin, and (C) Cyclin D1, VEGF, MMP-9, and MMP-2. β-actin was used as the loading control.
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(Figure 2C). These outcomes suggest that the combination of 6-SHO
with hyperthermia impacts multiple cellular pathways, yielding a
significant anti-tumor effect.

3.3 Enhanced apoptosis and cell cycle arrest
in ACHN cells due to 6-SHO and 42°C
hyperthermia cotreatment

When we exposed ACHN cells to a combination of 6-SHO and
42°C hyperthermia, there was a more pronounced initiation of
apoptosis via annexin V binding than when the cells were treated
with hyperthermia alone or with 6-SHO at normal body
temperatures (Figure 3A). Significantly, the individual treatments
of 6-SHO or hyperthermia did not notably increase the necrotic cell
populations (upper left quadrant of the figure). In contrast, the
combined treatment significantly raised the apoptotic cell
percentage, surging from 10.1% to 33%. To calculate the synergy

effect of concurrent treatment, the combination index (CI) was
calculated using the compusyn program, and the combination
produced a CI value of less than 1, proving that there was a
synergistic effect (Figure 3B). Given that the depolarization of the
inner mitochondrial membrane potential is a hallmark of apoptosis
and cellular distress, we assessed mitochondrial membrane potential
changes in ACHN cells (Figure 3C) (Ly et al., 2003; Gottlieb et al.,
2003). The results indicated that cotreatment with 6-SHO and 42°C
hyperthermia led to a greater increase in cell death compared to the
cotreatment at 37°C (21.25% vs. 4.7%), aligning with the annexin V
staining outcomes. Furthermore, the cotreatment induced a notable
arrest of the cell cycle at the G2/M checkpoint, as shown by flow
cytometry analysis (Figure 3D). This effect was corroborated by the
observed decrease in cyclin B1 levels in cells treated with 6-SHO
under hyperthermic conditions (Figure 3E), suggesting that the
strategy of inducing both apoptosis and cell cycle arrest through
the cotreatment could play a pivotal role in the anticancer
capabilities of this approach.

FIGURE 3
Hyperthermia and 6-SHOmodulate the cell cycle and apoptotic processes in ACHN cells. 6-SHO (0 or 15 μM) was tested on ACHN cells (0.3 × 106

cells) with or without hyperthermia (A) Apoptosis was recognized using PI staining and Annexin V, and flow cytometry (B) Combination index (CI) analysis
using the compusyn program (C) Mitopotential was measured using a flow cytomet (D) The cell cycle and apoptosis profiles were analyzed using flow
cytometry (E) The expression of cyclin B1 was quantified using a Western blot. β-actin was employed as the loading control.
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3.4 Enhanced reactive oxygen species
generation and MAPK activation by 6-SHO
and hyperthermia Co-treatment

Our investigation into the combined effect of 6-SHO and
elevated temperature on ACHN cells revealed a significant
upsurge in reactive oxygen species (ROS) production, a key
factor in apoptosis initiation, when both treatments were applied
together (Hua et al., 2016; Trachootham et al., 2009). Through the
use of flow cytometry, we established that the synergistic application
of 6-SHO with hyperthermia markedly amplified ROS levels beyond
what was observed with 6-SHO treatment alone (Figure 4A).

Furthermore, we investigated the activation patterns of mitogen-
activated protein kinases (MAPKs), including ERK, JNK, and p38,
which are involved in apoptosis regulation (Sun et al., 2015; Baek
et al., 2016). Elevated ROS levels are known to activate these
pathways (Choi et al., 2022). Our results showed that
hyperthermia treatment alone activated ERK, and this effect was
further enhanced with the addition of 6-SHO, leading to
significantly increased ERK phosphorylation (Figure 4B). While
JNK and p38 MAPKs also exhibited some degree of activation,
their changes were relatively modest compared to the pronounced
ERK response. This suggests that the combined treatment
predominantly amplifies ERK signaling, which may be key in

FIGURE 4
The effects of 6-SHO and hyperthermia on the MAPK signaling pathway and ROS production in ACHN cells. Before undergoing 6-SHO (0 or 15 μM)
treatment, either with or without hyperthermia at 42°C (A) Flow cytometry was used to evaluate ROS production. (B) The levels of p-ERK, ERK, p-JNK,
JNK, p-p38, and p38 were determined using Western blot assays. (C) The levels of p-ERK and ERK were determined using Western blot assays. (D) The
expression of cleaved caspase-3 was confirmed by Western blotting with PD98059. The symbols (−) represent the lack of PD98059 or 6-SHO,
whereas (+) indicates their presence. (E) The analysis employed apoptosis profiling. β-actin was used as a loading control.
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driving the enhanced apoptotic response observed in NSCLC cells.
To investigate the role of ERK in the observed apoptotic effects, we
conducted additional experiments using the ERK inhibitor PD98059
(Jeon et al., 2023; Zhao et al., 2024). Western blot analysis
demonstrated that PD98059 effectively suppressed the
phosphorylation of ERK induced by the dual treatment,
confirming its inhibitory effect on ERK activation (Figure 4C).
Subsequently, a notable decrease in cleaved caspase-3 levels was
observed when the inhibitor was applied, indicating that ERK
activation is essential for apoptosis under these conditions
(Figure 4D). Furthermore, annexin V assays revealed a significant
reduction in apoptosis when PD98059 was used, further supporting
the role of ERK in mediating the apoptotic response triggered by the
combination treatment (Figure 4E). These findings suggest that
enhanced ROS generation and subsequent MAPK activation,
particularly through ERK, play a critical role in the apoptosis
induced by the combined 6-SHO and hyperthermia treatment.

3.5 ROS-dependent apoptotic mechanisms
enhanced by 6-SHO and hyperthermia in
ACHN cells

In our analysis of the mechanisms behind the induced apoptosis in
ACHN cells treated with 6-SHO and hyperthermia, we first focused on
the role of ROS. The increase in ROS production, critical for initiating
apoptotic pathways, was significantly attenuated by pretreatment with
N-acetylcysteine (NAC), a known ROS scavenger (Zhang et al., 2016;
Shimamoto et al., 2011). This led to a marked reduction in ROS levels
post co-treatment, as shown in Figure 5A. Subsequent analysis with PI
and Annexin V staining revealed a notable decrease in apoptotic cell
following NAC pretreatment, thereby emphasizing the pivotal role of
ROS in the apoptosis observed with the combined 6-SHO and
hyperthermia treatment (Figure 5B).

3.6 Inhibition of heat shock response and
HSF1 activation by 6-SHO in hyperthermia-
stressed ACHN cells

The influence of 6-SHO on the expression of heat shock proteins
(HSPs) and the activity of heat shock factor 1 (HSF1) in ACHN cells
under both normal and heat-stressed conditions was also examined.
Heat shock proteins, which serve as molecular chaperones, play vital
roles in cell survival, especially under stress (Albakova and
Mangasarova, 2021; Aolymat et al., 2023). We observed that
hyperthermia at 42°C led to an increase in HSP27, HSP70, and
HSP90 levels, whereas 6-SHO treatment noticeably reduced their
expression under both normothermic and hyperthermic conditions
(Figure 6A). Additionally, while hyperthermia induced the
phosphorylation of HSF1, a key regulator of HSP synthesis, this
effect was significantly attenuated by the co-treatment with 6-SHO,
highlighting its potential to inhibit HSF1 activation and,
consequently, HSP synthesis, even after prolonged hyperthermic
exposure (Figure 6B). To further assess the specificity of these effects,
the same experiments were performed on normal 786-O cells under
identical conditions. The results showed that 6-SHO treatment did
not significantly affect the expression of HSPs or the activation of
HSF1 in 786-O cells under either normothermic or hyperthermic
conditions (Figures 6C, D). These findings indicate that the
inhibitory effect of 6-SHO on the heat shock response and
HSF1 activation is specific to ACHN cancer cells, suggesting a
selective mechanism in targeting cancer cells without affecting
normal cells.

4 Discussion

Renal cancer represents a formidable challenge within the field
of oncology, characterized by its aggressive nature and the ability to

FIGURE 5
Reduced Apoptosis Induced by 6-SHO and Hyperthermia via ROS Scavenging Mechanisms. ACHN cells were pre-treated with N-acetylcysteine
(5 mM) for an hour before being treated with 6-SHO (0 or 15 μM) with or without hyperthermia at 42°C. (A) Flow cytometry was used to investigate ROS
production. (B) The analysis used apoptosis profiling. The symbols (−) indicate the absence of NAC or 6-SHO, whereas (+) shows their presence. β-actin
was used as a loading control.
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develop resistance against conventional treatment modalities. The
rising global incidence renal cancer underscores an urgent need for
the development of innovative therapeutic strategies (Vogelzang and
Stadler, 1998; Linehan and Zbar, 2004; Scelo et al., 2016). These
strategies must not only effectively target tumor growth and
metastasis but also circumvent the prevalent issues of resistance
and the limited efficacy that are inherent to current treatment
approaches.

6-Shogaol, specifically 6-SHO, a bioactive compound derived
from ginger (Zingiber officinale), has attracted significant attention
due to its extensive pharmacological effects, which include anti-
inflammatory, antioxidant, and, most notably, anticancer activities
(Chen et al., 2023; Shahidi et al., 2023). Extensive research has
illuminated 6-SHO’s mechanisms of action, revealing its capability
to induce apoptosis, inhibit cell migration and proliferation, and
disrupt the cancer cell cycle dynamics across a broad spectrum of
cancer cell lines (Qi et al., 2015; Wu et al., 2015; Zhang et al., 2022).
This has positioned 6-SHO as a particularly intriguing compound

for anticancer research, especially in the context of renal
cancer therapy.

Hyperthermia, a treatment method that involves heating tumor
tissues to 40°C–45°C, has gained prominence as an adjunct therapy
in oncology (Crezee et al., 2021; Reinhold and Endrich, 1986). This
technique exploits the higher sensitivity of cancer cells to heat
compared to normal cells, aiming to selectively damage or kill
cancerous tissues while minimizing harm to healthy ones (Issels,
2008; Park and Baek, 2020). The method has shown potential in
enhancing the efficacy of traditional treatments like chemotherapy
and radiotherapy through mechanisms such as disrupting cancer
cell functions and improving drug uptake (Horsman and Overgaard,
2007; Datta et al., 2015; Mortezaee et al., 2021).

Research into hyperthermia has demonstrated its effectiveness
in various cancers, suggesting it can lead to better treatment
outcomes, especially when used in combination with other
therapies (Wust et al., 2002; Ahn et al., 2023). Its role in
potentially overcoming drug resistance and reducing treatment-

FIGURE 6
HSF-1 Levels in ACHN and 786-O Cells After Treatment with 6-SHO and Hyperthermia. 6-SHO (0, 10 and 15 μM) was applied to ACHN and 786-O
cells (0.3 × 106 cells), with or without hyperthermia. Western blotting was performed to evaluate the protein expression of (A)HSP27, HSP70, and HSP90,
as well as (B) p-HSF1 and HSF, at various times in ACHN cells. (C, D) show the results of the same experiments performed in 786-O cells. β-actin was used
as a loading control.
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related toxicity further underscores its value as a complementary
treatment option in cancer therapy. As ongoing studies continue to
explore and optimize hyperthermia’s application, its integration into
cancer treatment protocols holds the promise of improving patient
outcomes by offering a more targeted and effective approach to
cancer care.

Our study further investigates the synergistic effects of 6-SHO in
combination with hyperthermia on ACHN cells, which serve as a
model for renal carcinoma. This cotreatment approach has
demonstrated a marked potency in diminishing cell viability,
inhibiting migration, and reducing the capability of the cells to
form colonies more effectively than either treatment administered
independently. These findings emphasize a multifaceted disruption
of cancer cell survival mechanisms, with the enhanced efficacy
attributed to the induction of apoptosis and cell cycle arrest at
the G2/M phase. Additionally, the treatment significantly increased
the percentage of apoptotic cells, as evidenced by PI and Annexin V
staining, alongside a notable reduction in cyclin B1 expression,
indicating a profound interruption in the cell division processes.

The combined application of 6-SHO and hyperthermia
significantly increases ROS production, which plays a crucial role
in activating the MAPK pathways. This surge in ROS is essential for
the phosphorylation and subsequent activation of the ERK, JNK,
and p38 MAPK pathways, leading to a comprehensive attack on the
survival mechanisms of cancer cells (Kwak et al., 2023; Wu et al.,
2022; Wang et al., 2024). Such an increase in ROS induces a complex
cellular response that spans a broader spectrum of apoptotic and
survival pathways (Jiang et al., 2024; Navaneethan et al., 2024;
Pedrosa et al., 2024; Baek et al., 2015). To further investigate the
role of ERK in apoptosis, we employed the ERK inhibitor
PD98059 and examined the expression levels of cleaved caspase-3
and annexin V at various time points. The results showed that
inhibition of ERK significantly reduced the activation of caspase-3
and the percentage of annexin V-positive cells, confirming the
involvement of ERK in apoptosis induction. Additionally, we
performed Western blot analysis to monitor ERK activation
levels over time. The results demonstrated that the use of the
inhibitor significantly suppressed ERK phosphorylation at
multiple time points, further supporting its role in mediating the
apoptotic response. These findings validate the crucial role of ERK
activation in mediating the apoptotic response induced by the
combined 6-SHO and hyperthermia treatment. Notably, 6-SHO
can act both as an antioxidant and a pro-oxidant depending on its
concentration and environmental conditions (Lee et al., 2021;
Ribeiro et al., 2018). Under hyperthermic conditions, 6-SHO
appears to function primarily as a pro-oxidant, enhancing
oxidative stress within the cancer cells (Li et al., 2016). This dual
role of 6-SHO contributes to its complex impact on cancer cells, with
hyperthermia amplifying its pro-oxidant activity and thereby
increasing ROS levels and apoptosis.

To further elucidate the underlying mechanisms of the observed
anticancer effects, our research delved into the impact of inhibiting
ROS on the efficacy of the treatment regimen. By pre-treating the
cells with N-acetylcysteine (NAC), a potent ROS scavenger, we
noted a significant diminution in the effectiveness of the 6-SHO and
hyperthermia combination in inducing apoptosis (Yedjou and
Tchounwou, 2007; Zhitkovich, 2019). This highlights the
indispensable role of ROS in mediating the therapeutic effects of

the combined treatment, underscoring the importance of oxidative
stress in the anticancer activity of 6-SHO and hyperthermia.

Moreover, our study extensively explored the modulation of
heat shock proteins (HSPs) and heat shock factor 1 (HSF1) in
response to the stress induced by hyperthermia and 6-SHO
treatment. HSPs, functioning as molecular chaperones, play a
vital role in protecting cells from stress-induced damage,
facilitating protein folding, and preventing protein aggregation
(Ergul et al., 2020; Zhu and Dai, 2024; Kim et al., 2024). Under
the stress conditions induced by hyperthermia, cells typically
upregulate the expression of HSPs as a defensive mechanism
(Hildebrandt et al., 2002; Singh and Hasday, 2013; Kalamida
et al., 2015). Our findings revealed that 6-SHO effectively
counteracts this response, leading to a reduction in the
expression of HSP27, HSP70, and HSP90, effectively stripping
the cancer cells of their protective armor against induced stress.
Furthermore, HSF1, the transcription factor that orchestrates the
heat shock response by regulating HSP expression, exhibited
significantly reduced activation in cells treated with the
combination of 6-SHO and hyperthermia, further compromising
the cancer cells’ defensive mechanisms against therapeutic stress
(Chin et al., 2023; Cyran and Zhitkovich, 2022; Tabuchi and
Kondo, 2013).

Interestingly, the specificity of the co-treatment was evidenced
by the differential response observed between normal kidney cells
(786-O) and renal cancer cells (ACHN). In our experiments, 786-O
cells exhibited no significant change in HSP expression following the
co-treatment, whereas ACHN cells did. Although hyperthermia
caused a transient increase in HSP levels in 786-O cells, no
synergistic effect was observed. Cell viability assays (MTT)
further confirmed these findings, showing no significant changes
in 786-O cells in response to either individual treatments or their
combination. Conversely, ACHN cells displayed increased drug
toxicity and a marked synergistic effect when subjected to both
hyperthermia and the drug. These results strongly suggest that the
combined treatment specifically targets ACHN renal cancer cells
without adversely affecting normal renal 786-O cells, underscoring
its potential for selective anticancer therapy.

By selectively enhancing the anticancer effects in renal cancer
cells while sparing normal kidney cells, this co-treatment strategy
demonstrates a promising therapeutic approach. This specificity not
only maximizes the therapeutic impact on malignant cells but also
minimizes potential side effects on normal tissues, addressing one of
the critical challenges in cancer therapy.

In addition to the above findings, modulated electro-
hyperthermia (mEHT) presents a novel Frontier in the fight
against cancer, including renal carcinoma. mEHT employs
modulated electromagnetic fields to target and heat cancer cells
selectively, offering a more refined approach compared to traditional
hyperthermia (Szasz et al., 2019; Viana and Hamar, 2024). This
technique not only aims at directly damaging cancer cells but also
enhances the immune response against tumors, potentially
overcoming the limitations of resistance and side effects
associated with conventional therapies (Giunashvili et al., 2024;
Minnaar et al., 2020).

The application of mEHT devices in cancer research has
demonstrated encouraging outcomes, particularly in enhancing
the efficacy of chemotherapy and radiotherapy (Lee et al., 2023).
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By selectively heating cancer cells, mEHT disrupts their metabolic
activities and induces stress responses that make them more
vulnerable to therapeutic agents (Minnaar et al., 2022; Petenyi
et al., 2021). This integration of mEHT into cancer treatment
protocols holds great promise for improving clinical outcomes
and patient quality of life.

Moving forward, our research plans to harness the synergistic
potential of 6-SHO and mEHT, utilizing our currently available
equipment (CPB-2100, dongseo medicare, Inc. Seongnam, Korea),
to further elucidate their combined effects on renal cancer cells. The
anticipated studies will explore the underlying mechanisms through
which this combination enhances cancer cell death, inhibits
metastasis, and potentially reduces the adverse effects of current
treatment modalities. Given the promising preliminary data, the
integration of mEHT into our research represents a significant step
towards developing more effective and less toxic therapeutic
strategies for renal cancer.

In summary, combining 6-SHO with hyperthermia, and
potentially modulated electro-hyperthermia (mEHT), proposes a
novel paradigm in renal cancer therapy. This approach exploits
cancer cells’ vulnerabilities to oxidative stress and heat shock,
enhancing 6-SHO’s anticancer effects and weakening cancer cell
defenses. By amplifying 6-SHO’s impact and utilizing targeted heat
stress, we pave the way for more effective treatments. Our next steps
include conducting animal studies to assess this combination’s
efficacy, safety, and side effects, crucial for moving towards
human clinical trials. This research is a significant stride towards
a new, more effective renal cancer treatment, aiming to improve
patient outcomes.
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