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Background:Metabolic dysfunction-associated steatotic liver disease (MASLD) is
an independent risk factor for type 2 diabetes mellitus (T2DM), and its early
identification and intervention offer opportunities for reversing diabetes mellitus.

Methods: In this study, we identified biomarkers for the MASLD dataset
(GSE33814, GSE48452) and the T2DM dataset (GSE76895 and GSE89120) by
bioinformatics analysis. Next, we constructed weighted gene co-expression
network (WGCNA) for disease module analysis to screen out shared genes
strongly associated with diseases. We also analyzed the enriched pathways of
shared genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. Next, hub gene validation was performed using the
least absolute shrinkage and selection operator (LASSO) and receiver operating
characteristic (ROC) curves. Finally, we used RT-qPCR, immunofluorescence,
Western blotting and Elisa to validate hub gene expression in MASLD and T2DM
mouse models.

Results: This analysis identified 20 genes shared by MASLD and T2DM that were
enriched in the bile secretion, phototransduction, cancer, carbohydrate digestion
and absorption, cholesterol/glycerol metabolism, and retinol metabolism. The
LASSO algorithm and ROC curve identified Retinol Dehydrogenase 10 (RDH10) as
the best diagnostic gene for MASLD and T2DM. Immunofluorescence and
Western blot showed that RDH10 expression was reduced in the liver and
pancreatic islets of MASLD and T2DM model mice. Similarly, serum levels of
RDH10 were significantly lower in MASLD and T2DM model mice and humans
than in controls.

Conclusion: Our study suggests that RDH10 is a common diagnostic marker for
MASLD and T2DM and provides new research directions for the prevention and
treatment of MASLD and T2DM.
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1 Introduction

Metabolic dysfunction-associated steatotic liver disease
(MASLD), previously known as non-alcoholic fatty liver
disease (NAFLD), is defined as fatty liver disease in the
presence of at least one cardiometabolic risk factor
(overweight/obesity/central obesity, impaired glucose
regulation or diabetes, high blood pressure,
hypertriglyceridaemia, and reduced HDL-cholesterol) and in
the absence of harmful alcohol intake (Rinella et al., 2023;
Song et al., 2024). MASLD is a prevalent global health
concern, with an increasing incidence rate on an annual basis.
It is one of the principal causes of chronic liver disease, affecting
approximately one-third of the adult population in Western
countries at a rate commensurate with the global epidemics of
obesity and diabetes (Riazi et al., 2022; Younossi, 2019). Insulin
resistance and chronic inflammation are significant contributing
factors to the development of MASLD (Targher et al., 2018).
Consequently, MASLD frequently coexists with a range of
metabolic disorders, including obesity, type 2 diabetes mellitus
(T2DM), and hypertension (Younossi et al., 2018; Lonardo
et al., 2018).

A number of studies have identified a complex bidirectional
relationship between MASLD and T2DM (Younossi et al., 2016;
Portillo-Sanchez et al., 2015; Birkenfeld and Shulman, 2014). The
presence of other common metabolic risk factors notwithstanding,
patients withMASLD exhibit a two-fold increased risk of developing
T2DM (Targher et al., 2021). Furthermore, the risk of developing
T2DM correlates with the severity of MASLD (Targher et al., 2018).
The progression of MASLD leads to an increase in the secretion of
several hepatokines, which exacerbates insulin resistance and,
together with the resulting increases in hyperglycemia, serum free
fatty acids (FFAs), and inflammation, induce glycolipotoxicity and
deterioration of β-cell function (Pal et al., 2012; El Ouaamari et al.,
2016; López-Bermudo et al., 2022; Scoditti et al., 2024). In addition,
MASLD in patients with T2DM combined with MASLD progresses
more rapidly to MASH, hepatic fibrosis, and cirrhosis, thereby
increasing the risk of adverse intra- and extrahepatic clinical
outcomes (Stepanova et al., 2013; En et al., 2023). Therefore,
early identification and intervention of MASLD is crucial for the
prevention and treatment of T2DM.

The aim of this study is to screen for MASLD as well as T2DM in
populations at high metabolic risk, to facilitate early detection and
treatment in order to reduce the burden of T2DM-MASLD. There is
considerable heterogeneity in the prevalence of MASLD when
different diagnostic methods are employed (Younossi et al., 2016;
Younossi et al., 2019). Therefore, there is an urgent need to find an
early marker to recognize both diseases. At present, the
pharmacological treatment of MASLD has not been approved by
international regulatory authorities. A range of drug classes used for
the treatment of hyperglycemia in T2DMmay have beneficial effects
on MASLD, with a primary focus on glucose and lipid reduction
(EASL-EASD-EASOEuropean Association for the Study of Diabetes
EASDEuropean Association for the Study of Obesity EASO, 2016).
However, a critical limitation of these drugs is their lack of precision
therapy and etiological treatment, which ultimately results in
suboptimal therapeutic outcomes. The objective of this study was
to investigate the potential for identifying biomarkers and

pathogenesis associated with T2DM combined with MASLD
through the application of bioinformatics methods. This
approach aims to facilitate the discovery of novel diagnostic and
therapeutic targets for patients with T2DM combined with MASLD.

2 Materials and methods

2.1 Data collection

We obtained datasets for MASLD and T2DM from the GEO
public database (http://www.ncbi.nlm.nih.gov/geo/). The MASLD
dataset contains GSE33814 and GSE48452, where GSE33814 has
13 controls and 12 MASLD patients and GSE48452 contains
14 controls and 18 MASLD patients. The T2DM datasets
GSE76895 containing 32 controls and 36 patients with T2DM;
and GSE89120 containing 7 controls and 7 patients with T2DM.

2.2 Identification of differentially expressed
genes (DEGs)

We merged the two datasets for each disease to increase the
sample size. Data is normalized using R language to reduce
heterogeneity. Then analyzed DEGs in the patient and control
samples using the GEO2R software at an adjusted P < 0.05, with
log2FC > 0.5 being upregulated and log2FC < −0.5 being
downregulated for DEGs. Volcano maps and heat maps were
created using the “ggplot2” and “heat map” packages.

2.3 Weighted gene coexpression network
analysis (WGCNA)

WGCNA (Weighted Gene Co-expression Network Analysis) is
a powerful algorithm designed to identify gene modules with
significant biological relevance and explore their relationships
with diseases. In this study, we used the “WGCNA” R software
package to construct a co-expression network integrating clinical
features of MASLD and T2DM. Following the scale-free network
criterion, we used the “picksoft threshold” function in the
“WGCNA” package to determine the optimal power value
(ranging from 1 to 20). After selecting the best power value, we
constructed the proximity matrix and adjusted the gene distribution
to fit the scale-free network model based on connectivity. We then
calculated the topological overlap matrix (TOM) and used it to re-
cluster the genes. Finally, we computed the correlation coefficients
and corresponding p-values between the different gene modules and
clinical traits.

2.4 Enrichment analysis

Gene Ontology (GO) enrichment analysis of DEGs including
molecular function (MF), cellular component (CC) and biological
process (BP) using the DAVID online tool (https://david.ncifcrf.
gov/home). Differential gene enrichment pathways were analyzed
using the KOBAS website (http://bioinfo.org/kobas/).
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2.5 Validation of the optimal hub gene

We constructed diagnostic models for MASLD and T2DM using
least absolute shrinkage and selection operator (LASSO) regression
(“glmnet” R package), respectively. Next, we took the intersection of
the two outcomes predicted by the MASLD and T2DM models as a
candidate diagnostic hub genes.

We evaluated the diagnostic value of the hub gene for both
diseases by performing ROC analysis on the MASLD and T2DM
datasets.The ROC analysis generated area under the curve (AUC)
and 95% confidence intervals (CI), with an AUC
value >0.7 considered to have strong diagnostic efficacy.

2.6 Animal model construction

Six-week-old male C57BL/6J mice were randomly divided into
three groups (n = 5 or 6 mice/group): (1) standard diet-fed control
group, SD group; (2) high-fat diet-fed up to 16 weeks to construct a
MASLD model referring to zhu, et al. (Wang et al., 2024), HFD group;
and (3) high-fat diet-fed and injected intraperitoneally with
streptozotocin (STZ) (30 mg/kg) to construct a T2DM model (Li
et al., 2024), HFD + STZ group. All mice housed in a specific
pathogen-free facility with a 12-h light and 12-h dark cycle at room
temperature. Body weight, and fasting blood glucose (FBG) levels were
recorded biweekly. All experiments were conducted in accordance with
the protocols approved by the Animal Research Committee of Tongji
Medical College, Huazhong University of Science and Technology,
Hubei Province, China (IACUC Number: 3994).

2.7 FBG, IPITT and IPGTT

The experimental steps were as previously described (Li et al.,
2024), in brief, FBG levels in mice were determined using a blood
glucose meter (LifeScan) following an overnight fast. The
intraperitoneal insulin tolerance test (IPITT) was conducted by
administering insulin (0.75 U/kg, intraperitoneally) after an
overnight fast, and the intraperitoneal glucose tolerance test
(IPGTT) was carried out by injecting glucose (2 g/kg,
intraperitoneally) following another overnight fast. Plasma
glucose concentrations were measured at various time intervals.

2.8 RT-qPCR

Total RNA was extracted frommouse pancreas and liver tissues by
the TRIzol method. Then cDNA was synthesized using HiScript III RT
SuperMix (Vazyme, China) under the following conditions: 15 min at
37°C and 5 s at 85°C. The gene sequence number (Rdh10 ID: 98711,
Gapdh ID: 14433) was looked up on the NCBI website and primers
were designed using Primer-BLAST. RT-qPCR was performed on a
LightCycler 480 System with a LightCycler 480 SYBR Green I Master.
The cDNA was then amplified using ChamQ SYBR qPCRMaster Mix
(Vazyme, China). Gapdh was used as an internal control in a volume of
10 μL. mRNA levels of the target genes were determined by RT-qPCR
amplification and relative mRNA levels were calculated using the
2−ΔΔCT method.

The primers (Tsingke Biotech, China) used for quantification of
relative mRNA expression were as follows: Gapdh-F:
AGGTCGGTGTGAACGGATTTG and Gapdh-R: TGTAGACCA
TGTAGTTGAGGTCA, Rdh10-F: ATGGTTCGCCACATCTACCG
and Rdh10-R: CTCCTCACCTTTTCCAGCTTGC.

2.9 Western blotting

Proteins from liver and pancreas tissues were extracted using
RIPA lysis buffer (NCE Biotech, China) supplemented with protease
and phosphatase inhibitors. The protein samples were separated by
SDS-PAGE and transferred to PVDF membranes (Millipore,
United States). The membranes were incubated overnight at 4°C
with primary antibodies: rabbit anti-RDH10 (1:1,000 dilution,
Proteintech, 14644-1-AP, China) and mouse anti-β-actin (1:
2,000 dilution, Proteintech, 66009-1-Ig, China). Afterward, they
were incubated with secondary antibodies (1:3,000 dilution) for
1 h at room temperature. Protein bands were visualized and
quantified using ECL reagent (NCE Biotech, China). The protein
marker used was the 180 kDa Plus Prestained Protein Marker
(Thermo, 26,616, United States).

2.10 Immunofluorescence staining

Paraffin-embedded liver and pancreas sections were
deparaffinized with xylene and then progressively dehydrated in
100%, 95%, 85%, and 70% ethanol for 5 min each. The sections were
incubated overnight at 4°C with primary antibodies: rabbit anti-
RDH10 (1:1,000 dilution, Proteintech, 14644-1-AP, China), mouse
anti-insulin (1:100 dilution, Proteintech, 66198-1-Ig), and rabbit
anti-glucagon (1:100 dilution, Abcam, Ab92517). Following PBS
washes, the sections were treated with secondary antibodies (FITC
and CY3, Servicebio) for 1 h, and then stained with DAPI
(Servicebio, Wuhan, China) at room temperature in the dark to
label the nuclei. The stained sections were visualized using a fully
automated section scanning system (VS120, Olympus, Japan).

2.11 Histological analysis and lipid
content detection

Liver tissues were preserved in 4% paraformaldehyde,
subsequently enclosed in paraffin blocks, and precisely sectioned
into 5 μm slices. To assess hepatic histology, the liver sections
underwent H&E staining. Additionally, the enzymatic standards
from a diagnostic kit (Nanjing Jiancheng, China) were employed to
determine the levels of triglycerides (TG) and total cholesterol (TC),
low-density lipoprotein (LDL) and high-density lipoprotein (HDL)
in the serum of different groups of mice.

2.12 Study population

The clinical samples involved in the experiment were sourced
from our previous studies (Chen et al., 2023). We selected male
subjects aged 45–65 years. Clinical sample selection criteria for the
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T2DM group: 1. Fasting plasma glucose (FPG) ≥ 7.0 mmol/L; 2.
Random plasma glucose ≥11.1 mmol/L accompanied by classic
diabetes symptoms (e.g., polyuria, polydipsia, weight loss,
fatigue); 3. 2-h plasma glucose ≥11.1 mmol/L during an oral
glucose tolerance test (OGTT); 4. HbA1c ≥ 6.5%; 5. A
confirmatory test on a separate day is required to confirm the
diagnosis. Clinical sample selection criteria for the MASLD
group: 1. Presence of imaging or histologic evidence of hepatic
steatosis; 2. Comorbidity with at least one metabolic disorder such as
obesity, impaired glucose tolerance, hypertension, or dyslipidemia.
Exclusion criteria were: 1. patients with severe renal insufficiency,
severe hepatic insufficiency, decompensated heart failure,
myocardial infarction, malignant neoplasm, severe infections, and
other severe systemic diseases. 2. type 1 diabetes, type-specific
diabetes, and insulin-dependent diabetes. 3. history of previous
pancreatitis. 4. patients with Cushing’s Syndrome and patients
with prior use of glucocorticoids. 5. Patients who have undergone
gastrointestinal or other abdominal surgery within the past year. 6.
Other liver diseases: exclude liver diseases due to other causes,
including alcoholic liver disease, viral hepatitis, autoimmune liver
disease, drug-induced liver injury, and hereditary liver disease. The
study adhered to the guidelines of the Declaration of Helsinki and
was approved by the Ethics Committee of Tongji Medical College,
Huazhong University of Science and Technology
(ChiCTR2000034751).

2.13 Enzyme-linked immunosorbent
assay (ELISA)

Serum was obtained from human fasting peripheral blood and
mouse blood collected from eye sockets by centrifugation (4°C,
1,500 g, 20 min) and stored at −80°C. The levels of RDH10 were
determined using the Human andMouse Retinol Dehydrogenase 10
(RD10) ELISA Kits (Jingkang, China) according to the
manufacturer’s instructions. Absorbance at 450 nm was
measured using an ELISA (PerkinElmer, Waltham, MA,
United States).

2.14 Statistical analysis

Data were analyzed and processed using GraphPad Prism
9.5 software. Unpaired two-tailed t-test was used to assess the
differences in numerical parameters between the two groups, and
one-way or two-way ANOVA was used for multiple comparisons
between groups. All data are expressed as mean ± standard
deviation, and p < 0.05 was considered statistically significant.

3 Results

3.1 Identification of DEGs for MASLD
and T2DM

We downloaded the MASLD dataset (GSE33814 and
GSE48452) from the Gene Expression Omnibus (GEO) database
and performed data cleaning and analysis to identify 439 DEGs,

including 249 upregulated genes, 190 downregulated genes. We
plotted these results as volcano and heat maps (Figures 1A, B).

Performing the same operation on the T2DM dataset
(GSE76895 and GSE89120), we identified 163 DEGs, of which
105 were upregulated and 58 downregulated. The results are
shown in the volcano and thermograms of Figures 1C, D.

3.2 WGCNA

We used WGCNA to detect clusters of co-expressed genes
differentially expressed between MASLD and T2DM and assessed
the relevance of combinatorial modules to disease phenotypes. A
total of 18 modules of MASLD were identified through hierarchical
clustering, in which the module positively correlated with the
incidence of MASLD was blue (p < 0.001), and the module
negatively correlated was purple (p < 0.001) (Figures 2A, C). The
T2DM model centrally identified 16 modules, of which the pink
module (p < 0.001) was highly positively correlated and the magenta
module (p < 0.001) was negatively correlated with the incidence of
T2DM (Figures 2B, D).

3.3 Functional enrichment analysis of co-
DEGs of MASLD and T2DM

The most highly positively and negatively correlated module for
MASLD and T2DM has 20 genes overlapping. These genes may
regulate both MASLD and T2DM development, we analyzed the
biological processes (BPs), cellular components (CCs), and
molecular functions (MFs) and enrichment pathways of these
genes. In the CCs, co-DEGs were mainly enriched in extracellular
space, collagen-containing extracellular matrix, extracellular region,
plasma membrane, cell surface (Figure 3A). The BPs were mainly
focused on cartilage development, esophagus smooth muscle
contraction, heparan sulfate proteoglycan metabolic process,
glomerular basement membrane development and glial cell-
derived neurotrophic factor receptor signaling pathway
(Figure 3B). As for the MFs group, DEGs were mainly enriched
in N-acetylglucosamine-6-sulfatase activity, lipoprotein lipase
activity, phosphatidylserine 1-acylhydrolase activity, arylsulfatase
activity, calcium ion binding (Figure 3C). KEGG pathway
analysis revealed that the DEGs were mainly focused on the bile
secretion, phototransduction, cancer, carbohydrate digestion and
absorption, cholesterol/glycerol metabolism, and retinol
metabolism (Figure 3D).

3.4 Identification of candidate diagnostic
biomarkers

We used the LASSO algorithm to identify the predictive value of
candidate genes. We extracted the expression data of 20 genes from
theMASLD gene expression profile using the LASSO algorithm, and
the optimal lambda value was lambda.min = 0.0299 (Figures 4A,
B).The LASSO regression results revealed that there are 6 genes as
feature genes in MASLD. We used the same method to obtain
10 diagnostic genes for T2DM(lambda.min = 0.0232, Figures 4C, D).
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We intersected the diagnostic genes for MASLD and T2DM to
obtain 2 genes, namely, SATB2, RDH10.

3.5 Validating the diagnostic value of
differential genes

We also plotted ROC curves for the pivotal genes and
calculated the AUC to assess the diagnostic value of the
DEGs. The diagnostic values of hub genes in MASLD were as
follows: SULF2 (AUC, 0.89), GSN (AUC, 0.885), SPP1 (AUC,

0.868), SATB2 (AUC, 0.841), DKK3 (AUC, 0.833), RDH10 (AUC,
0.821), CDKN1A (AUC, 0.767),MYOF (AUC, 0.714) (Figure 5A).
Similarly, we verified the diagnostic value of these genes for
T2DM as follows: DKK3 (AUC, 0.866), CDKN1A (AUC, 0.801),
PLA1A (AUC, 0.774), RDH10 (AUC, 0.767), RGS16 (AUC,
0.739), DACT2 (AUC, 0.722), LIPG (AUC, 0.716) (Figure 5B).
The AUCs of the DEGs in both MASLD and T2DM were
screened by ROC curves to be greater than 0.7 names as
CDKN1A, DKK3, RDH10. Intersecting the DEGs obtained by
the two algorithms, we finally identified RDH10 as the best
diagnostic gene for MASLD and T2DM (Figure 5C).

FIGURE 1
Identification of MASLD and T2DM differentially expressed genes (DEGs). (A, C) Volcano diagrams of MASLD and T2DM. (B, D) Heatmaps showing
expression patterns of DEGs in MASLD and T2DM, normalized and clustered to reveal disease-specific transcriptional profiles.
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3.6 Establishment of MASLD and T2DM
mouse models

Based on bioinformatics analysis, we found that RDH10 expression
was significantly downregulated in the pancreas of T2DM patients and
the liver of MASLD patients. To further validate the changes of Rdh10
in MASLD and T2DM, we constructed a MASLD mouse model using
high-fat feeding (HFD) for 4months. In addition, we inducedmice with
streptozotocin (STZ) to assess their diabetic status.

We observed a significant increase in body weight and blood
glucose levels in HFD group with impaired glucose tolerance and
insulin resistance compared to SD group (Figures 6A, B). As
expected, histologic examination of liver tissues in the HFD
group revealed marked swelling of hepatocytes and prominent
microcystic steatosis by HE staining. Consistently, biochemical
analyses showed that serum TG and hepatic TC levels were
significantly elevated in the HFD group compared with the SD
group. In addition, plasma lipid analyses showed that LDL levels

FIGURE 2
Weighted analysis of gene co-expression networks. (A) The MASLD differentially expressed genes (DEGs) cluster dynamics dendrogram. (B)MASLD
module-trait correlations. Matching correlations and p-values are provided in each cell. (C) The DEGs of T2DM are shown in a cluster dynamic
dendrogram. (D) Module-trait correlations for T2DM. Matching correlations and p-values are provided in each cell.
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were substantially elevated in the HFD group, whereas HDL levels
were significantly reduced (Figures 6C, E).

STZ group further exacerbated HFD-induced elevated fasting
glucose, abnormal glucose tolerance, and insulin resistance, with loss
of pancreatic islet β-cells, increase in α-cells, and α/β-cell ratio
imbalanced (Figures 6A, B, D). In addition, we observed increased
hepatic steatosis, significantly increased serum TC,TG, and plasma LDL,
and decreased HDL in STZ group compared to HFD group
(Figures 6C, E).

3.7 RDH10 is downregulated in the pancreas
and liver ofMASLD and T2DMmousemodels

To validate the changes of RDH10 in MASLD and T2DM, we
evaluated its expression levels in pancreas and liver. PCR results showed

that Rdh10 mRNA in the mouse pancreas was significantly reduced in
both HFD and STZ groups, with a more remarkable decrease in STZ
group (Figure 7A). Protein expression results are consistent with
transcript levels, Western blot showing a significant decrease in
RDH10 protein expression in the pancreas of both the HFD and
STZ groups compared to the SD group (Figures 7B, C).
Immunofluorescence of pancreatic islets showed that RDH10 was
expressed in both pancreatic tissues and islets under physiological
conditions, and with altered metabolic conditions, the expression of
RDH10was reducedfirstly in the pancreas. Notably, RDH10 expression
in STZ mice was not only decreased in the pancreas, but also
significantly decreased in the pancreatic islets (Figures 7D, E).

Similarly, Transcript level validation showed that hepatic Rdh10
mRNA was significantly reduced in the HFD and STZ groups, and
further exacerbated in the STZ group (Figure 8A). RDH10 expression
was reduced in the livers of the HFD and STZ groups, with a more

FIGURE 3
Functional enrichment analysis of co-differentially expressed genes (co-DEGs). Cellular components (A), biological processes (B), molecular
functions (C) and KEGG (D) of co-DEGs.
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significant reduction in the STZ group (Figures 8B, C).
Immunofluorescence results of liver showed that RDH10 was
normally expressed in most hepatocytes and gradually decreased
with increasing metabolic burden (Figures 8D, E). Especially in the
STZ group, RDH10 expression in the liver decreased significantly,
compared with the SD group (Figures 8D, E).

In addition, we used ELISA to assess serum RDH10 levels in
different groups of mice, and RDH10 was significantly lower in the
HFD and STZ groups than in the SD group (Figure 8F).

3.8 Validation of RDH10 in clinical samples

To validate the clinical potential of RDH10, we included
13 controls, 15 patients with MASLD and 25 patients with
T2DM to assess serum RDH10 expression. There was a
statistically significant reduction in serum RDH10 in the MASLD
group compared to the control group (Figure 9). Similarly, there was
a statistically significant reduction in serum RDH10 in the T2DM
group compared to the MASLD group (Figure 9). These findings

FIGURE 4
Identification of candidate diagnostic biomarkers. The Least Absolute Shrinkage and SelectionOperator (LASSO) algorithm screensMASLD (A, B) and
T2DM (C, D) for optimal diagnostic genes. LASSO identifies genes with the strongest predictive power, highlighting potential biomarkers for accurate
diagnosis. In the LASSO, λ (lambda) represents the regularization parameter that controls the strength of penalty applied to the model during the
optimization process, effectively performing feature selection.
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suggest that RDH10 expression changes in the early stages of
metabolic disorders and decreases with increasing metabolic stress.

4 Discussion

MASLD is significantly correlated with an increased risk of
cardiometabolic disorders, particularly T2DM (European

Association for the Study of the Liver EASLEuropean Association
for the Study of Diabetes EASDEuropean Association for the Study
of Obesity EASO, 2024). A recently published study has identified
MASLD as a significant risk factor for new-onset T2DM and has
demonstrated that it exhibits a higher predictive power for T2DM
onset compared to conventional NAFLD (Sakai et al., 2024).
Therefore, early identification of MASLD in the normal
population is essential for the prevention of T2DM. Here, We

FIGURE 5
Validating the diagnostic value of differential genes. (A) The receiver operating characteristic (ROC) curves for MASLD candidate genes. (B) ROC
curves for T2DM candidate genes. (C) Venn diagram showing the co-differentially expressed genes (co-DEGs) of MASLD and T2DMwere passed through
the least absolute shrinkage and selection operator (LASSO) algorithm and ROC curves intersected to obtain hub genes. In ROC analysis, the area under
the curve (AUC) represents the predictive ability, and a higher AUC value indicates a better predictive value. In this study, AUC=0.7 was chosen as the
screening threshold.
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screened differential genes associated with MASLD and T2DM by
bioinformatics and constructed co-expression networks based on
WGCNA to identify co-DEGs strongly positively and negatively
associated with the two diseases. Using the LASSO algorithm and
ROC curves to predict the diagnostic value of these co-DEGs, we
finally identified RDH10 as the most promising gene.

RDH10 is themajor retinol dehydrogenase involved in retinoic acid
biosynthesis and regulates glycolipid metabolism by maintaining

vitamin A-like homeostasis (Sandell et al., 2007; Strate et al., 2009).
As a biologically active derivative of vitamin A, retinoic acid is a vital
component of the embryonic development process (Al Tanoury et al.,
2013). In this study, by analyzing the co-DEGs of MASLD and T2DM,
we found that these genes were significantly enriched in the retinol
metabolism pathway, a result consistent with the critical role of
RDH10 in retinol metabolism. It has been demonstrated that
embryonic fibroblasts with Rdh10 knocked down exhibited a

FIGURE 6
Establishment of MASLD and T2DM mouse models. (A) Body weight, fasting blood glucose, intraperitoneal insulin tolerance test (IPITT) and
intraperitoneal glucose tolerance test (IPGTT) in different three groups of mice. (B)Double immunofluorescence of pancreatic glucagon (red) and insulin
(green) in SD, HFD and STZ group, bar = 20 μm. (C)HE staining of the livers of three groups ofmice, bar = 100 μm. (D)Quantification of pancreatic α/β cell
ratio.(E) Serum levels of TC, TG, LDL, HDL in three groups of mice. **p < 0.01, ***p < 0.001 in SD vs. HFD; #p < 0.05, ##p < 0.01, ###p < 0.001 in
HFD vs. STZ.
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reduction in retinoic acid biosynthesis and impaired retinoic acid
signaling leading to developmental abnormalities (Rhinn et al.,
2011). This not only highlights the central role of Rdh10 in retinoic
acid synthesis and signaling, but also suggests its importance during
embryonic development. In HepG2 cells, the overexpression of
RDH10 resulted in significant antiproliferative effects that were
comparable to those exhibited by retinoids (Rossi et al., 2007). This
finding further supports the potential role of RDH10 in the regulation of
cell proliferation and metabolism.

Metabolic remodeling linked to RDH10 expression changes
influences systemic metabolic states (Klyuyeva et al., 2021; Zhang
et al., 2015). Cardiomyocyte-specific RDH10 knockout (RDH10-
cKO) mice exhibit halved retinoic acid levels, heart failure, and
severe cardiac remodeling, which AAV9-RDH10 injection mitigates
(Wu et al., 2023). In addition, decreased expression of
RDH10 increased fat deposition, uptake of FFAs, and TG levels
in the myocardium of db/db mice, leading to cardiac lipotoxicity, a
process that was antagonized by overexpression of RDH10 (Wu

FIGURE 7
RDH10 is downregulated in the pancreas of MASLD and T2DM mouse models. (A) Quantitative analysis of RT-qPCR results of pancreatic Rdh10 in
different groups of mice. (B, C) RDH10 protein expression in the pancreas and quantitative analysis. (D, E) Representative pancreatic RDH10 (red) and
insulin (green) double fluorescence staining images and quantitative analysis, bar = 20 μm ***p < 0.001 in SD vs. HFD; ##p < 0.01, ###p < 0.001 in HFD
vs. STZ.
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et al., 2023). Elimination of one Rdh10 copy (Rdh10+/−) increased
adiposity, hepatic steatosis, glucose intolerance and insulin
resistance in male mice fed HFD (Yang et al., 2018). These
results suggest an important role for RDH10 in regulating
glycolipid metabolism and preventing metabolism-related
diseases. Consistent with these findings, our study showed that
RDH10 expression was significantly downregulated in both liver
and pancreas of MASLD and T2DM mouse models, with lower
expression levels in the diabetic group. By immunofluorescence, we
found that RDH10 was normally expressed in pancreatic tissues and
pancreatic islets, and the expression gradually decreased with the

aggravation of glycolipid disorders, and the expression of
RDH10 was significantly reduced in the pancreas of T2DM mice.
The downregulation of RDH10 in the T2DM pancreas may be
related to the reduction of β-cells, and when pancreatic β-cells are
exposed to hyperglycemia or high-fat environments, the increase of
oxidative stress and inflammatory factors may inhibit the expression
of RDH10.The downregulation of RDH10 further leads to the
reduction of retinoic acid production, which affects the normal
function of pancreatic β-cells and the secretion of insulin, further
aggravating the deterioration of islet function, creating a vicious
circle (Arregi et al., 2016). Similarly, in the physiological state,

FIGURE 8
RDH10 is downregulated in the livers of MASLD and T2DM mouse models. (A) Quantitative analysis of RT-qPCR results of Rdh10 in the livers of
different groups of mice. (B, C) RDH10 protein expression in the livers and quantitative analysis. (D, E) Representative immunofluorescence images of
RDH10 (red) in the livers of three groups of mice and quantitative analysis, bar = 50 μm. (F) Comparison of serum RDH10 expression in mice. **p < 0.01,
***p < 0.001 in SD vs. HFD; #p < 0.05, ###p < 0.001 in HFD vs. STZ.

Frontiers in Pharmacology frontiersin.org12

Li et al. 10.3389/fphar.2025.1521416

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1521416


RDH10 was expressed in most hepatocytes of the liver, and with
increasing metabolic disorders, RDH10 expression decreased
significantly, with the most significant decrease in T2DM mice.
Furthermore, serum levels of RDH10 were significantly lower in
MASLD and T2DM model mice and humans than in controls.

The main limitation of this study is the small sample size, which
may limit the statistical robustness and generalizability of the results.
We will intend to further expand the sample size for testing. Differences
in sequencing platforms or data processing methods may lead to
systematic bias, although we used standardized methods to reduce
heterogeneity. In addition, the role of RDH10 knockdown or
overexpression in glycolipid disorder diseases and its molecular
mechanisms need to be further explored. The protective role of
RDH10 in ameliorating MASLD and T2DM by modulating retinol
metabolism as well as other downstreammolecules and thus needs to be
validated by future experiments.

In conclusion, these results suggest an important role for
RDH10 in glycolipid metabolism as a novel biomarker for
MASLD and T2DM.
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