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Amis: Chemotherapy-induced hepatotoxicity (CIH) is a significant concern in
colorectal cancer (CRC) patients treated with the CAPEOX (capecitabine and
oxaliplatin) regimen. Identifying predictive factors for CIH is crucial for clinical
management.

Patients and Methods: This study analyzed colorectal tissue (CRT), plasma, and
urine samples from CRC patients. Differentially expressed metabolites (DEMs)
across these tissues were integrated for multi-omics analysis, and predictive
models for CIH susceptibility were developed. An independent set of 75 plasma
samples was used for validation.

Results: A total of 492 differentially expressed compounds were identified in
samples from 63 CRC patients, including 105, 149, and 238 DEMs in CRT, plasma,
and urine, respectively. Lipids and lipid-like molecules were predominant in all
samples. Among these, urine samples exhibited the highest variability and
provided the strongest predictive power for CIH susceptibility. Principal
component analysis (PCA) effectively differentiated normal patients from those
with CIH. The study revealed steatosis as the primary pathological feature of CIH,
with disrupted lipid metabolism emerging as a key characteristic. Predictive
models constructed from multi-tissue metabolites profile exhibited high
accuracy, with the plasma model achieving an AUC of 0.933 in external
validation set. Our study underscores the importance of individual metabolic
variations in CIH susceptibility, reflecting the complex interplay of genetic,
environmental, and lifestyle factors.
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Conclusion: This study emphasizes the critical role of alterations in lipid,
polyamine, and purine metabolism, as well as impaired tissue repair
mechanisms, were identified as key endogenous factors underlying CIH
susceptibility. The developed predictive models demonstrate potential for
clinical application in assessing CIH risk in CRC patients undergoing CAPEOX
chemotherapy.

KEYWORDS

chemotherapy-induced hepatotoxicity, multi-omics analysis, capeox, endogenous
susceptible biomarkers, metabolomics

1 Introduction

CAPEOX (capecitabine + oxaliplatin) is the most recommended
and commonly used chemotherapy regimen for various solid
tumors, including colorectal cancer (CRC) (Bray et al., 2018).
However, due to its cytotoxicity, CRC patients experience a
variety of adverse effects after chemotherapy, including
hepatotoxicity, with a prevalence of 30%–47% (McWhirter et al.,
2013; Li et al., 2021a). The causes of chemotherapy-induced
hepatotoxicity (CIH) vary among liver failure, cholestasis,
steatosis, ductal damage fibrosis, osteoporotic hepatitis, and
venous obstruction (McDonald and Tirumali, 1984; Gangi and
Lu, 2020a). Among these, steatosis—a condition marked by lipid
accumulation within hepatocytes—is recognized as an early stage of
nonalcoholic fatty liver disease (NAFLD). The mechanisms
underlying lipid accumulation include excessive free fatty acid
(FFA) import, reduced hepatic export, and impaired FFA
oxidation. If unresolved, steatosis can progress to steatohepatitis,
characterized by liver cell injury and inflammation, which may
ultimately lead to fibrosis. Another distinct CIH manifestation is
sinusoidal obstruction syndrome (SOS), caused by damage to
endothelial cells lining liver sinusoids. Unlike steatosis, SOS
primarily affects vascular integrity without directly impairing
hepatocyte function.

Effective prediction and prevention of CIH require reliable
biomarkers and a deeper understanding of the underlying
molecular mechanisms. Significant research has identified
potential metabolite biomarkers for CIH, offering promising
candidates for further investigation. Notably, elevated levels of
sphingosine-1-phosphate (S1P) and lysophosphatidylcholine
(LysoPC) have been observed in patients undergoing cisplatin
chemotherapy and are correlated with liver injury (Chen J. et al.,
2018; Ji et al., 2020). Similarly, increased concentrations of several
bile acids, including taurocholic acid and glycochenodeoxycholic
acid, have been associated with CIH in patients receiving irinotecan
(Aubrecht et al., 2013; Yang et al., 2014). These findings underscore
the potential of metabolite biomarkers to enhance patient safety by
enabling early detection of CIH and optimizing CRC treatment
strategies.

Current research on chemotherapy-induced hepatotoxicity
(CIH) faces two primary limitations. First, most studies
investigating biomarkers of chemotherapy-related adverse events
(CRAE) focus on drug metabolism alone, neglecting the impact of
inter-individual differences, which are known to be crucial
determinants of the occurrence and severity of chemotherapy-
related side effects, including CIH (Gelibter et al., 2019). In

contrast, metabolomics provides a holistic diagnostic approach by
analyzing low molecular weight organic compounds in various
biological fluids and tissues, such as blood, urine, saliva, and
tissue samples (Bujak et al., 2015). Unlike the genome,
transcriptome, and proteome, the metabolome reflects the end
product of metabolism, offering a more direct link to the
phenotype (Weiss and Kim, 2011; Everett et al., 2019; Rinschen
et al., 2019). Second, many studies rely on a single type of tissue
sample for biomarker screening, limiting the ability to assess the
relative contributions of different tissue types. This narrow focus
often neglects the potential influence or correlation of CIH-related
features across tissues, thereby restricting a comprehensive
understanding of the molecular mechanisms underlying CIH.
Addressing these limitations through a multi-tissue metabolomics
approach can enhance the ability to identify reliable predictive
markers and provide deeper insights into the complex molecular
pathways driving CIH.

Multiple omics integrative analysis methods, such as NNF
(Zhang et al., 2011; Zhang et al., 2012) and iCluster (Shen et al.,
2009; Shen et al., 2012) have been developed to analyze complex
biological datasets. However, these methods often exhibit limited
tolerance for missing data, which can compromise their
effectiveness. The multi-omics factor analysis (MOFA) algorithm
can handle missing values and detect sample abnormalities
(Argelaguet et al., 2018; Argelaguet et al., 2020). MOFA was
demonstrated to have a better classification ability than SNF and
iClusterBayes (Zheng et al., 2023).

In this study, we utilized MOFA to integrate metabolomic data
derived from colorectal tissue (CRT), plasma, and urine samples. This
comprehensive multi-omics approach aimed to elucidate the molecular
mechanisms underlying CIH susceptibility and develop predictive
models to identify potential biomarkers for assessing CIH susceptibility.

2 Materials and methods

2.1 Patient selection and sample collection

All patients were enrolled from a clinical trial conducted at
Shanghai Changzheng Hospital from June 2018 to December 2021
(registration number: NCT03030508). The inclusion criteria for
CRC patients were (1) age over 18 years, (2) biopsy diagnosis of
CRC, (3) first-time CRC patients, and (4) no preoperative treatment
with antineoplastic drugs. Written informed consent was obtained
from all patients before sample collection. The Ethics Committee of
Shanghai Changzheng Hospital approved the study. Clinical
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information, including age (in years), gender (female or male), and
body mass index (BMI), were also collected.

All patients received oxaliplatin (0.16–2 g/d) intravenously on
day one and oral capecitabine (1.5 g/d) during the first 2 weeks. All
patients have completed at least four chemotherapy cycles. Patients
were followed up with relevant clinical data during chemotherapy
and then assessed for the occurrence and severity of CIH according
to CTCAE5.0 criteria. Hepatotoxicity was clinically determined by
alanine aminotransferase (ALT) or aspartate aminotransferase
(AST) over five times ULN (Upper Limit of Normal) during the
chemotherapy after the surgery (Meunier and Larrey, 2019).
Elevations in AST and ALT are well-established indicators of
hepatocellular injury. For instance, acetaminophen-induced
hepatotoxicity in animal models has been shown to cause
marked increases in ALT and AST levels within 24 h (McGill
and Jaeschke, 2019). Patients were categorized into a normal
group and a CIH group based on CIH occurrence.

Urine samples from enrolled CRC patients were collected in
lyophilized tubes one to 2 days before surgery; 5 mL of blood
samples from enrolled patients were collected in EDTA
anticoagulation tubes, centrifuged (2000 g, 15 min, 4°C), and
then blood was collected and divided into lyophilized tubes (400
μL/freezing tube); CRT was collected during the surgery (more than
10 cm from the tumor tissue). All samples were stored in a −80°C
refrigerator within 2 h after acquisition. For detailed sample
processing information, please refer to our previously published
works (Li et al., 2021b; Yao et al., 2022a).

2.2 Metabolomics analysis and data
preprocessing

Untargeted metabolomics was employed to screen 63 patients,
aiming to identify features related to CIH and construct a predictive.
Subsequently, pseudo-targeted metabolomics was applied to an
additional 75 patients for model validation.

Mass spectrometry (MS) data were analyzed using the ProFinder
program (version b8.0, Agilent Technologies). After fusion alignment,
spectral features were recursively extracted based on retention time
(RT), mass-to-charge ratio (m/z), and spectral area. Spectral features
generated by internal standards, noise, and column bleeding are
removed from the data set. Features resulting from internal
standards, noise, and column bleeding were excluded. The processed
results were manually validated and transferred to the Mass Profiler
Professional program for further analysis (Agilent Technologies). The
80% rule was applied to reduce data dimensionality and avoid missing
values (Bijlsma et al., 2006). Spectral features were normalized to the
sum of the intensities for each sample. Metabolite detection utilized
both positive and negative ionization modes, with peak area
normalization applied to eliminate duplicates across modes. Detailed
methods for compound identification are available in our previous
studies (Li et al., 2021b; Yao et al., 2022a).

2.3 Statistical and multi-omics analysis

After acquiring MS data, log2 transformation and
normalization were applied. Differential expression analysis was

then conducted using the R package limma (Ritchie et al., 2015), to
compare the CIH and normal groups, adjusting for clinical
covariates. Metabolites identified as differentially expressed
(DEMs) with a significance threshold of p < 0.05 were selected
as inputs for multi-omics analysis. This pre-selection step aimed to
reduce noise and identify metabolites that differentiate CIH-
susceptible patients from those in the normal group. PCA was
performed on DEMs to visualize the difference between the CIH
and normal groups with R package “FactoMineR” and
“factoextra”.

For integrative analysis, the MOFA algorithm was utilized for
integrative analysis through R package MOFA2 (Argelaguet et al.,
2018). Key parameters included maxiter set to 5,000, convergence_
mode set to “slow,” and other settings left at default values. From a
biological standpoint, the LF1 weights reflect how strongly each
metabolite contributes to this latent factor, thereby highlighting key
metabolic disturbances relevant to CIH. This integrative approach
not only consolidates signals across multiple biofluids and tissues
but also help underscores the complex interplay of pathways driving
hepatocellular injury.

2.4 Pathway enrichment analysis

The DEMs were subjected to pathway enrichment analysis
through the Reactome website (Gillespie et al., 2022) with
HMDB ID. The Reactome classifications were utilized for
pathway classification. Pathways belonging to the disease
category were excluded in the subsequent analysis. Pathways
with p < 0.05 and enriched metabolites number ≥3 were
considered for further research. The MOFA weight and
log2FC value were utilized to determine the pathway weight
and direction as described in our previous studies (Li et al.,
2021b; Yao et al., 2022a).

2.5 Correlation analysis

Pearson correlation analysis was conducted on DEMs that met
the following criteria: (1) a higher absolute MOFA weight and (2)
inclusion in the top threemost significant pathways of plasma, urine,
and CRT. Compounds with an absolute correlation coefficient r2 ≥
0.4 and the highest number of connections to other DEMs were
identified as candidate biomarkers. The correlation networks were
visualized with Gephi (version v0.9.2).

2.6 Predictive model construction

To further filter candidate biomarkers, we employed the random
forest method using the R package “randomForest,”with the process
repeated 1,000 times for enhanced robustness. Features that
appeared at least 500 times in the overall ranking were selected
as final biomarkers. The dataset was randomly split into training and
test sets at a ratio of 7:3, and a multivariate logistic regression model
was constructed final biomarkers. The predictive performance of the
model was evaluated by plotting the ROC curve using the R
package plotROC.
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FIGURE 1
Study design, classification of differentially expressed metabolites, and PCA plot. (a) Study design and sample collection time point of each dataset.
Yellow represents the CIH group, and green represents normal groups. (b)Mean ALT level of normal group and CIH group 2–3 days before the operation.
(c)Mean ALT level of normal group and CIH group 2–3 days after the operation. (d) Classification and count of CIH-related compounds in CRT, plasma,
and urine samples from left to right. The X-axis represents the counts of CIH-associated compounds. The Y-axis represents HMDB classifications. (e)
PCA score plot of CRT, plasma, and urinemetabolic profiling. Yellowmeans the CIH group. Green indicates the normal group. Abbreviations: Pos, positive
ion modes; Neg, negative ion modes.
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2.7 Mendelian Randomization

To overcome sample size limitations and strengthen causal
inference between metabolic alterations and CIH, we applied a
two-sample Mendelian Randomization (MR) analysis. We
selected compounds with corresponding GWAS IDs from the
IEU Open GWAS project to explore potential causal

relationships with AST and ALT levels. The SNP–metabolite
associations (exposure) were obtained from metabolomics GWAS
data, while the SNP–CIH associations (outcome) were derived from
our clinical dataset. Our primary analysis employed the inverse
variance weighted (IVW) random-effects method, which estimates
the causal effect by meta-analyzing the Wald ratios (i.e., the SNP’s
effect on CIH divided by its effect on the metabolite). To address

FIGURE 2
Multi-omics analysis of endogenous DEMs. (a)Overall representation of the three sample types, where “N” at the bottom indicates the total number
of samples and “D” represents the number of DEMs identified in urine, plasma, and CRT samples. Yellow denotes urine samples, blue indicates plasma
samples, and orange represents CRT samples; grey areas indicate missing data. (b) The contribution of latent factors in explaining the variation across
urine, plasma, and CRT samples. (c) Beeswarm plot illustrating the discriminative ability of each latent factor, with green representing the normal
group and yellow representing the CIH group. (d) Scatter plot displaying the top-ranking absolute values of LF1 weights. (e) Boxplot comparing 4-
pyridoxic acid levels between the normal and CIH groups, with statistical significance annotated (e.g., asterisks) to indicate the differences
between groups.
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potential violations of the IV assumptions, we further performed
MR-Egger regression—which allows for horizontal pleiotropy—and
the weightedmedianmethod, robust even when up to 50% of the IVs
are invalid. Heterogeneity was evaluated using Cochran’s Q test and
leave-one-out analysis was conducted to ensure that no single SNP
disproportionately influenced the overall estimate.

3 Results

3.1 Patient characteristics

63 patients were enrolled in this study, with 19 classified into
the CIH group and 44 into the normal group (Figure 1A). Among
these, CRT samples were obtained from 54 patients, plasma
samples from 49 patients, and urine samples from 44 patients
(Figure 2A). The normal patient group consisted of 44 individuals,
with an equal distribution of 22 patients aged over 60 years and
22 patients aged under 60 years. While the CIH group has
11 patients under the age of 60 and 8 patients were over 60.
The mean age in the normal group was 56.5, while the median age
was 56. The mean age for CIH group patient was 59.1, while the
median age was 59.6 (Table 1). The results suggest that a higher
BMI (>24) was potentially related to CIH, as more patients in the
CIH group had a BMI ≥24 (15.8% vs. 14.3%) compared to what
was in the normal group (22.2% vs. 47.6%). Conversely, no clear
association was observed between CIH and age or gender, as the
proportions of patients aged over 60 or male/female were similar
between the two groups (Table 1).

Before and after the operation, the alanine aminotransferase
(ALT) levels in patients from both the normal group and the CIH
group remained within the normal clinical range of 5–40 U/L.
Specifically, the ALT value was under 20 U/L in the normal group
(Figure 1B) and 25 U/L in the CIH group (Figure 1C). This
indicates that patients did not exhibit hepatotoxicity prior to
chemotherapy, ensuring that any hepatotoxic effects observed
during the study can be attributed specifically to the
chemotherapy regimen rather than pre-existing liver
dysfunction.

Additionally, plasma samples from another 75 patients were
collected for model validation. This decision was based on the
ease of plasma collection and its significant clinical
utility (Figure 1A).

3.2 Categories of differentially expressed
endogenous metabolites

A total of 5,028 compounds were subjected to differential
analysis after compound identification and preprocessing. This
process led to the identification of 105, 149, and 238 DEMs in
CRT, plasma, and urine samples, respectively (Figure 2A). PCA
plots revealed that these DEMs, identified in both positive and
negative ionization modes, effectively distinguished the normal
group from the CIH group (Figure 1E). Taxonomic classification
of the DEMs using the Human Metabolome Database (HMDB)
revealed nine categories with lipids and lipid-like molecules
emerging as the most abundant and significantly altered class
across CRT, plasma, and urine samples (Figure 1D).

3.3 Identification of top-ranking
endogenous DEMs

The integrative analysis of differentially expressed metabolites
(DEMs) from CRT, plasma, and urine using multi-omics factor
analysis (MOFA) identified ten latent factors (LFs) that collectively
explained the variation in our dataset. LF1 demonstrated the highest
explanatory power for urine (21%) and CRT (16%) samples, while
LF2 contributed the most to the variation in plasma (36%) (Figure 2B).
Notably, LF1 showed the strongest discriminatory ability between the
normal and CIH groups (Figure 2C), underscoring its clinical relevance.

We subsequently leveraged the weight values derived from LF1 for
downstream analysis to pinpoint the most critical metabolic
perturbations associated with CIH. Among the endogenous DEMs,
4-pyridoxic acid in urine exhibited the highest absolute weight value
(0.439, p < 0.000016) and was significantly downregulated in the CIH
group (Log2FC = −0.779, p < 0.046) (Figures 2D,E). In plasma, 2-
Phenylbutyric acid had a higher absolute weight value (0.169, p <
0.016), while in CRT, 3-Hydroxybutyrate showed a higher absolute
weight value (0.201, p < 0.002).

3.4 Integrative pathway enrichment analysis

Building on these LF1-driven insights, we re-evaluated pathway
importance and direction using bothMOFAweights and log2FC values
(Figure 3). In plasma, most pathways were upregulated, with lipid

TABLE 1 Patient characteristics.

Clinical features Classification Normal group CIH group

Age <60 22 (51,50.09) 11 (50.49.91)

≥60 22 (67,68.13) 8 (66,65.5)

Gender Male 30 (47.6%) 12 (19.0%)

Female 14 (22.2%) 7 (11.1%)

BMI <24 30 (47.6%) 9 (14.3%)

≥24 14 (22.2%) 10 (15.8%)

Notes:

For Age, the numbers in parentheses represent the median and mean.

%means the proportion of cell count in the whole group.
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FIGURE 3
Integrative pathway enrichment results. (a) Pathway enrichment results of plasma samples. (b) Pathway enrichment results of urine samples. (c)
Pathway enrichment results of CRT samples. The Y-axis on the left side of the graph is the pathway’s classification, and the pathway’s name is on the right
side. In the X-axis, 123 represents the CIH group, while 0 represents the normal group. The circle size means the weight of the pathway. The circle color
represents the direction of the pathway. The darkness of the circle border represents the significance of the pathway.
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metabolism and signal transduction carrying the highest weights; the
top three significant pathways were “phospho-PLA2 pathway,”
“sphingolipid metabolism,” and “Sphingolipid de novo biosynthesis”
(Figure 3A). In urine, all pathways were upregulated, notably “amino
acid transport across the plasma membrane,” “mitochondrial
aminoacylation,” and “sodium/chloride-dependent neurotransmitter
transporters” (Figure 3B). Meanwhile, CRT samples showed a
predominantly downregulated trend, except for pathways linked to
protein and lipid biosynthesis, including “plasmalogen biosynthesis,”
“wax and plasmalogen biosynthesis,” and “transport of vitamins,
nucleosides, and related molecules” (Figure 3C). The detailed
pathway enrichment results was in Supplementary Table 2.

3.5 Network visualization of critical DEMs

The correlation analysis revealed that lipids such as
phosphatidylethanolamine (PE), phosphatidylcholine (PC),

sphingomyelin (SM), sphingosine-1-phosphate (S1P), and
lysophosphatidic acid (LPA) exhibited the largest node size,
indicating their high correlation with other metabolites in the
network, particularly in plasma samples.

In urine samples, metabolites such as 4-pyridoxic acid, tryptophan,
leucine, 1-deoxy-D-xylulose, hypoxanthine, and 4-acetamidobutanoate
exhibited larger node sizes compared to other differentially expressed
metabolites (DEMs), suggesting their central role in the metabolic
network (Figure 4). The metabolites have the most related DEMs
were selected as candidate biomarkers for predictive models. Full
candidate biomarkers identified was shown in Table 2 and there
corresponding enriched pathways was shown in Supplementary Table S2.

3.6 Performance of predictive models

In CRT samples, six metabolites—3-Hydroxybutyrate (BHB),
Flavin adenine dinucleotide (FMN), adenosine, adenine, hexadecan-

FIGURE 4
Correlation network diagram for endogenous DEMs. The size of the circles in the graph represents the number of DEMs associated with the
compound. The line’s color between the circles indicates whether the two compounds are positively or negatively correlated. The color of the circles in
the diagram represents the different classifications of the compounds.
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1-ol, and spermidine—were selected for predictive model
construction based on their high frequency in the random forest
models (Table 3). The predictive model achieved an area under the
curve (AUC) of 0.938 for the training set and 0.936 for the test set,

with an overall predictive accuracy of 0.940 across the entire
dataset (Figure 5A).

For urine samples, the selected metabolites included indan-1-ol,
4-pyridoxic acid, N6-Methyl-lysine, dihydrocaffeic acid 3-O-

TABLE 2 Candidate biomarkers.

Name HMDB KEGG Log2FC Absolute weight P Tissue

3-Hydroxybutyrate HMDB0000011 C01089 −0.3518 0.2015 0.0016 CRT

Flavin adenine dinucleotide HMDB0001520 C00061 −0.4838 0.1242 0.0024 CRT

Hexadecan-1-ol HMDB0003424 C00823 0.2969 0.1441 0.0084 CRT

Adenine HMDB0000034 C00147 −0.3867 0.1872 0.0031 CRT

Spermidine HMDB0001257 C00315 −0.2469 0.1144 0.0251 CRT

Adenosine HMDB0000050 C00212 −0.5229 0.1661 0.0007 CRT

Prostaglandin F2 HMDB0001139 C00639 −0.3912 0.1459 0.0184 CRT

PE (36:1) HMDB0008992 C00350 −0.2684 0.0394 0.0052 plasma

Lipoxin A4 HMDB0004385 C06314 −0.1637 0.0064 0.0326 plasma

Palmitic acid HMDB0000220 C00249 0.2359 0.1234 0.0004 plasma

S1P HMDB0000277 C06124 −0.2274 0.0164 0.0273 plasma

Tyrosine HMDB0000158 C00082 −0.1974 0.1763 0.0014 plasma

Cer HMDB0004949 C00195 −0.2632 0.0257 0.0014 plasma

Galactose HMDB0000143 C00984 0.1970 0.0429 0.0047 plasma

Tryptophan HMDB0000929 C00078 0.2960 0.1398 0.0001 urine

1-Deoxy-D-xylulose HMDB0001292 C06257 0.5156 0.3271 0.0001 urine

4-Acetamidobutanoate HMDB0003681 C02946 0.4300 0.3087 0.0011 urine

4-Pyridoxic acid HMDB0000017 C00847 −0.7794 0.4394 0.0000 urine

Hypoxanthine HMDB0000157 C00262 −0.2985 0.0869 0.0034 urine

2-Hydroxy-2-methylbutanenitrile HMDB0060309 C18796 0.4746 0.2832 0.0002 urine

N6-Methyl-lysine HMDB0002038 C02728 0.8441 0.3952 0.0000 urine

Tyrosine HMDB0000158 C06420 0.3572 0.1763 0.0014 urine

Indan-1-ol HMDB0059601 NA −0.6149 0.3079 0.0000 urine

Leucine HMDB0000687 C00123 0.3134 0.1991 0.0036 urine

Glutamine HMDB0003423 C00819 −0.5436 0.3084 0.0015 urine

2,3-Methylene suberic acid HMDB0059779 NA −0.6099 0.3660 0.0000 urine

Citrulline HMDB0000904 C00327 −0.4283 0.3060 0.0079 urine

Dihydrocaffeic acid 3-O-glucuronide HMDB0041720 NA −0.8092 0.2712 0.0000 urine

Galactitol HMDB0000107 C01697 −0.9515 0.3092 0.0002 urine

3-Oxopropanoate HMDB0011111 C00222 0.2137 0.0898 0.0096 urine

Notes:

“Name” column represents the metabolites name.

“HMDB” column represents the HMDB, database ID, of the metabolite.

“KEGG” column represents the KEGG, database ID, of the metabolite.

“logFC” column represents the log2FC, value from differentially analysis using limma package. It was calculated between patient vs. control, which means log2(Patient/Control).

“Absolute weight” column represents the absolute value of MOFA, weight.

“P” column represents the adjusted p-value of the metabolites from differentially analysis using limma package.

“Tissue” column represents tissue source of the metabolite.
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glucuronide, and 1-deoxy-D-xylulose (Table 3). The AUC of
training and test sets were 0.995 and 0.974, respectively. The
predictive power of the whole dataset was 0.989 (Figure 5B).

In plasma samples, metabolites such as palmitic acid,
phosphatidylethanolamine (PE) (16:1 (11Z)/15:0), ceramide-NS
d42:1-sn2, sphingosine-1-phosphate (S1P), and galactose were
chosen for model development, as they appeared more than
500 times in random forest models (Table 3). Among these,

palmitic acid emerged as the most significant predictor,
exhibiting the highest odds ratio (p < 0.003, OR = 5,514.868).
The AUC values for the training and test sets were 0.901 and
0.897, respectively, with an overall predictive power of
0.901 (Figure 5C).

Furthermore, an external validation set comprising
75 additional samples was utilized to assess the effectiveness of
the predictive model for plasma samples. The validation results

FIGURE 5
ROC curves of CIH predictive models. (a) ROC curve of CRT sample predictive model. (b) ROC curve of urine sample predictive model. (c) ROC
curve of plasma sample predictive model. (d) ROC curve of the external test set for plasma sample predictive model. The purple line represents the ROC
curve for the training set. The green line represents the ROC curve for the test set. The blue line represents the ROC curve for the whole dataset. The red
line represents the ROC curve for the external test set.
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showed an AUC value of 0.933 (Figure 5D). The ROC curves for
each biomarker were shown in Supplementary Figures 3–5.

3.7 Mendelian Randomization verification

A total of ten unique metabolites were included in the MR
analyses to assess their potential causal effects on AST and ALT
levels (Supplementary Table 1). Among them, 3-hydroxybutyrate
and N6-methyllysine showed the most prominent associations.
For AST, 3-HB exhibited a significant positive association (Beta =
0.33, 95% CI: 0.11 to 0.56, p = 0.003), suggesting that genetically
elevated 3-HB levels may correlate with higher AST. In contrast,
for ALT, 3-HB demonstrated a negative estimate (Beta = −0.28,
95% CI: −0.46 to −0.10, p = 2.81e–03), indicating a potentially
protective effect. N6-methyllysine was notably associated with
ALT, showing a negative relationship (Beta = −0.10, 95% CI:
−0.15 to −0.05, p = 6.66e–05), which implies that higher
genetically predicted N6-methyllysine may help reduce ALT
levels. Other compounds, such as 4-acetamidobutanoate,
citrulline, and pyridoxal, displayed nominal or weaker signals,
though none reached the same level of significance across both
enzymes. Notably, the direction of effects differed for certain
metabolites when comparing AST and ALT, suggesting these
liver enzymes may be influenced by partially distinct
metabolic pathways.

4 Discussion

4.1 Inter-individual variations are
determinants of susceptibility to CIH

Our previous studies demonstrated the significance of individual
variations in determining different types of CRAEs (Li et al., 2021a;
2021c; Yao et al., 2022b). These individual differences extend beyond
the liver, where CIH develops, and can be influenced by both
intrinsic and external factors, such as genetic predispositions,
dietary habits, and environmental exposures. Although
identifying specific causes is complex, such factors leave distinct
imprints on the metabolome. Thus, metabolomic profiling is
essential for understanding CIH pathology and developing
personalized therapeutic strategies.

In the context of CIH, the contribution weights of collected
samples, ranked from lowest to highest, are plasma, CRT, and urine.
Interestingly, plasma, despite its direct interaction with liver cells,
does not exhibit the highest weight in CIH analysis. This is likely
because the blood metabolome plays a central role in maintaining
numerous physiological processes, resulting in a narrower range of
variation compared to other tissues. For example, the endogenous
metabolite hydroxyisopatchoulenone, detected in both plasma and
urine (or CRT), displays greater individual variability in urine
(coefficient of variation [CV] = 3.93) and CRT (CV = 0.18)
compared to plasma (CV = 0.09).

TABLE 3 Information on biomarkers in CRT, plasma, and urine samples.

Name Freq P OR_95CI Tissue

3-Hydroxybutyrate 939 0.014 0.083 (0.009–0.506) CRT

Flavin adenine dinucleotide 899 0.027 0.187 (0.035–0.73) CRT

Adenosine 862 0.012 0.095 (0.012–0.486) CRT

Adenine 845 0.036 0.133 (0.016–0.768) CRT

Hexadecan-1-ol 650 0.013 14.396 (2.098–147.812) CRT

Spermidine 581 0.084 0.149 (0.015–1.188) CRT

Indan-1-ol 1,000 0.003 0.0001 (0–0.001) urine

4-pyridoxic acid 823 0.001 0.004 (0–0.055) urine

N6-Methyl-lysine 676 0.0001 302.89 (20.80–14427.55) urine

Dihydrocaffeic acid 3-O-glucuronide 514 0.006 0.012 (0–0.139) urine

1-Deoxy-D-xylulose 513 0.001 212.78 (12.41–8282.04) urine

Palmitic acid 1,000 0.003 5,514.87 (41.10–5430520.72) plasma

PE (36:1) 997 0.038 0.052 (0.002–0.659) plasma

Cer 891 0.041 0.048 (0.002–0.767) plasma

S1P 787 0.028 0.073 (0.005–0.64) plasma

Galactose 709 0.011 180.817 (4.701–16053.254) plasma

Notes:

“Name” column represents the metabolites name.

“Freq” column represents the frequency of the metabolites been significance of the 1,000 times random forest run.

“P” column represents the most significant adjusted p-value of the metabolites from random forest run.

“OR_95 CI” column represents the odds ratio and 95% confidence interval of the correspond p value.

“Tissue” column represents tissue source of the metabolite.
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CRT and liver tissues share a common origin from the
endodermal germ layer, suggesting a higher degree of similarity
in their metabolomic profiles. This makes CRT a promising tissue
for identifying potential CIH-associated metabolic traits.
Environmental hazards may contribute to CIH and leave
detectable metabolic signatures in both CRT and liver tissues. For
instance, we observed elevated levels of Cotinine N-oxide in CRT
(mean = 1.35, CV = 0.12) compared to plasma (mean = 0.27, CV =
0.04). Cotinine N-oxide is a known cytotoxic compound,
underscoring its potential role as a contributing factor to CIH
(Nakajima et al., 1998).

Urine, primarily a waste product formed by the kidneys to
eliminate excess substances and metabolic byproducts, differs from
CRT and plasma in that it does not actively regulate homeostasis or
support physiological functions. This characteristic may explain why
urine exhibited the highest contribution weight in the CIH analysis.
Consistent with previous studies identifying urine-based
metabolomic markers for various types of liver injury in humans
and animal models, our study is the first to identify urine-specific
markers for CIH. This finding highlights the potential of urine as a
valuable sample for CIH biomarker discovery.

4.2 Potential pathology of CIH

In this subsection, we delve into the comprehensive
metabolomic profile associated with CIH. This discussion
explores the potential interrelationships among various
metabolites and their connection to CIH. Additionally, a
summarization of these findings is concisely presented in
Figure 6 for a holistic understanding.

4.2.1 Multi-tissue metabolomic profiling indicates
steatosis in CIH

In a recent review, four primary chemotherapy-related
pathologies associated with liver injury were identified: steatosis,
steatohepatitis, sinusoidal obstruction syndrome, and noncirrhotic
portal hypertension (Gangi and Lu, 2020b). Our study supports
steatosis as the predominant mechanism underlying CIH. Steatosis
involves the accumulation of lipids within hepatocytes, which can
eventually progress to fibrosis. This condition is commonly observed
with chemotherapeutic agents such as capecitabine and oxaliplatin
(Gangi and Lu, 2020b).

Lipid accumulation in the liver can be caused by various factors,
including increased intake of free fatty acids (FFAs), hindered FFA
export from the liver, and decreased FFA oxidation. Consistent with
these mechanisms, our analyses reveal a high abundance of lipid-
related metabolites in CIH. Specifically, CRT samples indicate a
downregulation of lipid metabolism pathways, reflecting suppressed
lipid metabolism within the liver. In contrast, plasma samples
demonstrate upregulated lipid metabolism pathways, suggesting
increased lipid accumulation.

Specifically, plasma exhibited an increased level of galactose, a
potential precursor for all lipid molecules through glycolysis (Liu
et al., 2000). Galactose is a recognized contributor to liver steatosis,
initiating cascades of liver injury (Guo et al., 2018; Sha et al., 2021).
As an alternative to glycolysis, galactose can also be converted to
galactitol. Its downregulation in CIH provides indirect evidence for
upregulated glycolysis and, presumably, lipid accumulation
(Tappy, 2021).

Further evidence for steatosis was the significant upregulation of
palmitic acid in plasma. As one of the most abundant lipids in the
body, palmitic acid serves as a precursor for numerous lipid
metabolites critical to cellular functions, including energy storage
and intracellular signaling (Han, 2016). In addition, most
downstream products of palmitic acid, such as ceramides,
phosphatidylethanolamine, and prostaglandin, were
downregulated in CIH, further indicating dysregulated lipid
metabolism associated with steatosis.

4.2.2 Impaired tissue repair mechanism was the
leading risk factor of CIH

Steatosis can give rise to various injuries in splanchnic organs,
including inflammation, oxidative stress, and cellular damage. To
countermeasure these injuries, an effective tissue repair mechanism
is essential. Notably, the abundance and higher MOFA weight of
metabolites associated with these injuries suggest impaired tissue
repair processes may significantly influence CIH susceptibility.

In the liver, as the body’s primary detoxification organ, it is
constantly balancing damage and repair processes. The liver plays a
crucial role in metabolizing toxins, drugs, and other harmful
substances, making it highly susceptible to injury, especially during
chemotherapy. This constant exposure to potential damage requires
an efficient repair mechanism to maintain liver function. Vitamin B6,
through its involvement in numerous enzymatic reactions essential
for amino acid and lipid metabolism, is vital for this repair process. As
previously mentioned, insufficient vitamin B6 levels, indicated by
lower preoperative levels of 4-pyridoxic acid (Anand, 2005), can
impair tissue repair and decrease the liver’s antioxidant capacity,
making it more vulnerable to sustained damage (Mitchell et al., 1976).
Furthermore, the reduction in M2 macrophage activation (Cabrini
et al., 1998; Anand, 2005)., due to vitamin B6 deficiency (Ehmedah
et al., 2019), weakens the liver’s ability to repair itself after injury.
These combined effects may disrupt the liver’s delicate balance
between detoxification, damage, and repair, ultimately contributing
to the development of chemotherapy-induced hepatotoxicity (CIH).
Therefore, 4-pyridoxic acid and vitamin B6 may serve as critical
indicators of liver function and potential risk factors for CIH.

Additionally, elevated levels of the amino acid N6-Methyl-lysine
and upregulated amino acid metabolic pathways in CIH patients
indicate cytotoxic injury. Previous studies have shown that

FIGURE 6
Potential susceptibility factors for chemotherapy-induced
hepatotoxicity.

Frontiers in Pharmacology frontiersin.org12

Xu et al. 10.3389/fphar.2025.1517446

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1517446


significant increases in serum and urinary amino acid levels are
commonly associated with liver injury (An et al., 2020). Notably,
tryptophan, a recognized toxin, was elevated in urine samples and
positioned as a central hub in the correlation analysis. Microbial
catabolites of tryptophan can bind to the aryl hydrocarbon receptor,
activating the immune system and inducing systemic toxic effects
(Roager and Licht, 2018). This suggests a potential link between
tryptophan dysregulation and steatosis, further contributing to the
pathogenesis of CIH.

In CRT samples, patients who developed CIH exhibited lower
preoperative levels of BHB, spermidine, adenine, and adenosine. BHB,
a ketone body, is known for its significant clinical benefits, particularly
in targeting specific organs (Møller, 2020). A ketogenic diet has been
shown to prevent hepatic steatosis (Chen Y. et al., 2018), and 3-
Hydroxybutyrate exhibits anti-inflammatory and hepatoprotective
effects (Choi et al., 2018). Spermidine, a naturally occurring
polyamine, has pleiotropic effects, including anti-inflammatory
properties, antioxidant functions, and enhancement of
mitochondrial metabolic function and respiration (Madeo et al.,
2018). Specifically, spermidine can reduce the severity of liver
fibrosis and the incidence of hepatocellular carcinoma induced by
chemical injury (Yue et al., 2017). Adenine and Adenosine participate
in the metabolic pathway of purines, which provide essential
components for DNA and RNA. Moreover, purines serve as a
source of energy and cofactors necessary for cellular survival and
proliferation (Balasubramaniam et al., 2019).

In plasma, patients who developed CIH showed lower S1P levels.
S1P, on the other hand, is a phosphosphingolipid shown by
Hiroyuki et al. to possess the ability to promote liver cell repair
and regeneration, suggesting its potential role in restoring
homeostasis following liver injury (Nojima et al., 2016). The
study also indicated a reduction in S1P content was associated
with liver damage.

Based on the CIH-related metabolic profile and their biological
functions, we propose a potential mechanism for CIH (Figure 6).
First, impaired tissue repair function is identified as the central
susceptibility factor. This dysfunction is linked to several factors,
including increased energy intake, which promotes steatosis (fatty
liver), and decreased lipid metabolism, further exacerbating lipid
accumulation in hepatocytes. Second, reduced levels of critical
metabolites such as vitamin B6, spermidine, and BHB impair
tissue repair and mitochondrial function, hindering the liver’s
ability to regenerate in response to external stimuli. Finally, when
chemotherapy is applied, it amplifies this dysfunction, pushing the
liver into a state of severe damage, ultimately leading to the
development of CIH.

At last, not all detected CIH-related metabolic features exhibited
positive validation in the MR analyses, which may be explained by
several factors. First, the multifactorial nature of CIH, involving
genetic background, lifestyle, and comorbidities, could mean certain
metabolites are only relevant in specific patient subgroups. Second,
biological complexities, such as context-dependent expression or
time-specific fluctuations, may reduce the consistency of detecting
these features under the current study design. Lastly, the absence of
direct GWAS data for CIH forced us to rely on AST and ALT as
proxy indicators of liver injury. Although this interim approach
provides initial insights, AST and ALT alone cannot capture the full
scope of CIH pathology.

4.3 Construction of CIH predictive model

Wedeveloped preoperative predictivemodels for CIH susceptibility
usingCRT, urine, and plasmametabolic data, all of which demonstrated
high predictive performance with AUC values exceeding 0.9. The
external validation of the plasma-based model further underscored
its clinical utility, achieving an AUC of 0.933. These findings highlight
the strong potential of our models in predicting CIH susceptibility prior
to surgery. Previous studies primarily focused on plasma samples to
evaluate the utility of miRNAs as CIH predictive biomarkers (Hwang
et al., 2023; Liu et al., 2023). In contrast, our approach incorporated
multi-tissue metabolomic data, enhancing predictive accuracy.
Compared to other machine learning or deep learning-based
models, such as those in Rao et al. (2023), which employed
penalized logistic regression (AUC = 0.88), neural networks (AUC =
0.87), random forests (AUC = 0.85), support vector machines (AUC =
0.85), weighted averages (AUC = 0.88), and ensemble learning (AUC =
0.88), our models demonstrated superior performance, achieving AUC
values above 0.9. (Rao et al., 2023). Notably, our models leveraged pre-
surgery samples to predict CIH susceptibility, whereas many previous
studies utilized features collected post-CIH onset (Guan et al., 2022).
Building on our earlier work, such as predictive models for hand-foot
syndrome (Li et al., 2021b) and thrombocytopenia (Yao et al., 2022a),
we introduced a plasma-targeted metabolites model validated
externally, achieving an AUC exceeding 0.93. This addition further
strengthens the reliability of our approach. However, the model’s
performance is limited by the relatively small dataset used for
training and validation. Further studies with larger external test
datasets are necessary to confirm the generalizability of the urine
and CRT models, ensuring their robustness across diverse patient
populations.

5 Conclusion

This study employed untargeted metabolomics to identify key
compounds associated with CIH across CRT, plasma, and urine
samples. The results highlight disturbances in polyamine, lipid, and
purine metabolism, along with reduced 4-pyridoxic acid levels, as
critical susceptibility factors for CIH. These metabolic disruptions,
coupled with diminished cellular repair functions, represent
endogenous mechanisms contributing to hepatotoxicity.

There are certain limitations in our study that should be
addressed. Firstly, the sample size used in both the discovery and
validation phases was relatively small, which may limit the
generalizability and robustness of the predictive models. Larger,
multi-center cohorts with more diverse patient populations are
necessary to validate the results and enhance the reliability of the
findings. Secondly, while our study focused on metabolomics, it did
not incorporate other omics layers, such as genomics,
transcriptomics, or proteomics. Integrating these additional omics
data would provide a more comprehensive understanding of the
molecular mechanisms underlying chemotherapy-induced
hepatotoxicity (CIH) and strengthen the predictive accuracy of
our models. Moreover, our analysis was based on plasma, urine,
and colorectal tissue samples, and including liver tissue directly
would allow for more liver-specific insights. Finally, the study’s
cross-sectional design limits our ability to assess the temporal
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dynamics of metabolic changes in response to chemotherapy.
Longitudinal studies combined with multi-omics integration are
essential for a deeper understanding of how these metabolic
alterations evolve over time and contribute to CIH development.
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