
The effect of cannabinoid type Ⅱ
receptor on the excitability of
substantia nigra dopaminergic
neurons

Sha Zhao1, Shunfeng Liu1, Yongxin Gong1 and Zegang Ma1,2*
1Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China, 2Institute of
Brain Science and Disorders, Qingdao University, Qingdao, China

The biological effects of cannabinoids are mainly mediated by two members of
the G-protein-coupled-receptor family: cannabinoid type 1 receptor (CB1R) and
cannabinoid type 2 receptor (CB2R). Unlike CB1R, CB2R is considered a
“peripheral” cannabinoid receptor. However, recent studies have found that
CB2R is widely expressed in the central nervous system and is involved in
dopamine related behavioral regulation, including dietary behavior, weight
regulation, anxiety, and schizophrenia like behavior. Our previous laboratory
research demonstrated that activating CB2R on dopaminergic neurons in the
ventral tegmental area can regulate addictive behavior in animals by inhibiting
neuronal excitability. However, it is currently unclear whether CB2R on
dopaminergic neurons in the substantia nigra compacta (SNc) has similar
therapeutic potential. Brain patch clamp results have shown that the CB2R
agonist JWH133 significantly inhibits the discharge of SNc dopamine neurons
in a concentration dependent manner. The pharmacological blocker AM630 of
CB2R can reverse this inhibitory effect, indicating that the expression of CB2R in
SNc dopaminergic neurons is functional. After treatment with JWH133, the
number of induced action potentials decreased, and the peak potential
interval time, action potential start time, and potential amplitude after
hyperpolarization amplitude all increased. In addition, synaptic current results
showed that JWH133 can significantly reduce the frequency of miniature
excitatory postsynaptic currents, indicating that activating CB2R to some
extent inhibits the release of presynaptic glutamate and indirectly excites
postsynaptic neurons.
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1 Introduction

Hemp is a fiber flowering plant containing more than 500 components. One hundred
four cannabinoids have been identified (Lafaye et al., 2017; Guo et al., 2024). The
psychoactivity of cannabis is mainly mediated by cannabinoids. Cannabinoid 1 receptor
(CB1R) and cannabinoid 2 receptor (CB2R) are the two main subtypes of cannabinoid
receptors (Di Marzo, 2009; Brown et al., 2024). CB1R is a G-protein-coupled-receptor
(GPCR) in the mammalian brain. The application of CNR1 mutant mice to study the effect
of CB1R has significantly improved understanding of the function and mechanism of CB1R
(Monory et al., 2015; Fyke et al., 2021; Yang et al., 2021). CB1R is mainly expressed in the
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central nervous system and hence is called central cannabinoid
receptor (Cristino et al., 2020; Ruiz-Contreras et al., 2022). In 1993,
researchers cloned CB2R and confirmed that CB2R is also a type of
GPCR (Munro et al., 1993). Whether CB2R is expressed in the
central nervous system and its function are not yet fully understood
(Duerr et al., 2019; Jordan and Xi, 2019). Compared with CB1R,
many characteristics of CB2R, such as structure, regulation,
function, variation, and effect, on behavior need to be further
studied (Xie et al., 2004; Grabon et al., 2023; Li et al., 2023).
Previous studies have shown that CB2R is also expressed in the
brain, although its expression level is far lower than that of CB1R in
healthy subjects. Immunohistochemistry and in situ hybridization
were used to detect the expression of CB2R immunoreactive cells or
CB2R mRNA in various brain regions (Galiègue et al., 1995). CB2R
was detected in glutamate neurons in the hippocampus (Zhao et al.,
2010; Komorowska-Müller et al., 2021), pyramidal neurons in the
cortex (den Boon et al., 2014; Uzuneser et al., 2023), dopaminergic
neurons in ventral tegmental area (VTA) (Liu et al., 2017; Zhang
et al., 2017; Zhang H. et al., 2021), neurons in the nucleus accumbens
(NAc) (Li et al., 2021; Feng et al., 2023), and the brainstem and small
brain (Ashton et al., 2006; Baek et al., 2008). Therefore, attention has
been paid to the function and mechanism of CB2R in neurons.

Basal ganglia is one of the brain regions with high expression of
CB2R (Sagredo et al., 2007; Soti et al., 2022). CB2R is expressed in
the globus pallidus (Lanciego et al., 2011), VTA, and subthalamic
nucleus (Sánchez-Zavaleta et al., 2018; Ma et al., 2019). The relative
expression of CB2R in midbrain dopaminergic neurons is high,
which can help regulate a variety of dopamine (DA)-related
behaviors (Canseco-Alba et al., 2021). CB2R regulates food
intake, weight, depression, anxiety, and schizophrenia like
behavior, and also plays an important role in cocaine, alcohol,
and nicotine addiction (Onaivi et al., 2012; Huang et al., 2016;
Delis et al., 2017; Araujo et al., 2019). Activation of CB2R on VTA
dopaminergic neurons inhibits the cAMP-protein kinase A (PKA)
signal transduction pathway in neurons, enhance muscarinic type
K+ current (M-current), and inhibit the excitability of neurons (Ma
et al., 2019). In vivo voltammetry was used to record endogenous DA
release from dopaminergic terminals. CB2R activation inhibited
presynaptic dopamine release and induced antipsychotic effect of
muscarinic M4 acetylcholine receptor positive allosteric modulator
(Zhang et al., 2017; Li et al., 2021). In addition, overexpression of
CB2R in the brain inhibits cocaine self-administration and regulates
cocaine induced motor behavior (Aracil-Fernández et al., 2012).
Thus, CB2R plays an indispensable role in the regulation of
dopamine related animal behavior and various brain functions
(including psychiatric, cognitive, and neurobiological activities)
related to dopamine.

At present, the study of CB2R on substantia nigra compacta
(SNc) dopaminergic neurons is very limited. The changes of
excitability of SNc dopaminergic neurons can affect DA content
in striatum and thus help regulate the SNc striatum system (Gonon,
1988; Gantz et al., 2018). CB2R is expressed in both soma and axon
terminals of dopaminergic neurons in SN of rats (Shi et al., 2017).
Moreover, CB2R on axon terminals can increase DA release by
interacting with the presynaptic D2 receptor (Amancio-Belmont
et al., 2020; Zhang H. Y. et al., 2021). Therefore, exploring the effect
of activation of CB2R on the electrical activity of SNc dopaminergic
neurons, as well as its regulatory mechanism, is essential to further

understand the function of CB2R on dopaminergic neurons. The
aim of this study was to investigate the effect of activation of CB2R
on SNc dopaminergic neurons on neuronal excitability and its
possible mechanism.

CB2R expression in SNc dopaminergic neurons of mice was
first observed using immunofluorescence technique and the whole
cell patch clamp technique was used to observe the effect of
activation of CB2R on the excitability of SNc dopaminergic
neurons. The effect of CB2R on the excitability of SNc
dopaminergic neurons and its possible mechanism were
evaluated in this study from the molecular and
electrophysiological perspectives, and its possible physiological
significance was elucidated.

2 Materials and methods

2.1 Animals

C57BL/6j mice were purchased from Beijing Vital River
Laboratory Animal Technology Co., Ltd. The mice were placed
in the laboratory for 2 h for adaptation and then housed in separate
cages. The mice were placed in an environment with a constant
humidity and temperature of 50% ± 10% and 21°C ± 2°C,
respectively. The mice were also subjected to a day: night cycle of
12:12 h and ad/lib feed and water for the duration of the study. The
C57/Bl6j male mice aged 15–20 days were used for the preparation
of the SNc brain slices. Additionally, C57BL/6j male mice aged
7–8 weeks were used for double immunofluorescence staining. The
animal feeding and experimental procedures in this experiment
were conducted strictly in accordance with the Qingdao University
Laboratory Animal Use Regulations.

2.2 Double immunofluorescence staining

To avoid estrogen interference, four male mice were selected for
immunofluorescence experiments (Kim et al., 2022; Kim et al.,
2023). Male mice were anesthetized with pentobarbital sodium
(70 mg/kg, i. p., dissolved in saline) and administered
physiological saline and 4% paraformaldehyde solution through
the heart. The brains were removed and fixed in a 4%
paraformaldehyde solution, and then dehydrated in 20% and
30% sucrose solutions at 4°C sequentially. Subsequently, the
brains were frozen and sectioned into 30 μm slices for
immunofluorescence staining. The slices were incubated with 5%
bovine serum albumin (BSA) for 1 h to block non-specific binding,
before incubation with primary antibodies containing mouse anti-
tyrosine hydroxylase antibodies (CST, 1:1,000) and rabbit
anti–CB2R antibodies (Abcam, 1:250) at 4°C for 12 h. Secondary
antibodies (goat anti-mouse immunoglobulin G (IgG) (Abcam, 1:
500); goat anti-rabbit IgG (Abcam, 1:500)) were then applied at
room temperature for 1 h. Following incubation, the sections were
washed, dehydrated, mounted on polylysine-coated glass slides, and
examined using a fluorescence microscope (BX 53, Olympus, Tokyo,
Japan). Sections were also observed using an Olympus fluorescence
microscope (VS120, Olympus, Tokyo, Japan) and 20x or 40x
objective lens micrographs obtained.
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2.3 SNc slice preparation

In the present study, postnatal day 15 (P15) to P20 male mice
were used as no significant changes in CNR2 mRNA levels are
observed in male mice during P15–P40 (Dufour et al., 2014). The
slice patch-clamp recordings were the same as reported previously
(Chang et al., 2020). Briefly, the mice were anesthetized before
decapitation, and slices were cut in an ice-cold, oxygenated cutting
solution containing (in mM) 124 NaCl, 3 KCl, 0.5 CaCl2, 2 MgCl2,
1.3 NaH2PO4, 26 NaHCO3, and 10 glucose. Coronal slices (250 μm)
containing SNc were cut using a vibratome (LeicaVT1000S,
Germany) and transferred to a holding chamber. The slices were
the incubated at 36 °C in artificial cerebrospinal fluid (ACSF)
containing (in mM) 124 NaCl, 3 KCl, 1.3 NaH2PO4, 1.3 MgCl2,
2.4 CaCl2, 26 NaHCO3, and 10 Glucose (osmolarity, 300–310 mM,
pH 7.4), and continuously bubbled with 95% O2 and 5% CO2. After
1 h of recovery, the slices obtained were then transferred to an
imaging chamber on the stage of an upright microscope (BX51WI;
Olympus Tokyo, Japan) and continuously perfused with oxygenated
standard ACSF at a flow rate of 2 mL/min at RT.

2.4 Patch-clamp recordings in SNc slices

Whole-cell patch-clamp recordings were conducted using glass
pipettes with a resistance of 3–7 MΩ. The internal solution
(295 mOsm) contained (in mM): 120 K-gluconate, 10 HEPES,
10 EGTA, 20 KCl, 2 MgCl2, 2 Na2ATP, 0.3 Na3GTP, and 10 Na2-
phosphocreatine; pH 7.2 with KOH. Cells were visualized under
infrared differential interference contrast (DIC) microscopy, and
electrodes were positioned using a micromanipulator. After a tight
seal (resulting in electrode resistance >1 GΩ) was formed between the
electrode tip and the cell surface, suction was briefly applied until a
whole-cell patch-clamp recording configuration was obtained (access
resistance lower than 20 MΩ). Recordings started at least 5 min after
establishing whole-cell configuration to allow the proper wash-in of
the intra-pipette solution. Whole-cell patch clamp recordings of SNc
neurons was conducted to record spikes under current-clamp mode.
Step-current injections (of 800milliseconds) were delivered from 0 pA
to 50 pA increments. The number of action potentials (AP), AP
initiation, AP duration, after-hyperpolarization (AHP), and inter-
spike interval (ISI) between the first and second firings weremeasured
in current mode with the cell at −70 mV and were analyzed with a
custom Matlab program (R2018b).

2.5 Miniature excitatory/inhibitory
postsynaptic currents (mEPSCs/mIPSCs) in
SNc slices

For assessments of mEPSCs, electrodes were filled with an
intracellular solution containing (mM): 133 K-gluconate, 8 NaCl,
0.6 EGTA, 2 MgATP, 0.3 Na3·GTP, and 10 HEPES. To allow
verification of the identity of recorded neurons, sodium channel
blocker tetrodotoxin (TTX 1 μM), D-APV (a NMDA receptor
antagonist, 50 μM) and picrotoxin (a selective GABAA receptor
antagonist) 100 μM were included in the solution. The membrane
potential was clamped at −70 mV and the mEPSCs was recorded for

15 min. For mIPSCs recordings, electrodes were filled with an
intracellular solution containing (mM): 130 KCl, 1.0 MgCl2,
5 EGTA, 5 Na2·ATP, and 5 HEPES. To allow for verification of
the identity of recorded neurons, TTX, NBQX (an AMPA receptor
antagonist, 10 μM) and D-APV (50 μM) were included in the
solution. The membrane potential was clamped at −60 mV,
recording time were the same as above.

2.6 Electrophysiology data acquisition
and analysis

Total 53 mice were used in electrophysiological experiments, we
maintained two slices from each mice and then selected one neuron
for patch recordings based on the brain slice. Only the neurons with
the morphology and electrophysiological properties of dopaminergic
neurons in SNc were included for further analysis. Series resistance
was automatically compensated using a patch-clamp amplifier
(Multiclamp 700 B, Molecular Devices). Data acquisition and
analysis were performed using a digitizer (DigiData 1550B,
Molecular Devices) and a pClamp10 analysis software (Molecular
Devices). Signals were filtered at 2 kHz and sampled at 10 kHz. Offline
analyses of the data obtained from electrophysiological recordings
were conducted using the Clampfit software version 10.7 (Axon
Instruments, Inc., United States). A semi-automated sliding
template protocol was utilized to analyze both classes of miniature
data. The detection criteria were established by optimizing the scaling
factor and ensuring an optimal fit quality. Events were confirmed
when the criterion exceeded a predefined threshold level.
Furthermore, the algorithm dynamically adjusted for variations in
recording noise, considering only amplitudes that were at least three
times the standard deviation of the noise (3σ). Each event detected by
the template was individually evaluated and accepted for analysis
based on two criteria: non-overlapping events and stable baseline
recordings (2.5 ms), both before and after the rising and decay phases
of mIPSCs/mEPSCs. Once validated, the mIPSCs/mEPSCs were
aligned at their onset and averaged.

2.7 Drugs and statistics

JWH133 and AM630 were purchased from APE x Bio
(United States). Other chemical drugs used for the
electrophysiology experiments were obtained from Sigma. The
Graphpad prism 5.0 software was used to statistically analyze the
experimental results and to make the corresponding results analysis
and trend graphs. The experimental data are expressed as mean ±
standard error (Mean ± S.E.M.), and paired t-test of P < 0.05 was
considered statistically significant.

3 Results

3.1 Nigral dopaminergic neurons
expressed CB2Rs

Firstly, we observed the expression of CB2Rs on dopaminergic
neurons in the SNc of normal mice. Double-labeling
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immunofluorescence showed that dopaminergic neurons in the
substantia nigra expressed CB2Rs. As shown in Figure 1A, some
dopamine neurons in the substantia nigra labeled with TH (red) also
exhibit CB2R immunoreactivity (green).

3.2 Identification of dopaminergic neurons
in mouse SNc brain slices

Based on our previous studies, we identified SNc dopaminergic
neurons based on their morphological and electrophysiological
characteristics: (1) SNc dopaminergic neurons are mainly located
at the ventral aspect of the midbrain (Figure 1B); (2) they are
densely packed, with large neuronal cell bodies, and are generally
spindle, triangular, or multipole shaped (Figure 1C); (3) when
dopamine neurons are stimulated with a hyperpolarized current
of −150 pA (after whole-cell recordings in the current-clamp
mode), significant inward rectification is observed in the
neuronal membrane potential (Figure 1D); (4) In Gap free
mode, SNc dopaminergic neurons exhibit slow and regular
spontaneous firing activity (Figure 1E); and (5) the duration of

the AP is relatively long, with a half width of about 3 ms
(Figure 1F). Based on the abovementioned morphological and
electrophysiological characteristics, neurons identified as
dopaminergic were used in subsequent experiments.

3.3 Activation of CB2R on SNc dopamine
neurons and inhibition of neuronal
spontaneous discharge

As mentioned above, most SNc dopaminergic neurons exhibit
regular tonic discharges. To observe the effect of CB2R activation on
SNc dopaminergic neuronal excitability, we first selected 1 μmol/L
CB2R agonist JWH133 perfusion brain slices according to previous
literature reports. As demonstrated in Figure 2A, among the
recorded seven dopaminergic neurons, the average firing
frequency was 1.08 ± 0.13 Hz. After perfusion with JWH133, the
firing frequency decreased to 0.66 ± 0.09 Hz (P < 0.05). The original
frequency could be restored following washing with normal ACSF.

To further confirm whether the inhibitory effect of
JWH133 on dopaminergic neuronal excitability was dose-

FIGURE 1
Identification of dopaminergic neurons in the SNc of mice. (A) Green fluorescence represents the expression of CB2R-positive cells (top line). Red
fluorescence represents the expression of TH-immunostaining neurons (middle line). Pictures in the bottom line indicated the co-localization of CB2R
and TH positive cells. (B) The substantia nigra is located at the ventral midbrain. (C) IR-DIC video microscope of SNc neurons in the midbrain slice. (D)
Electrophysiological characteristics of substantia nigra dopaminergic neurons. Current clamp recordings showed spontaneous low-frequency
pacemaker activity and inward rectification property by injection of −150 pA hyperpolarized current. (E) In Gap free mode, SNc dopaminergic neurons
exhibit slow and regular spontaneous firing activity. (F) The duration of the action potential (AP) is relatively long, with a half width of about 3 ms.
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dependent, brain slices perfused at four different concentrations
(0.01, 0.1, 10, and 30 μmol/L) were selected. As displayed in
Figure 2B: 0.01 μmol/L JWH133 demonstrated no significant
effect on neuronal discharge frequency (P > 0.05) in the recorded
display among the five neurons. In the recorded seven neurons:
0.1 μmol/L JWH133 had no obvious effect on neuron firing
frequency (P > 0.05). However, 10 μmol/L JWH133 significantly
reduced the neuron firing frequency, from the basic 1.18 ±
0.07 Hz to 0.80 ± 0.69 Hz (P < 0.01). Similarly, 30 μmol/
LJWH133 significantly reduced neuron firing frequency, from
the basic 1.11 ± 0.13 Hz to 0.69 ± 0.09 Hz (P < 0.01). These
results indicate that the effect of JWH133 on the firing frequency
of dopaminergic neurons has a significant dose correlation.
Figure 2C illustrates that perfusing brain slices with 1 μmol/L
of the CB2R blocker AM630 alone had no statistically
significant effect on the firing frequency of dopaminergic
neurons in the SNc region compared to the control
group. When brain slices were perfused with both JWH133
(1 μmol/L) and AM630 (1 μmol/L), the inhibitory effect of
JWH133 was blocked.

3.4 Activate CB2R on SNc dopamine
neurons and inhibit neuronal
evoked discharge

In the current-clamp mode, we administered a depolarization
current stimulation of 10–50 pA to dopaminergic neurons and
recorded the corresponding indicators for evoked discharges. The
results demonstrated that among the seven recorded neurons, the
number of AP bursts were positively correlated with increasing
depolarization current amplitude (Figure 3A). In contrast, the
number of APs induced by the depolarization current decreased
significantly after perfusion with 10 μmol/L JWH133 (Figure 3A).
To explore whether activating CB2R in the SNc brain region affects
the excitability of neurons, we prepared acute SNc slices. We found
that activating CB2R on dopaminergic neurons in the SNc
significantly reduced neuronal excitability. Specifically,
depolarizing current (50 pA, duration 800 ms) triggered larger
inter-spike interval (ISI) (Figure 3B), larger afterhyperpolarization
potentials (AHP), longer action potential initiation times, and fewer
action potential numbers compared to the control group, indicating

FIGURE 2
Effects of JWH133 on spontaneous firing of dopaminergic neurons in the SNc. The activation of CB2R reduces the discharge of dopamine neurons
in vitro. (A) JWH133 significantly reduces the firing rate of dopaminergic neurons in the SNc. Representative pictures sowed the firing before (a), after
JWH133 perfusion (b) and wash (c). (B) and (C) Summarized data showed that JWH133 dose-dependently inhibits firing frequency of dopamine neurons.
The inhibitory effect of JWH133 on firing frequency was blocked by AM630 (1 μM) (n = 7, **P < 0.01, compared with control).
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FIGURE 3
Effect of JWH133 on evoked firing of dopaminergic neurons in the SNc. Representative recordings (A)and summarized data (B) illustrated that
JWH133 reduces evoked firing numbers of dopaminergic neuron when the neurons were injected 50 pA current. Representative recordings (C) and
summarized data (C–G) illustrate that JWH133 increases ISI, AP initiation, AHP, and decreases AP numbers when neurons were injected with 50 pA
current. (Figures 3C–F; paired t-test, ISI: t = 4.055, df = 6, P <0.01; AP initiation: t = 3.392, df = 6, P < 0.05; AHP: t = 3.187, df = 6, P < 0.05; AP duration:
t = 2.403, df = 6, P = 0.0531; AP number: t = 5.303, df = 6, P < 0.01). Data are presented as the mean ± SEM, compared with control.
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reduced excitability (Figures 3C–F; paired t-test, ISI: t = 4.055, df = 6,
P < 0.01; AP initiation: t = 3.392, df = 6, P < 0.05; AHP: t = 3.187, df =
6, P < 0.05; AP duration: t = 2.403, df = 6, P = 0.0531; AP number: t =

5.303, df = 6, P < 0.01). Therefore, we concluded that activating
CB2R in the SNc region reduces the intrinsic excitability of SNc
dopaminergic neurons.

FIGURE 4
The regulation of JWH133 on miniature excitatory/inhibitory postsynaptic current. (A) Typical traces showed the mEPSCs in the presence of TTX
(1 μm) before (top trace) and after (bottom trace) JWH133 exposure. (B–D) Statistical analysis showed the influence of JWH133 on the frequency (n = 10,
t = 3.146, df = 9, P < 0.05, Figure 4C), half-decay time (n = 10, t = 2.370, df = 9, P < 0.05, Figure 4D) and amplitude (n = 10, t = 0.09425, df = 9, P > 0.05,
Figure 4B) of mEPSCs. (E) Typical traces of mIPSCs in the presence of NBQX (10 μM) and AP-5 (50 μM) before (top trace) and after (bottom trace)
JWH133 (10 μmol/L) exposure using the whole cell patch-clamp recording in SNc slice. Cumulative probability analysis formIPSC inter-event interval and
amplitude under control conditions (baseline) and JWH133 exposure. (F–H). Comparison of mIPSC frequency, amplitude and half decay time before and
after JWH133 exposure from SN slices tested (Amplitude: t = 0.1849, df = 9, P > 0.05; Frequency: t = 0.8929, df = 9, P > 0.05; Half decay time: t = 0.2911,
df = 9, P > 0.05).
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3.5 The regulation of JWH133 on miniature
excitatory/inhibitory postsynaptic current

As CB2R is also expressed at pre-synapses in the SNc area, we
also investigated whether JWH133 affects synaptic currents. We first
examined the regulatory effects of JWH133 on mEPSCs. After
whole-cell recording on mouse SNc brain slices was conducted, a
set of spontaneous inward currents was obtained in the Gap free
recording mode. After incorporating TTX to block the sEPSCs
caused by the AP, mEPSCs were obtained. This inward current
was completely blocked by NBQX and AP-5, confirming that the
EPSCs were mediated by excitatory amino acid receptors
(Figure 4A). As shown in Figure 4C, compared to the control
group, the frequency of mEPSCs slightly decreased after the
application of 10 μmol/L JWH133 (n = 10, t = 3.146, df = 9, P <
0.05). The half decay time of mEPSC slightly increased (n = 10, t =
2.370, df = 9, P < 0.05, Figure 4D). However, there was no significant
difference in amplitude between mEPSC and the control group (n =
10, t = 0.09425, df = 9, P > 0.05, Figure 4B). This result suggests that
the activation of CB2R in the SNc region alters the frequency of
mEPSCs, which may be related to changes in the probability of pre-
synaptic release and/or the number of synapses. We also observed
an effect of JWH133 on GABAA receptor-mediated mIPSCs. After
the addition of NBQX (10 μmol/L) and AP-5 (50 μmol/L) to the
perfused ACSF to block EPSCs caused by excitatory amino acids,
IPSCs were isolated. After adding TTX (1 μmol/L) to block
spontaneous IPSCs (sIPSCs) induced by APs, mIPSCs were
obtained (Figure 4E). In 10 SNc slices prepared from 10 wild-
type mice, 10 μM JWH133 bath perfusion for 10 min did not
change the frequency, amplitude, or half decay time of mIPSCs
(Amplitude: t = 0.1849, df = 9, P > 0.05; Frequency: t = 0.8929, df =
9, P > 0.05; Half decay time: t = 0.2911, df = 9, P > 0.05) These
results suggest that the activation of CB2Rs has l effect on
presynaptic GABA release or postsynaptic GABAA receptor
function. (Figures 4F–H).

4 Discussion

The dopaminergic system is involved in the regulation of many
neural functions, such as motor control, spatial memory,
motivation, arousal, sleep regulation, and cognitive function
(Koob and Le Moal, 2008; Barishpolets et al., 2009; Keiflin and
Janak, 2015). Moreover, the cannabinoid system is closely related to
the dopaminergic system (Gardner, 2005; Mlost et al., 2019). CB2R
is a part of the endogenous cannabinoid systems, and it has no
mental side effects mediated by CB1R. Therefore, studying the role
of CB2R in the dopaminergic system is necessary. CB2R is expressed
in dopaminergic neurons of VTA and regulates DA release and
cocaine self-administration in rats (Zhang et al., 2014). However, the
effect of SNc on dopaminergic neurons has not been reported. In
this study, we investigated the effects of CB2R activation on the
excitability and biological function of dopaminergic neurons in
substantia nigra of mice in vitro and in vivo. There were three
main results. First, CB2R was expressed in SNc dopaminergic
neurons of mice. Second, activation of CB2R on SNc
dopaminergic neurons in mice inhibited the discharge of SNc
dopaminergic neurons. This inhibitory effect existed in

spontaneous discharge and when neurons were evoked by an
inward current of 10–50 pA. Third, analysis of the mechanism
found that this may be related to the small excitatory
postsynaptic current.

Although CB2R exists in the brain, whether functional CB2R is
expressed in SNc dopaminergic neurons is still unclear. Therefore,
we used immunofluorescence to confirm CB2R expression in SNc
dopaminergic neurons. CB2R is considered a “peripheral” receptor.
However, recent studies have shown that CB2R is also widely
expressed in neurons of the central nervous system (Navarro
et al., 2016). Although the expression of CB2R is widespread,
compared with CB1R, its function in dopaminergic neurons is
less studied. In some neurons, including anteromedial medullary
neurons, cultured hippocampal neurons and dopaminergic neurons
of VTA, CB2R is presynaptic and inhibits the release of
neurotransmitters, which seems to be complementary to the role
of presynaptic CB1R (Atwood et al., 2012). Therefore, we used
electrophysiological methods to explore the function of CB2R
expressed on SNc dopaminergic neurons.

The whole cell patch clamp technique was used to evaluate the
effect of activation of CB2R on the excitability of SNc dopaminergic
neurons. JWH133 significantly inhibited the discharge of SNc
dopaminergic neurons in a concentration dependent manner. This
inhibitory effect was reversed by AM630, a pharmacological blocker of
CB2R, indicating the presence of CB2Rmediated effect. This finding is
consistent with previous reports, wherein JWH133 or other CB2R
agonists inhibited spontaneous and evoked neuronal discharges of
VTA and inhibited excitatory neuronal discharges of the prefrontal
cortex (den Boon et al., 2014; Zhang et al., 2017). Therefore, our
electrophysiological data provide direct evidence that CB2R expressed
in SNc dopaminergic neurons is functional, and that the activation of
these receptors inhibits the discharge of SNc dopaminergic neurons
and reduces the excitability of SNc dopaminergic neurons.

Action potential is the main signal transduction mechanism to
activate synaptic transmission at the end of axons. The number or
shape of the action potential determines the amount of calcium
entering at the axon-end and the effect of synaptic transmission
(Kavalali, 2015). In order to further investigate the effect of
JWH133 on the inhibitory synaptic transmission of neurons, the
changes of mIPSCs mediated by GABAA receptor were recorded
using the patch clamp technique. JWH133, a CB2R agonist, plays
an important role in synaptic transmission (Kim and Li, 2015). In
hippocampal CA3 pyramidal, cortical pyramidal, and VTA
dopaminergic neurons, CB2 receptors reduce cell excitability
through a variety of postsynaptic mechanisms, including regulation
of sodium bicarbonate cotransporters (Stempel et al., 2016), and
activation of chloride currents (den Boon et al., 2014) and
potassium currents (Ma et al., 2019). In addition, chronic activation
of CB2 receptor increased excitatory synaptic transmission and spinal
density in the hippocampus through an ERK dependent mechanism
(Adhikary et al., 2012). In this experiment, we observed that
JWH133 could significantly reduce the frequency of mEPSCs, but
had no effect on the amplitude. Moreover, JWH133 had no effect on
the frequency and amplitude of mIPSCs. Thus, JWH133 inhibits the
release of presynaptic glutamate to some extent and indirectly
stimulates postsynaptic neurons.

In conclusion, our experimental results show that CB2R is
expressed in mouse SNc dopaminergic neurons, and activation of

Frontiers in Pharmacology frontiersin.org08

Zhao et al. 10.3389/fphar.2025.1522210

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1522210


CB2R in SNc dopaminergic neurons inhibits their excitability
mainly through synaptic current mechanism. Here, we mainly
discussed the regulation and possible mechanism of activation of
CB2R in SNc dopaminergic neurons on neuronal excitability. These
results provide a novel experimental idea for understanding the role
of CB2R in the midbrain DA system and the regulation of related
diseases caused by dopamine.
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