
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Pharmacol.
Sec. Ethnopharmacology
Volume 16 - 2025 | doi: 10.3389/fphar.2025.1514400
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Arginase (Arg) plays a pivotal role in numerous pathological processes, with its dysregulated expression being intricately associated with tumor progression and immune evasion. This review comprehensively examines the diversity, mechanisms, and clinical potential of natural Arg modulators, encompassing polyphenols, flavonoids, and terpenoids. These bioactive compounds exert their modulatory effects on Arg activity through multiple mechanisms, including direct enzyme interaction, regulation of signaling pathways, and modulation of cellular metabolism. The therapeutic potential of these metabolites spans across various medical domains, notably in cardiovascular diseases, oncology, neurological disorders, and inflammatory conditions. Specifically, polyphenol metabolites such as resveratrol and curcumin have demonstrated significant benefits in cardiovascular health and neuroprotection, while flavonoids including rutin and quercetin have shown promising effects on intracellular inflammatory factors and tumor cell proliferation. Similarly, terpenoids like perillyl alcohol and triptolide have been found to influence cell polarization processes. However, despite their substantial therapeutic potential demonstrated in experimental studies, the development of natural Arg modulators faces several significant challenges. These include complexities in drug design attributed to the intricate structure and multiple isoforms of Arg, difficulties in elucidating precise mechanisms due to Arg's multifaceted roles in various metabolic pathways, and limitations in current drug delivery systems. To overcome these challenges, future research should focus on continuous optimization of experimental design paradigms, enhancement of experimental models and data quality, thorough evaluation of therapeutic efficacy, and strategic integration of natural Arg modulators with precision medicine approaches.
Keywords: Natural arginase modulator, cancer therapy, cardiovascular disease, Neuroprotection, Macrophage polarization
Received: 22 Oct 2024; Accepted: 31 Mar 2025.
Copyright: © 2025 Ting, Wang, Wang, Zhang and Duan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Bowei Zhang, Southwest Institute of Technical Physics, Chengdu, China
Lijuan Duan, Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.