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Introduction: The cytochrome P450 enzyme 3A4 (CYP3A4) mediates numerous
drug-drug interactions (DDIs) by inducing the metabolism of co-administered
drugs, which can result in reduced therapeutic efficacy or increased toxicity. This
study developed and validated a Physiologically Based Pharmacokinetic (PBPK)
model to predict CYP3A4 induction-mediated DDIs, focusing on the early stages
of clinical drug development.

Methods: The PBPK model for rifampicin, a potent CYP3A4 inducer, was
developed and validated using human pharmacokinetic data. Subsequently,
PBPK models for ‘victim’ drugs were constructed and validated. The PBPK-
DDI model’s predictive performance was assessed by comparing predicted
area under the curve (AUC) and maximum concentration (Cmax) ratioswith
empirical data, using both the 0.5 to 2-fold criterion and theGuest criteria.

Results: The rifampicin PBPK model accurately simulated human
pharmacokinetic profiles. The PBPK-DDI model demonstrated high predictive
accuracy for AUC ratios, with 89% of predictions within the 0.5 to 2-fold criterion
and 79% meeting the Guest criteria. For Cmax ratios, an impressive 93% of
predictions were within the acceptable range. The model significantly
outperformed the static model, particularly in estimating DDI risks associated
with CYP3A4 induction.

Discussion: The PBPK-DDI model is a reliable tool for predicting CYP3A4
induction-mediated DDIs. Its high predictive accuracy, confirmed by
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Abbreviations: AUCR, the ratio of area under the concentration-time curve of victim after co-
administration with rifampicin over area under the concentration-time curve of victim with dosing
alone; CmaxR, the ratio of victim Cmax after co-administration with rifampicin over victim Cmax with
dosing alone; FDA, Food and Drug Administration; fm, the fraction of metabolism; Fa, cumulative
intestinal absorption, %; Vc, distribution volume in central compartment; K12, transfer rate constant
from central compartment to peripheral compartment; PC1, peripheral compartment 1; PC2, peripheral
compartment 2.
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adherence to evaluation standards, affirms its reliability for drug development and
clinical pharmacology. Future refinementsmay further enhance its predictive value.
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Introduction

In the realm of pharmacology and drug development,
interactions between concurrently administered drugs have
emerged as a critical focus due to their profound impact on
patient safety and therapeutic efficacy (Prueksaritanont et al.,
2013). Among these, interactions mediated by the CYP3A4 are of
particular concern, given its central role in metabolizing a broad
spectrum of therapeutic agents. The CYP3A4-mediated potential to
either induce or inhibit the metabolism of concurrently
administered drugs can profoundly modify their pharmacokinetic
profiles, which may consequently elevate the risk of adverse events
due to drug-drug interactions. This sometimes can lead to the
withdrawal of the medication from the market (Smith and
Schmid, 2006).

The induction of CYP3A4 can accelerate the clearance of co-
administered drugs, potentially leading to suboptimal therapeutic
effects (Skolnick et al., 1976). Additionally, this induction may result
in an increased exposure to toxic metabolites, thereby raising safety
concerns due to the potential toxicity (Gramec Skledar et al., 2016;
Murphy et al., 2005). Therefore, the accurate prediction of CYP3A4-
mediated interactions is essential for ensuring the safe and effective
use of new molecular entities in drug development.

The PBPK model is particularly relevant in scenarios such as dose
optimization for individualized therapy, prediction of drug-drug
interactions, and evaluation of the impact of disease states on drug
disposition (Chang et al., 2023; Rowland Yeo et al., 2024). It is also
instrumental in extrapolating preclinical data to human conditions and
in guiding clinical trial design by simulating various dosing regimens
and schedules (Seo et al., 2022; Statelovaet al., 2023). PBPKmodels have
shown promise as predictive tools for DDIs (Yamashita et al., 2013).
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While there have been numerous individual case reports attesting to the
predictive capabilities of PBPK models, particularly for
CYP3A4 induction-related DDIs, a systematic assessment of these
models across a broader spectrum of DDIs is lacking. Addressing
this gap is essential for refining predictivemethodologies and enhancing
our understanding of the models’ implications for drug development
and clinical practice.

Building on our previous work, which successfully developed and
validated a PBPK-DDI model for CYP3A4 inhibition-mediated DDIs
(Jiang et al., 2023; Ren et al., 2021), the current study addresses the need
for robust predictive methodologies for CYP3A4 induction-mediated
DDIs, especially during the early clinical stages of drug development.
Our approach involves developing a PBPK-DDImodel that integrates a
comprehensive dataset of substrates for PBPK model development of
substrates and their documented interaction outcomes with strong
CYP3A4 inducer (rifampicin). This PBPK-DDI model prioritizes the
use of empirical data from in vitro and clinical studies, employing
mechanistic predictions only for parameters that are difficult tomeasure
experimentally. By comparing the model’s predictions with
documented DDIs, we aim to validate its efficacy in anticipating the
clinical impact of CYP3A4-mediated interactions, thereby contributing
to a more accurate and reliable prediction tool for drug developers and
clinicians.

Methods

The study employs a comprehensive workflow to model and
anticipate DDIs driven by CYP3A4 induction. The process begins
with the development of a PBPK model for the inducing agent,

rifampicin, which ismeticulously validated against empirical human PK
data. Following this, a PBPK model for the substrate drug is
meticulously crafted, utilizing human PK and mass balance data to
ensure model accuracy. In the subsequent phase, a PBPK-DDImodel is
meticulously formulated, as illustrated in Figure 1, to project the
interaction profile between rifampicin and the substrate drug. The
predictive accuracy of this model is rigorously evaluated by comparing
its predictive accuracy with actual DDI data. Finally, to benchmark the
performance, a traditional static model is applied to predict DDIs, and
its predictions are critically compared with those from the PBPKmodel,
thereby facilitating an assessment of the comparative efficacy and
applicability of these methodologies.

PBPK model of rifampicin and model
validation

The construction of the rifampicin PBPK model was developed
on the integration of core physico-chemical and biopharmaceutical
attributes, including aqueous solubility, logarithm of the octanol-
water partition coefficient (logD), fraction unbound in plasma (fup),
and red blood cell partitioning (Rbp). The human effective
permeability (Peff) was meticulously calibrated to correspond with
the absorption phase of the observed PK profile, with residual model
parameters either prognosticated through the ADMET Predictor
module or derived from the default settings within the GastroPlus
simulation platform.

In the present investigation, PK parameters pertaining to the
compartmental disposition were determined utilizing the PKPlus
module of GastroPlus, calculated on the observed plasma

FIGURE 1
Model of PBPK-DDI. Note: Compartments and arrows with dash lines represent the options in the model. PC1, peripheral compartment 1; PC2,
peripheral compartment 2; K12, transfer rate constant from central compartment to peripheral compartment; K21, transfer rate constant from peripheral
compartment to peripheral central compartment; Vmax and Km, the constants of Michaelis-Menten reaction kinetics mediated by CYP3A4, which was
assumed to be the unique metabolism rout; EC50 and Emax are the induction potency and magnitude to CYP3A4 of rifampicin; ACAT, Advanced
Compartmental Absorption & Transit model.
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concentration-time (C-T) profiles after intravenous administration.
The system clearance included 1) the hepatic non-saturated
metabolism mediated by CYP3A4 (about 0.0179 L/h/kg), which
was defined in the Enzyme Table of GastroPlus using Km and Vmax

of CYP3A4; 2) the remained liver metabolism (0.0623 L/h/kg),
which was defined as the linear clearance in the
Pharmacokinetics of GastroPlus; 3) and the renal clearance
(0.0169 L/h/kg), which was defined as the clearance by
glomerular filtration (GFR) based on the result of fup·GFR.

The induction potency (EC50) and the magnitude (Emax) of
rifampicin’s effect on CYP3A4 were extracted from the published
data. The validation of the PBPKmodel was executed by juxtaposing
the simulated plasma C-T profiles of rifampicin against empirical
data following a 600 mg intravenous dose, a 400 mg single oral dose,
and a 600 mg single and multiple oral doses. A comparative analysis
of the PK parameters of rifampicin was also undertaken to
substantiate the fidelity of the model.

PBPK model of victim drugs and model
validation

A total of 28 small molecule drugs approved by the FDA were
selected as “victim” drugs for this study. These cases were culled
from a previous investigation conducted by our research team, with
the exclusion of those lacking reported interactions with rifampicin
(Ren et al., 2021). The PBPK models for these victim drugs were
constructed with detailed parameters sourced from the literature.
Notably, these models incorporated the fraction metabolized (fm)
parameter, which represents the proportion of a drug metabolized
by CYP3A4. The determination and integration of the fm parameter
are detailed in the referenced literature (Jiang et al., 2023).

Each of these PBPK models was rigorously validated using
human PK data and mass balance data. The validation process
ensured the models’ fidelity to empirical observations. For further
scrutiny, the validation datasets and detailed analyses are provided
in the Supplementary Material.

Software and data analysis

The PBPK modelling and simulations of victim drugs and
perpetrator (rifampicin), as well as the DDI predictions, were
conducted using GastroPlus™ Software (version 9.7; Simulations
Plus, Inc., Lancaster, CA, United States). The Cmax and AUC were
calculated by the PKPlus module of GastroPlus.

Static mechanistic models

In addition to the PBPK-DDI models, static mechanistic models
were employed to predict DDIs, adhering to the guidelines outlined
in “In Vitro Drug Interaction Studies: Cytochrome P450 Enzyme-
and Transporter-Mediated Drug Interactions for Industry.” The
steady-state DDI predictions, as default in GastroPlus, facilitate the
generation of a comprehensive suite of DDI outcomes (Einolf et al.,
2014). This includes a tabulation of the predicted plasma AUC ratios
in the presence and absence of the perpetrator drug for each

specified concentration. The models delineate the individual
contributions of the gut and liver to the overall DDI, alongside
the projected total change in AUC. The accuracy of these predictions
is evaluated by comparing the anticipated AUCR with empirically
derived ratios. Furthermore, the performance of the static
mechanistic models is juxtaposed with that of the PBPK-DDI
model, thereby highlighting the superior predictive capabilities of
the PBPK-DDI model.

Evaluation of predictive performance

The predictive accuracy of the model was assessed by comparing
the predicted ratios of the AUC and Cmax of the victim drug when
co-administered with rifampicin to those observed when the victim
drug was administered alone. Specifically, the AUCR and CmaxR
were calculated. The predictive performance was deemed acceptable
when the model’s projected ratios were within a two-fold deviation
of the observed Geometric Mean Ratio (GMR), with the acceptable
range defined as 0.5 to 2 times the GMR. Additionally, the
methodology reported by Guest was employed to further evaluate
the predictive efficacy of model (Guest et al., 2011).

Results

PBPK model development and validation of
rifampicin

The development of the rifampicin PBPKmodel was guided by a
comprehensive set of physiological and physicochemical
parameters, as detailed in Table 1. Utilizing these parameters, we
simulated various dosing regimens to predict the human C-T
profiles. The simulated C-T curves were compared with observed
data, as depicted in Figure 2. The comparison revealed that the
predicted curves closely matched the observed data points,
indicating a high degree of fidelity in our model.

To quantitatively assess the accuracy of our model, we calculated
the parameters for both the observed and simulated curves using a
non-compartmental analysis method. The results of this comparison
are presented in Table 2. The predicted error of the parameters was
found to be within the range of ±25%, which aligns well with the
bioequivalence criteria (>0.8 and <1.25). This level of accuracy
confirms the reliability of the rifampicin model and justifies its
use for further predictions of DDIs involving CYP3A4 substrates.

Given the model’s validated predictive capacity, it will be
employed in subsequent analyses to predict the interactions
between rifampicin and various CYP3A4 substrates, providing a
robust foundation for our predictions.

PBPK models of victim drugs and their
validation

The models for the victim drugs were meticulously constructed
and validated using a combination of human data and mass balance
data. These models were designed to simulate the disposition of
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drugs in the human body, accounting for absorption, distribution,
metabolism, and excretion processes.

The accuracy of the victim drug models was assessed by
comparing the simulated profiles and mass balance data with
empirical observations. The results of this validation process
demonstrated a high degree of consistency between the simulated
and observed data, confirming the predictive power of our models.

For a detailed analysis and a comprehensive set of validation data,
readers are directed to the Supplementary Material and our previously
published articles (Ren et al., 2021), which lay a foundation for their
application in predicting DDIs involving CYP3A4.

Predictive performance of the
PBPK-DDI model

Utilizing the validated model parameters for rifampicin and its
substrates, coupled with the characterized Emax and EC50 values

indicative of rifampicin’s induction potency on CYP3A4, we
projected the potential DDIs. The predictive metrics centered on
the exposure ratios, quantified by the AUCR and the CmaxR. The
predictive performance of our PBPK-DDI model was rigorously
assessed by comparing predicted AUCR and CmaxR with empirical
data. This comparison is visually represented in Figure 3A, which
delineates the alignment between predicted and observed AUC
ratios. The analysis revealed a substantial concordance between
predicted and observed ratios, with 89% of the predictions falling
within the acceptable range according to the 0.5 to 2-fold criterion.
When subjected to the Guest criteria, our model demonstrated a
commendable alignment, with 79% of the predictions matching the
observed data. Furthermore, to provide a more granular analysis, we
specifically evaluated the concordance between the predicted and
observed Cmax ratios. As depicted in Figure 3B, an impressive 93% of
the predicted CmaxR values agreed with the empirical CmaxR values
within the 0.5 to 2-fold acceptance criterion. These findings
underscore the robustness of our PBPK-DDI model in

TABLE 1 Key parameters in rifampicin PBPK model.

Parameters Value Note

Physicochemical Parameters

Molecular Weight (g/mol) 822.96 Baneyx et al. (2014)

LogD 1.3 (@ pH 7.4) Baneyx et al. (2014)

pKa base (acid) 7.9 (1.7)

Aqueous Solubility (mg/mL) 1.1 (@ pH 6.5)

Biorelevant Solubility (mg/mL) NONE

Particle Radius (μm) 25 Defaulted value

Precipitation Time (s) 900 Defaulted value

Peff (cm/s*104) 1 Fitted data according to the observed PK

Distribution Parameters

Rbp 0.52 Baneyx et al. (2014)

fup (%) 16 Baneyx et al. (2014)

Vc (L/Kg) 0.15145 Calculated values using PKPlus module based on the observed intravenous PK

K12 (1/h) 1.4219

K21 (1/h) 1.7949

Elimination Parameters Hepatic metabolism mediated by CYP3A4

Km (Gut & Liver, mg/L) 0.028 Baneyx et al. (2014)

Vmax (Gut & Liver, mg/s) 13.33 Parameter defined in the record named “Rifampicin-PBPK” of GastDDIStandards.mdb

Other liver CL (L/h/kg) 0.0623

Renal CL (L/h/kg) 0.0169

Induction Parameters

EC50 (μM) 0.8 Baneyx et al. (2014)

Emax 14.6 Baneyx et al. (2014)

LogD, common logarithm of the octanol: water partition coefficient; pKa, -log10Ka, where Ka is acid dissociation constant; Peff, effective permeability; Rbp, ratio of concentration in whole blood

vs. plasma; fup, fraction unbound in plasma; Vc, volume of distribution; K12, Rate constant for transfer from central to peripheral compartment; K21, Rate constant for transfer from peripheral to

central compartment; Km,Michaelis-Menton constant; Vmax, maximum rate of drugmetabolism or transport; CL, Clearance; EC50, Induction potency to CYP3A4; Emax, Inductionmagnitude to

CYP3A4.
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forecasting the clinical implications of CYP3A4-mediated DDIs
induced by rifampin. The high predictive concordance, as
evidenced by the adherence to both evaluation standards, affirms
the model’s reliability and its potential utility in the realm of drug
development and clinical pharmacology.

Comparison of predictive performance with
static model

The static model, a widely recognized and straightforward
approach for evaluating DDIs as per DDI guidance, was
employed for comparative analysis with our PBPK-DDI model.
The comparison, detailed in Table 3, reveals significant
discrepancies in the predictive accuracy of the Static model,
particularly when assessing induction-based DDI risks.

Upon evaluation, it was observed that the Static model
significantly overestimated the DDI risk in 83% of the cases, with
only 14% of the predicted AUCR falling within the empirically
accepted range of 0.5–2 times the observed AUCR. When applying
the more stringent Guest criteria, this predictive accuracy further
declined to 11%.

This comparative analysis underscores the Static model’s
limitations in accurately forecasting DDIs, particularly when
compared to the superior predictive capabilities of the PBPK-DDI
model reported in this study. The PBPK-DDI model’s enhanced
predictive performance is attributed to its physiologically based,
mechanistic approach, which more accurately captures the complex
interplay of drug interactions in the human body.

Discussion

This study presents a comprehensive evaluation of the PBPK
model’s predictive capabilities for DDIs mediated by
CYP3A4 induction. Through meticulous model development and
validation, we have demonstrated the model’s high fidelity in
simulating the complex profiles of both rifampicin and its
substrates. The comparison with empirical data has confirmed
the model’s robustness, with an impressive alignment between
predicted and observed parameters, well within the accepted
bioequivalence criteria. Furthermore, the predictive performance
of our PBPK-DDI model significantly surpassed that of the
conventional Static model, particularly in accurately estimating
the risks associated with CYP3A4 induction. This superiority is
evident in the model’s ability to closely mirror the clinical outcomes,
as evidenced by the high percentage of accurate predictions based on
both the 0.5 to 2-fold and Guest criteria. The findings underscore the
transformative potential of the PBPK-DDI model in enhancing the
safety and efficacy assessments of new molecular entities during
early clinical development.

Our rifampicin PBPK model, informed by the comprehensive
framework within GastroPlus’s full PBPK model, has been
strategically simplified to a compartmental model for enhanced
practicality and expedited application. This tailored approach,
while retaining the physiological essence of the full model, allows
for rapid predictions that are crucial in clinical and research settings.
Our model parameters, fine-tuned against a spectrum of published
literature and aligned with empirical human data, have been
optimized to ensure the most accurate predictions, as evidenced

FIGURE 2
The comparison of simulated rifampicin PK in PBPK model with observed values. Note: Solid line: simulated C-T profiles of rifampicin after IV
administration, single dose, 600mg (A), oral administration, single dose, 200mg (B), oral administration, single dose, 400mg (C), and oral administration,
QD, 600mg; dash line: quantile of 5% and 95%; black circles: the observed PK data of rifampicin; blue circles (D): the observed PK data of rifampicin; blue
line (D): the simulated C-T profiles of rifampicin. The black and blue C-T profiles in Figure D are from two different publications with different
demographic characteristics, such as body weight, height, and age.
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TABLE 2 The comparison of predicted PK parameters with observed values for rifampicin.

PK parameters Predicted Observed Predicted error/%

600 mg Rifampicin, single dose after intravenously administration

Cmax (μg/mL) 31.9 37.6 −15.16

Tmax (h) 1 1.06 −5.66

AUC (μg·h/mL) 93.73 114 −17.78

V (L) 18.28 13.67 33.72

CL (L/h) 6.24 5.15 21.17

T1/2 (h) 2.22 2.21 0.45

200 mg Rifampicin, single dose after oral administration

Cmax (μg/mL) 8.92 10.3 15.59

Tmax (h) 1.98 1.7 −14.57

AUC (μg·h/mL) 49.6 60 20.94

V/F (L) 44.24 50.88 −13.05

CL/F (L/h) 7.9 10.49 −24.69

T1/2 (h) 3.63 2.74 32.32

400 mg Rifampicin, single dose after oral administration

Cmax (μg/mL) 11.53 8.71 −24.5

Tmax (h) 1.92 1.85 −3.77

AUC (μg·h/mL) 59.41 41.56 −30.05

V/F (L) 46.03 42.12 9.29

CL/F (L/h) 8.94 7.81 14.54

T1/2 (h) 3.37 2.95 14.24

600 mg Rifampicin, after oral administration, QD-1

Cmax-Day 1 (μg/mL) 14.2 13 9.23

AUC-Day 1 (μg·h/mL) 70.34 85.63 −17.86

V/F-Day 1 (L) 35.27 61.44 −42.59

CL/F-Day 1 (L/h) 8.52 6.23 36.76

T1/2-Day 1 (h) 2.54 11.54 −77.99

Cmax-Day 4 (μg/mL) 11.3 11.3 0

AUC-Day 4 (μg·h/mL) 43.74 48.43 −9.68

V/F-Day 4 (L) 44.76 50.74 −11.79

CL/F-Day 4 (L/h) 12.74 9.86 29.21

T1/2-Day 4 (h) 2.06 3.43 −39.94

Cmax-Day 6 (μg/mL) 11.2 10.2 9.8

AUC-Day 6 (μg·h/mL) 41.24 34.05 21.12

V/F-Day 6 (L) 44.24 54.92 −19.45

CL/F-Day 6 (L/h) 12.96 15.98 −18.9

T1/2-Day 6 (h) 1.92 1.4 37.14

(Continued on following page)
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by their close match with observed plasma C-T profiles (Acocella,
1978; Loos et al., 1985; Peloquin et al., 1997). This validation not
only affirms the model’s reliability but also positions it comparably
with other published rifampicin PBPK models, reinforcing the
consensus on model parameters that best capture the drug’s
behavior (Ono et al., 2017; Yamazaki et al., 2015; de Zwart et al.,
2016; Luedtke et al., 2018; Morita and Hanada, 2022; Nassr et al.,
2009; Umehara et al., 2019; Freise et al., 2017).

The robustness for the PBPK model of victim drugs is crucial
for assessing the DDIs. Our models align with existing scientific
literature and highlight the significance of the fm parameter. By
incorporating empirically derived in vitro fm values into our
models, we prevent the potential overestimation of DDI risk
that could occur if we assumed a fm value of 100%. Although this
nuanced approach lacks comparative data in this presentation, it
is theoretically sound and enhances the precision of DDI

TABLE 2 (Continued) The comparison of predicted PK parameters with observed values for rifampicin.

PK parameters Predicted Observed Predicted error/%

600 mg Rifampicin, after oral administration, QD-2

Cmax-Day 1 (μg/mL) 20.3 22 −7.73

AUC-Day 1 (μg·h/mL) 89.34 132.27 −32.46

V/F-Day 1 (L) 23.9 21.98 56.53

CL/F-Day 1 (L/h) 6.59 4.21 −22.9

T1/2-Day 1 (h) 2.02 2.62 −4.11

Cmax-Day 4 (μg/mL) 15.9 13 22.31

AUC-Day 4 (μg·h/mL) 57.55 86.76 −33.67

V/F-Day 4 (L) 32.47 33.86 56.4

CL/F-Day 4 (L/h) 10.26 6.56 5.24

T1/2-Day 4 (h) 2.21 2.1 56.53

Cmax-Day 7 (μg/mL) 15.8 17.7 −10.73

AUC-Day7 (μg·h/mL) 57 96.73 −41.07

V/F-Day 7 (L) 32.48 25.26 28.58

CL/F-Day 7 (L/h) 10.36 6.11 69.56

T1/2-Day 7 (h) 2.2 1.46 50.68

FIGURE 3
Plots of predicted AUCRs (A) and CmaxR (B) versus the observed values. Note: Solid lines represent the unit line (Y = X). The dash lines are the 0.5 fold
and 2 fold lines; The dot lines are the lines usingGuest-limit criteria. The circles represent the observedmeans of AUCR andCmaxR. AUCR, the ratio of area
under the concentration-time curve of victim after co-administration with rifampicin over area under the C-T curve of victim with dosing alone; CmaxR,
the ratio of victim Cmax after co-administration with rifampicin over victim Cmax with dosing alone.
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predictions, aligning with the current scientific consensus on
this topic.

In our study, we observed a significant discrepancy in the fm test
results for tasimelteon when using microsomal and recombinant
enzyme methods. The microsomal method, after multiple

repetitions, yielded results ranging from 0% to 15%, while the
recombinant enzyme method resulted in a 65% value. The cause
of this difference may be attributed to non-enzymatic metabolism in
the microsomes; further investigation is underway to pinpoint the
exact reason. According to the submission information on

TABLE 3 The Dosing method of victim drugs and the predictive performance using different approaches.

Victims Dosing
method

AUCR Predicted/
Observed

References

Observed Predicted

Static
model

PBPK Static
model

PBPK

Abiraterone 1,000 mg, SD 0.42 0.04 0.22 0.08 0.51 Bernard et al. (2015)

Apixaban 10 mg, SD 0.47 1.00 1.00 2.13 2.13 Vakkalagadda et al. (2016)

Apremilast 30 mg, SD 0.28 0.04 0.22 0.14 0.78 Liu et al. (2014)

Axitinib 5 mg, SD 0.21 0.02 0.17 0.10 0.83 Pithavala et al. (2010)

Baricitinib 10 mg, SD 0.66 1.00 1.00 1.53 1.53 (FDA, 2018)

Bosutinib 500 mg, SD 0.06 0.01 0.07 0.23 1.15 Abbas et al. (2015), Ono et al. (2017)

Crizotinib 250 mg, SD 0.18 0.02 0.11 0.12 0.62 Xu et al. (2015), Yamazaki et al. (2015)

Edoxaban 60 mg, SD 0.66 1.00 1.00 1.52 1.52 Mendell et al. (2015)

Flibanserin 100 mg, SD 0.05 0.01 0.09 0.28 1.80 (FDA, 2015)

Fostamatinib 150 mg, SD 0.25 0.10 0.34 0.40 1.35 Martin et al. (2016)

Ibrutinib 560 mg, SD 0.10 0.05 0.07 0.49 0.72 de Jong et al. (2015); de Zwart et al. (2016)

Lenvatinib 24 mg, SD 0.91 1.00 1.00 1.10 1.10 Shumaker et al. (2014)

Macitentan a10 mg, QD 0.21 0.01 0.07 0.05 0.32 Bruderer et al. (2012), de Kanter et al. (2016)

Nintedanib 150 mg, SD 0.50 0.10 0.26 0.20 0.52 Luedtke et al. (2018)

Ospemifene 60 mg, SD 0.41 0.05 0.27 0.12 0.66 Lehtinen et al. (2013)

Panobinostat 20 mg, SD 0.35 0.01 0.18 0.03 0.51 Einolf et al. (2017a)

Ponatinib 45 mg, SD 0.41 0.02 0.22 0.05 0.54 Morita and Hanada (2022), Narasimhan et al.
(2015)

Roflumilast 500 ug, SD 0.19 0.11 0.33 0.58 1.72 Jia et al. (2024), Nassr et al. (2009)

Rolapitant 180 mg, SD 0.17 0.01 0.19 0.06 1.14 (FDA, 2017)

Ruxolitinib 50 mg, SD 0.29 0.05 0.34 0.17 1.18 Shi et al. (2012), Shi et al. (2015), Umehara et al.
(2019)

Sonidegib 800 mg, SD 0.21 0.02 0.18 0.10 0.88 Einolf et al. (2017b)

Tasimelteon 20 mg, SD 0.11 0.02 0.15 0.17 1.35 Ogilvie et al. (2015)

Telaprevir 750 mg, SD 0.08 0.01 0.16 0.15 2.03 Garg et al. (2013)

Tofacitinib 30 mg, SD 0.16 0.02 0.25 0.13 1.55 Nam et al. (2020)

Venetoclax 200 mg, SD 0.29 0.02 0.24 0.05 0.82 Agarwal et al. (2016), Freise et al. (2017)

Vorapaxar a20 mg, QD 1.08 0.11 0.80 0.10 0.74 Kosoglou et al. (2013)

Fedratinib 500 mg, SD 0.19 0.02 0.08 0.08 0.42 Ogasawara et al. (2021)

Istradefylline 40 mg, SD 0.21 0.01 0.20 0.06 0.96 Mukai et al. (2018)

Percentage within 0.5~2 fold 14% 89%

Percentage within Guest criteria 11% 79%

aThe DDIs, were evaluated by the PK, of victims at steady state with or without rifampicin.
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tasimelteon published by the FDA (FDA, 2014), CYP3A4 is the
primary enzyme involved in the metabolism of tasimelteon.
Therefore, in this research, we have adopted the results based on
the recombinant enzyme method.

Our current model demonstrates a high degree of predictive
accuracy for DDIs, the multifaceted nature of in vivo DDIs suggests
that there is still room for refinement. One of the factors that may
influence the prediction of rifampicin’s inducing effect is its ability to
induce multiple enzymes while also inhibiting transporters, potentially
leading to increased drug absorption. This phenomenon is particularly
evident with elagolix (FDA, 2020), where co-administration with
rifampicin does not reduce but rather increases its exposure,
highlighting the significant contribution of transporters over the
inhibition of metabolic enzymes. Our model does not currently
integrate the impact of transporters, which is why we have not
included elagolix as a case study. The examples we have utilized are
mostly drugs with minimal transporter involvement, which to some
extent, has bolstered the precision of our predictions. Future models
could benefit from incorporating the effects of transporters to further
enhance the accuracy of DDI predictions.

Conclusion

The PBPK models have effectively predicted DDIs involving
rifampicin, highlighting their utility in clinical drug development.
The models’ alignment with empirical data confirms their reliability,
and their refinement will further enhance predictive precision in
future studies.
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