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Background: Laryngeal cancer (LC) is characterized by high mortality and
remains challenging in prognostic evaluation and treatment benefits.
Ubiquitin-related genes (UbRGs) are widely involved in cancer initiation and
progression, but their potential value in LC is unknown.

Methods: RNA-seq and clinical data of LC were obtained from TCGA and GEO.
UbRGs that independently influenced the overall survival (OS) of LC patients were
screened with differential expression, COX and LASSO regression analyses. A
prognostic signature was then established and assessed for its predictive value,
stability and applicability using Kaplan-Meier analysis and receiver operating
characteristic curves. The nomogram was further generated in combination
with the signature and clinical characteristics. Characterization of immune
properties and prediction of drug sensitivity were investigated on the
signature-based subgroups using a panel of in silico platforms. Verification of
gene expression was conducted with Western blot, qRT-PCR and ELISA,
ultimately.

Results: PPARG, LCK and LHX1 were identified and employed to construct the
UbRGs-based prognostic signature, showing a strong ability to discriminate LC
patients with distinct OS in TCGA-LC andGSE65858, and excellent applicability in
most clinical conditions. The nomogram showed higher predictive value and net
clinical benefit than traditional indicators. As evaluated, the low-risk group had a
more activated immune function, higher infiltration of anti-cancer immune cells
and stronger expression of immune-promoting cytokines than the high-risk
group. Immune properties were also correlated with individual signature
genes. PPARG and LHX1 were negatively correlated, whereas LCK positively
correlated, with the immuno-promoting microenvironment. Additionally,
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chemotherapy would be more effective in high-risk patients, while immune
checkpoint inhibitors would be more effective in low-risk patients. Finally,
dysregulation of the signature genes was confirmed in LC cell lines by Western
blot, and PPARG knockdown significantly reduced the expression of the
immunosuppressive cytokines IL6, TGFB1, TGFB2 and VEGFC by qRT-PCR
and ELISA.

Conclusion: We have developed a UbRGs-based signature for LC prognostic
evaluation that is valuable in clinical application, indicative of the immune
microenvironment and beneficial for individualized treatment guidance.

KEYWORDS

laryngeal cancer, ubiquitin-related genes-based signature, prognosis prediction, immune
landscape sculpture, therapeutic options

1 Introduction

As the most common malignant tumor of the head and neck,
there are approximately 188,960 new cases of laryngeal cancer (LC)
and 103,216 related deaths annually worldwide, according to the
latest GLOBOCAN report (Bray et al., 2024).With the application of
comprehensive treatment strategies combining surgery,
radiotherapy, chemotherapy and immunotherapy, the 5-year
survival rate for certain LC patients has improved. However, the
proportion of patients dying from recurrence, metastasis and
resistance is still as high as 30%–40% (Steuer et al., 2017;
Egelmeer et al., 2011). To reduce patient mortality, accurate
prognostic prediction is essential for better survival estimation
and optimization of therapeutic strategies. Current assessments
depend primarily on the pathological characteristics of the
tumor, especially the TNM stage. Unfortunately, the predictive
power of the TNM stage is only 57% for overall survival (OS)
and 60% for progression-free survival in LC patients (Cui et al.,
2020a; Cui et al., 2020b). Obviously, current prognostic strategies
have already hampered the accurate prediction of tumor progression
and therapeutic response, and consequently will rarely support
improvements in treatment. Therefore, to achieve better
prognosis and efficacy in LC therapies, there’s an urgent need to
establish new prognostic strategies and discover biomarkers
of advantage.

It’s well known that protein dysregulation and dysfunction are
widespread in cancer cells (Díaz et al., 2021). As the pivotal
regulatory machinery of protein homeostasis in eukaryotic cells,
the ubiquitin-proteasome system is deeply involved in tumor
initiation and progression (Sun et al., 2020). As reported by
Wang et al., cell proliferation and radiotherapy resistance in LC
were mediated by overexpression of UBR5, an E3 ubiquitin-protein
ligase, through activation of the p38/MAPK signaling pathway
(Wang et al., 2020). Another report on USP34, one of the
deubiquitinating enzymes, indicated its role in enhancing LC cell
growth and resistance to cisplatin by stabilizing SOX2 (Dai et al.,
2020). In addition to direct effects on cancer cells, ubiquitin-related
genes (UbRGs) also play an important role in facilitating cancer
immune evasion (Çetin et al., 2021). For example, the E3 enzyme
TRIM28 has been reported to induce the infiltration of myeloid-
derived suppressor cells into small cell lung cancer, thereby
promoting cancer progression through increased
RIPK1 ubiquitination and activation of the downstream NF-κB

pathway (Liang et al., 2023). During the anti-PD-1 treatments in
colorectal cancer, its reactivity was impaired by a deubiquitinating
enzyme USP14, which inhibited PD-1 expression and CD8+ T cell
infiltration by targeting the IDO1/TRP/KYN signaling axis (Shi
et al., 2022). In short, multiple properties of cancer will be altered by
the disrupted expression of UbRGs through a panel of distinct
mechanisms. As a consequence, patient survival and therapeutic
response may be affected, suggesting that UbRGs could be employed
as candidate biomarkers to develop novel strategies for predicting
LC prognosis. However, the studies of UbRGs in LC are still
insufficient, which hinders the understanding of their functional
role and application in prognosis.

In this study, we aimed to develop a UbRGs-based prognostic
signature and nomogram, attempting to achieve risk stratification
and individualized survival prediction in LC patients. Multi-
dimensional evaluations were then carried out to recognize the
correlation between the UbRGs-based signature and the immune
properties of the LC microenvironment. Subsequently, the potential
regulatory role of the signature genes in LC immunity was
thoroughly investigated by panels of in silico prediction and
experiment validation. Finally, drug sensitivity prediction was
performed to provide clues for the individualized therapy of LC
patients based on this gene signature. Overall, our study was the first
design of UbRGs-based prognostic signature of LC and provided
new insights to improve prognosis prediction, understand cancer
immunity, and guide individualized medication, which will
ultimately shed new light on prolonging patient survival.

2 Materials and methods

The entire procedure of this study was summarized in the
flowchart shown in Figure 1. All websites and calculation tools
employed are listed in Supplementary Table S1.

2.1 Data collection and preprocessing

RNA-Seq data and clinical information of 116 LC and 12 normal
laryngeal tissues were downloaded from The Cancer Genomic Atlas
(TCGA). Expression profiling data were normalized using the
transcripts per kilobase of exon model per million mapped reads
format, and relevant clinical analyses were performed on 105 cases
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after excluding samples with missing pathological and survival
information. The TCGA-LC dataset was defined as the training
set. For signature validation, the GSE65858 dataset was downloaded
from the Gene Expression Omnibus (GEO), from which the
expression matrix and clinical data of 46 LC patients were
extracted. Those two datasets were uploaded in
Supplementary Data 1.

2.2 Identification and annotation of
differentially expressed ubiquitin-
related genes

Ubiquitin-related genes were collected from two databases,
iUUCD 2.0 and UbiBrowser 2.0. Differentially expressed UbRGs
(DUbRGs) were then screened from the harvested genes using the
“limma” R package with criteria of FDR <0.05 and |log2 fold change
(FC) | > 1. Both genes and samples were clustered using the
“Complete” clustering method and the “correlation” distance
calculation approach. Subsequently, a heatmap was generated to
visually present the top 20 DUBRGs.

Functional analyses of DUbRGs were carried out with the
Sangerbox 3.0 online platform for either the Kyoto Encyclopedia
of Genes and Genomes (KEGG) or Gene Ontology (GO), including
cellular components (CC), molecular functions (MF) and biological
processes (BP). FDR <0.05 was considered as the significance
threshold for the enrichment of candidate pathways. The analysis
of potential protein-protein interaction (PPI) among DUbRGs was
performed in STRING, with a minimum interaction score of 0.4.
Visualization of the PPI network proceeded using
Cytoscape software.

2.3 Construction and validation of a
prognostic signature based on UbRGs

Univariate Cox regression analysis was used to preliminarily
screen for DUbRGs that significantly correlated with overall survival
(OS) based on the gene expression profile data of individuals in the
training set. These DUbRGs were shrunk based on the minimum
lambda determined by 10-fold cross-validation in the least absolute
shrinkage and selection operator (LASSO) regression analysis.
Genes with independent prognostic value were further identified
with multivariate COX regression analysis among the ones resulting
from univariate Cox regression. The expression value will then be
termed as Exp and incorporated into the prognostic signature.
Meanwhile, the coefficient of gene expression value was also
generated in the same analysis and termed as β. This value was
employed to quantify the contribution of each gene to the risk rate
and thus more accurately reflect its weight in the overall assessment.
Subsequently, the patient risk score was formulated as below:

Risk score � ∑n

i�1βi × Exp i

Based on the median risk score, the individuals in the training
set were divided into high- and low-risk groups. To assess the ability
of the signature to discriminate OS in LC patients, Kaplan-Meier
curves were plotted accordingly using the SRplot online platform.
With this platform, receiver operating characteristic (ROC) curves
were also plotted and the area under the curves (AUC) was
calculated to evaluate the predictive efficacy of the signature in 1-
, 2-, and 3-year OS of LC patients. In addition, the distribution
characteristics were analyzed for the risk score, survival status and
gene expression profiles. To assess the stability of the signature, the

FIGURE 1
Flowchart of the current study.
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validation set was employed. The median risk score of the training
set was also used as the basis to group high- and low-risk. The
numbers of high- and low-risk patients in the training and validation
sets are shown in Supplementary Table S2.

To evaluate the clinical applicability of the signature under
different clinical characteristics, Kaplan-Meier analysis was
conducted on the subgroups retrieved from the training set,
including age (</> 60 years old), gender (male/female),
differentiation grade (1-2/3-4), T stage (1-2/3-4), N stage (0-1/2-
3), M stage (0/1) and clinical stage (I-II/III-IV). The number of high-
and low-risk patients in each subgroup was shown in
Supplementary Table S2.

2.4 Establishment and evaluation
of nomogram

Univariate and multivariate COX regression analyses were
performed on the combination of risk score and clinical
characteristics in the training set. To convert the results of
complex regression equations into simple graphs, a nomogram
was constructed using the “regplot” R package, which can
efficiently predict the probability of an individual’s outcome
event according to the patient’s specific situation, thus achieving
individualized assessment in clinics (Balachandran et al., 2015).
ROC curves were generated to evaluate the predictive efficacy of the
nomogram, risk score and traditional prognostic indicators (T stage,
N stage, M stage and clinical stage) for 3-year OS in LC patients.
Calibration curves were synthesized to assess the consistency
between the predicted and actual survival rates using the “rms” R
package. To evaluate the net clinical benefit of the nomogram and
traditional stage, decision curve analysis (DCA) was performed
using the “ggDCA” R package.

2.5 Gene set enrichment analysis (GSEA)

KEGG- and GO-related gene sets were downloaded from the
GSEA. To explore potentially enriched biological functions in the
high- and low-risk groups, GSEA enrichment analysis was carried
out on the training set using the R packages termed “limma” and
“clusterProfiler”. The enriched items were recognized with p-values
lower than 0.05 and then ranked based on NES resulting from the
normalization of enrichment scores. The top 5 enriched items were
visualized as curves in GSEA plots, while pie charts were used to
show the categories and percentages within all enriched items.

2.6 Analysis of immune landscape

To understand the potential correlation between the UbRGs-
based prognostic signature and cancer immunity in LC, a panel of
immune properties was calculated for individuals in the training set
and then compared between the high- and low-risk groups
as follows.

1) The activation degree of 13 immune-related pathways was
assessed with the ssGSEA algorithm.

2) The TME scores (including stromal score, immune score and
ESTIMATE score) were calculated using the ESTIMATE
algorithm to determine the proportion of TME cells in LC.

3) The infiltration levels of immune cells were estimated using the
CIBERSORT and ssGSEA algorithms, and the correlation
between risk score and infiltration level of each cell type
was further analyzed with the Chiplot online platform.

4) The expression levels of immune-related cytokines were
analyzed using the Sangerbox 3.0 online platform.

2.7 Cell culture and CRISPR-based
gene knockout

Human LC cell lines (TU686, TU212 and LCC) and a normal
lung epithelial cell line (Bease-2B) were purchased from Meilun,
Yihe, QuiCell and Aorisai Biotechnology Co., LTD respectively.
They were cultured in RPMI 1640 or DMEM-Hmedium containing
10% fetal bovine serum and 1% penicillin/streptomycin. Cells were
passaged at a ratio of 1:3 ratio upon reaching 80% confluence.

Plasmids containing control or PPARG-targeting sgRNAs were
constructed based on the LentiCRISPR v2 vector (Addgene #52961)
for stable gene knockout in cell lines. The lentivirus was then
packaged into 293T cells and applied to infect TU212 and
TU686 cells. After infection, continuous puromycin selection was
performed at a concentration of 2 μg/mL to obtain stable cell lines
for further experiments. The sgRNA sequences are listed in
Supplementary Table S3.

2.8 Western blot (WB)

Western blot assays were performed using routine methods.
Briefly, the cells were lysed with RIPA buffer on ice once reaching
80% confluence. After centrifugation at 4°C, 12,000 rpm for 30 min,
protein samples were collected from the supernatant, mixed with
1×loading buffer, and then heated at 95°C for 30 min. The heated
samples were further subjected to SDS-PAGE electrophoresis and
antibody staining.

The expression levels of PPARG, LCK and LHX1 proteins were
determined in TU686, TU212, LCC and Bease-2B cells. The knockout
efficiency of PPARG was tested in TU212- and TU686-derived control
and PPARG knockout cells. Hence, the primary antibodies used in this
study included PPARG (Proteintect, 66936-1-Ig), LCK (Abcam,
ab227975), LHX1 (Santa, sc-515631) and GAPDH (Proteintect,
66936-1-IG). 10494-1-AP). Goat Anti-Rabbit IgG-HRP (Affinity,
S0001) and Goat Anti-Mouse IgG-HRP (Affinity, S0002) were
adopted as secondary antibodies. The grayscale values of the protein
bands were analyzed semi-quantitatively using ImageJ software.

2.9 Quantitative real-time polymerase chain
reaction (qRT-PCR)

qRT-PCRwas performed to analyze themRNA expression levels
of cytokines, including IL1A, IL6, IL18, CXCL11, CCL2, VEGFC,
TGFB1, TGFB2, TGFB3, CSF1, FGF2 and PDGFC, in control and
PPARG knockout groups derived from TU212 and TU686 cell lines.
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Total RNA extraction, cDNA synthesis and qRT-PCR reaction
were performed according to the kit manuals (Vazyme, R701-01;
Takara, RR036A and RR820A). GAPDH was hired as the internal
reference gene. Relative mRNA levels of cytokines were calculated by
the 2−ΔΔCT method. Primer sequences are listed in
Supplementary Table S4.

2.10 Enzyme-linked immunosorbent
assay (ELISA)

Following the qRT-PCR results, the protein expression levels of
IL6, VEGFC, TGFB1 and TGFB2 in the supernatants of control and
PPARG knockout cells were examined using ELISA. The ELISA kits
(RUIXIN BIOTECH; RX106126H, RX105005H, RX104768H,
RX2D118026) were equilibrated at room temperature before the
experiment. Operations were then performed following the
instructions and the OD values were detected at 450 nm. The
standard curves were subsequently plotted and the protein
concentrations were calculated from the corresponding OD values.

2.11 Prediction of drug sensitivity in
LC patients

The response of LC patients to immunotherapy was forecasted
using the TIDE algorithm, and the expression levels of 48 immune
checkpoints were further assessed with the Sangerbox
3.0 online platform.

Half inhibitory concentrations (IC50) for chemotherapy and
targeted drugs were predicted using the “oncoPredict” R package.
Briefly, drug sensitivity data valued as IC50 of tumor cell lines was
retrieved from the Genomics of Drug Sensitivity in Cancer (GDSC)
database, whereas the corresponding gene expression profiles were
also obtained from the same source. They were used to build ridge
regressionmodels, which were applied on the training set mentioned
in Section 2.1 to yield drug sensitivity predictions. These drug
models were built after removing or summarizing gene
duplication, homogenization (batch correction), and filtering low-
variant genes. Subsequently, calcPhenotype function was applied to
the proceeded, standardized and filtered clinical tumor expression
data, yielding a drug sensitivity prediction for each patient. Averaged
IC50 was ultimately calculated in either high- or low-risk groups
respectively for each drug.

2.12 Statistical analysis

All statistical analyses were performed using R software (version
4.3.2), GraphPad Prism (version 9.0) and the online platforms
mentioned above. Differences in gene expression, immune
infiltration and IC50 predictions across the database were compared
using the Wilcoxon signed-rank test. Spearman was employed for the
correlation analysis. One-way ANOVA was used to compare
differences in protein expression of signature genes among cell lines.
The significance of differential cytokine expression was confirmed by
t-test. p < 0.05 was considered statistically significant.

3 Results

3.1 A prognostic signature was constructed
based on PPARG, LCK and LHX1 highlighted
from UbRGs differentially expressed in LC

Initially, 1366 UbRGs were retrieved from iUUCD 2.0, including
27 E1 enzymes, 109 E2 enzymes, 1153 E3 enzymes,
164 deubiquitinating enzymes (DUBs), 396 ubiquitin/ubiquitin-
like binding domains and 183 ubiquitin-like domains.
Meanwhile, 417 E3 enzymes and 86 DUBs were obtained from
UbiBrowser 2.0. After removing duplicates and non-human records,
891 human-derived UbRGs were obtained in combination
(Supplementary Date 2). Of these, expression data were extracted
for 766 UbRGs from both the training and validation sets
(Figure 2A). 111 UbRGs were shown as differentially expressed
between LC and normal laryngeal tissues in the training set,
containing 100 upregulated and 11 downregulated ones, which
were termed DUbRGs. The top 20 DUbRGs were presented in
the heatmap (Figure 2B). The potential biological functions and
protein interactions of these DUbRGs were revealed by KEGG, GO
and PPI analyses (Supplementary Figure S1).

Out of 111 DUbRGs, 5 genes were highlighted with significant
correlation to the OS of LC patients in univariate COX regression,
including TRAF2, PPARG, KLHL17, LCK and LHX1 (Figure 3A).
To avoid model overfitting, LASSO regression analysis was
performed and these 5 DUbRGs remained when applying the
minimum lambda (Figures 3B, C). To further determine the
DUbRGs that independently influenced OS, multivariate Cox
regression analysis was conducted. PPARG, LCK and LHX1 were
subsequently identified as the genes highly correlated with the
prognosis of LC patients (Figure 3D), while the other two genes
were excluded due to p > 0.05. Of these, PPARG and LHX1 were
indicated as risk genes with coefficients valued at 0.434 and
0.762 respectively, whereas LCK was indicated as a protective
gene with a coefficient of −0.384. Also, such identity was
confirmed by Kaplan-Meier analysis (Figures 3E–G). The shorter
survival was correlated with high expression of PPARG and LHX1,
while with low expression of LCK. Their differential expression in
LC and normal lung epithelial cell lines was verified byWestern blot,
which was consistent with the RNA-seq results
(Supplementary Figure S2).

A UbRGs-based prognostic signature was thus established as
described in Section 2.3, where the risk score was formulated based
on both gene expression levels and their corresponding coefficients:

Risk Score � 0.434 × PPARG + 0.762 × LHX1 - 0.384 × LCK

3.2 The effectiveness of UbRGs-based
signature was proved and a related
nomogram was established accordingly

To evaluate the effectivity of the UbRGs-based prognostic
signature, a panel of calculations was carried out on the training
set. At first, the median risk score was determined as 1.43 by the
formulation in 3.1, with which the high- and low-risk groups were
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then divided from the training set. The median survival time was
defined as 22.85 months for the high-risk group and 88.87 months
for the low-risk group with Kaplan-Meier analysis (p < 0.0001,
Figure 4A), which demonstrated a significant difference in OS
between the two groups. With the ROC curves of 1-, 2-, and 3-
year OS, AUC values were calculated as 0.74, 0.81, and
0.81 respectively, indicating a good predictive efficacy of this
signature (Figure 4B). Along with the increasing risk score
(Figure 4C), the analysis of individual patients showed higher
mortality (Figure 4D). Meanwhile, the expression levels of the
risk genes, PPARG and LHX1, tended to be upregulated in high-
risk patients; while the trend of protective gene LCK was
downregulated (Figure 4E).

To assess the stability of the UbRGs-based signature, the same
panel of analyses was subsequently conducted in the validation set.
Worse OS was still significantly observed in the high-risk group (p =
0.016, Figure 4F). The AUC values were 0.72, 0.71 and 0.70 for 1-, 2-,
and 3-year OS in LC patients respectively (Figure 4G), further
confirming the effectiveness of the prediction. The correlation
between the risk score and mortality as well as the expression
trend of the signature genes were in good agreement with the
results from the training set (Figures 4H–J).

To investigate the applicability of the UbRGs-based signature,
Kaplan-Meier analysis was carried out across a range of clinical
conditions. In the majority of cases (Figures 5A–J), shorter OS was
significantly correlated with the high-risk group (p < 0.05), including
age<60, age≥60, male, Grade 1-2, Grade 3–4, T3-4 stage, N0-1 stage,
N2-3 stage, M0 stage and clinical stage III-IV. However, in the other
four conditions (Supplementary Figure S3), namely, female (p =
0.087), T1-2 stage (p = 0.083), M1 stage (p = 0.16) and clinical stage
I-II (p = 0.13), there was no significant difference in survival between
the two groups.

To achieve individualized prediction, univariate and
multivariate COX regression analyses were performed on the risk
score and clinical characteristics. As the risk score (p < 0.001) and

gender (p = 0.001) showed independent values in prognosis (Figures
6A, B), a nomogram was then constructed accordingly to visualize
these results (Figure 6C). The probability of survival at 1, 2 and
3 years can be predicted more intuitively based on an individual’s
risk score and gender profile. When comparing the ROC curve of 3-
year OS in LC patients, the AUC of the nomogram was 0.856, higher
than that of the risk score (AUC = 0.810) and traditional indicators
(T stage, AUC = 0.494; N stage, AUC = 0.641; M stage, AUC = 0.517;
clinical stage, AUC = 0.542; Figure 6D). With the calibration curve,
good consistency was indicated between the predicted and actual
survival rates of the nomogram at 1, 2, and 3 years (Figure 6E).
Additionally, the DCA curve demonstrated the nomogram as a
better predictive tool than the clinical stage (Figure 6F).

In brief, the signature composed of PPARG, LHX1 and LCK was
shown efficacious in the prognosis prediction of OS in LC patients
and applicable in most clinical conditions. The nomogram
combining risk score and gender provided an even better
predictive efficiency than the signature and traditional
indicators alone.

3.3 The UbRGs-based signature specified
the status of the immune microenvironment
in LC

For a better understanding of the UbRGs-based signature in
prognosis prediction, biological processes differentially involved in
the high- and low-risk groups were searched with GSEA enrichment
analysis. By p < 0.05, 934 items were enriched with GO and 31 with
KEGG (Supplementary Data 3). A prominent panel of immune-
related processes was highlighted in the low-risk group. The top
5 enriched GO items included antigen processing and presentation,
T-cell receptor complex, antigen binding, immunoglobulin receptor
binding and immunoglobulin complex circulating (Figure 7A).
Furthermore, 18 among top 20 enrichment in GO, and also

FIGURE 2
Screening of UbRGs differentially expressed in LC. (A) The Venn diagram showed 769 UbRGs retrieved from human-derived databases and
presented in the TCGA-LC and GSE65858-LC datasets. (B) The heatmap of the top 20 differentially expressed UbRGs, with both genes and
patients clustered.
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26 among top 30, were occupied by the immune-related processes
(Labeled in Supplementary Data 3 with yellow). A similar trend of
enrichment was also highlighted in KEGG items, with top 5 enriched
biological processes were: allograft rejection, type I diabetes mellitus,
autoimmune thyroid disease, primary immunodeficiency, and
antigen processing and presentation (Figure 7B, Supplementary

Data 3). When the immune-related items were counted in all GO
and KEGG enrichments, as visualized in Supplementary Figures
S4A–D, high percentages were quantified as 46.15% in GO-CC,
almost 100% in GO-MF, 74.01% in GO-BP and 69.23% in KEGG.
However, in the high-risk group, it was failed to summarize a
dominant module with clear and unique functional connotation

FIGURE 3
Identification of 3 UbRGs to construct the prognostic signature. (A)Univariate COX regression analysis of 5 UbRGs significantly associatedwith OS in
LC patients, including TRAF2, PPARG, KLHL17, LCK and LHX1. (B) Coefficient profiles of these five UbRGs generated with LASSO regression analysis. (C)
Determination of minimum lambda for 5 via 10-fold cross-validation in LASSO regression. (D) Multivariate Cox regression analysis of 3 UbRGs in-
dependently affected OS in LC patients, including PPARG, LCK and LHX1. (E–F) Kaplan-Meier analysis of identified UbRGs, (E) PPARG, (F) LCK and
(G) LHX1.
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FIGURE 4
Evaluation of the prognostic performance of the UbRGs-based signature. (A) Kaplan-Meier analysis of OS in the high- and low-risk groups based on
the training set. (B) ROC curves showing the predictive efficacy of this signature for 1-, 2-, and 3-year OS of patients in the training set. (C–E)Distribution
of characteristics of individual patients in the training set, in-cluding (C) risk score, (D) survival status, and (E) expression profiles of 3 signature genes. (F–J)
Evaluation of the UbRGs-based signature with the validation set for (F) Kaplan-Meier analysis of OS, (G) ROC curves of predictive efficacy in 1-, 2-, 3-
year OS, and (H) risk score, (I) survival status, and (J) expression profiles of 3 signature genes in individual patients.
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from the GSEA results, either by GO or KEGG (Supplementary
Figures S4E–H), especially, no significant enrichment of immune
processes observed (Supplementary Figures S5A, B).

To investigate whether the effectiveness of the UbRGs-based
signature was due to the distinct immune status in LC, the immune
landscape was further explored in multiple dimensions. At first,
functional groups of immune-related pathways were analyzed with
the ssGSEA algorithm. In the low-risk group, functional modules of

checkpoint, cytolytic activity, pro-inflammatory and T-cell co-
stimulation were preferentially activated, whereas no functional
modules were shown dominant in the high-risk group
(Figure 7C). TME scores were then calculated for individuals
with the ESTIMATE algorithm. Of the three TME scores, the
immune score is the only one significantly higher in the low-risk
group, rather than the stromal score and ESTIMATE score
(Figure 7D), which confirmed a higher degree of immune cell

FIGURE 5
Assessment of the clinical applicability of the UbRGs-based signature. Significant dif-ferences in OS were exhibited between the high- and low-risk
groups in conditions of (A) age<60, (B) age≥60, (C)male, (D) Grade 1-2, (E)Grade 3-4, (F) T3-4 stage, (G)N0-1 stage, (H) N2-3 stage, (I)M0 stage and (J)
clinical stage III-IV by stratified Kaplan-Meier analysis.

Frontiers in Pharmacology frontiersin.org09

Liu et al. 10.3389/fphar.2025.1513948

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1513948


infiltration in low-risk LC patients. With the CIBERSORT and
ssGSEA algorithms, the infiltration level of each immune cell
type was specifically speculated. The cell types with anti-tumor
effects showed a higher degree of infiltration in the low-risk
group (e.g., CD8 T cells, activated memory CD4 T cells,
follicular helper T cells, activated B cells and natural killer
T cells), while primitive or resting immune cell types (e.g.,
native CD4 T cells, resting memory CD4 T cells and

M0 macrophages) were dominant in the high-risk group
(Figure 7E; Supplementary Figure S5C). The correlation
between cell types and risk score was consistent with the
trend of immune cell infiltration (Figure 7F). As immune
regulation was generally mediated by cytokines, the
expression preference of cytokines was also analyzed. Higher
levels of immune-promoting cytokines IL23A and IFNG were
predicted in the low-risk group, whereas immune-suppressing

FIGURE 6
Establishment and evaluation of a nomogram integrating signature with gender. (A) Univariate and (B) multivariate COX regression analysis to
highlight independent factors af-fecting OS in LC patients. (C) A nomogram constructed to predict the 1-, 2-, and 3-year OS in LC patients by combining
the risk score with gender. (D) ROC curves based on the nomogram, risk score and traditional indicators to show the predictive efficacy of 3-year OS in LC
patients. (E)Calibration curves of the consistency between the predicted and actual survival rates at 1, 2 and 3 years. (F)DCA showed the net clinical
benefit of the nomogram and traditional stage.
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FIGURE 7
Evaluation of the immune microenvironment in the high- and low-risk groups dis-criminated by the UbRGs-based signature. (A, B) GSEA
enrichment analysis in the low-risk group based on (A)GO- and (B) KEGG-related gene sets. (C)Differential activation of immune-related pathways in the
high- and low-risk groups analyzed with the ssGSEA algorithm. (D) TME scores calculated by the ESTIMATE algorithm for both groups, in which the
immune score was signifi-cantly different. (E) Estimation of immune cell infiltration levels via the CIBERSORT algorithm and 6 cell types highlighted
with statistical significance. (F) Correlation between risk score and immune cell infiltration. (G) Immune-related cytokines differentially expressed
between the high- and low-risk groups as predicted by the Sangerbox 3.0 online platform. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 8
Investigation of the role played by signature genes in sculpting the immune landscape. (A–C) Correlation between immune cell infiltration and
expression levels of 3 signature genes, (A) PPARG, (B) LCK and (C) LHX1. (D–F) Relationship between expression levels of immune-related cytokines and
3 signature genes, (D) PPARG, (E) LCK and (F) LHX1. (G–I)CytokinemRNA levels quantified by qRT-PCR in PPARG knockout cells derived from LC cell lines
TU212 and TU686, including (G) IL6, (H) TGFB1, (I) TGFB2 and (J) VEGFC. (K–N) Cytokine secretion levels meas-ured using ELISA in the supernatant
of PPARG knockout LC cells, including (K) IL6, (L) TGFB1, (M) TGFB2 and (N) VEGFC. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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cytokines (e.g., IL6, IL11, VEGFC, TGFB1, TGFB2 and PDGFC) were
preferentially expressed in the high-risk group (Figure 7G).

With a series of analyses, significant differences in the immune
landscape were exhibited between the high- and low-risk groups,
which was potentially one of the major origins of distinct outcomes
in clinics and suggested the signature genes as immune
regulators in LC.

3.4 Signature genes PPARG, LHX1 and LCK
involved in sculpturing the LC immune
microenvironment

To confirm the regulatory role of signature genes in the
immunity of LC, the degree of immune cell infiltration and
expression levels of cytokines relevant to each gene were
predicted one by one. It was clearly visualized that the risk genes
PPARG and LHX1 were negatively correlated with anti-tumor
effectors (e.g., CD8 T cells and activated memory CD4 T cells),
positively correlated with primitive or resting immune cells (e.g.,
naive B cells, memory B cells, naive CD4 T cells, resting memory
CD4 T cells and M0 macrophages), while the protective gene LCK
was positively correlated with anti-tumor effectors (CD8 T cells,
activated memory CD4 T cells, follicular helper T cells and
M1 macrophages; Figures 8A–C). Among the cytokines, immune
activators (e.g., IL1A, IL18 and IL12A) were at lower levels and
immune suppressors (e.g., IL6, CXCL11, CCL2, VEGFC, TGFB1,
TGFB2, TGFB3, CSF1, FGF2, PDGFC, IL11, and CCL20) were at
higher levels when PPARG and LHX1 were highly expressed
(Figures 8D, F). Besides, another group of immune activators
(e.g., IL7, IL12, IL15, IL16, IL23A, CXCL9, CXCL10, CXCL16,
CCL3, CCL4, CCL5, CCL19, CCL21, TNF, IFNG, IL21) were
overexpressed along with higher expression of LCK (Figure 8E).

Since PPARG showed the highest node index among three
signature genes in the PPI network of DUbRGs (Supplementary
Figure S1C), further validation was then carried out with PPARG
knockout cells generated from TU212 and TU686 cell lines
(Supplementary Figures S6A–D). 12 immune-related cytokines
were assessed with qRT-PCR, including IL1A, IL6, IL18, CXCL11,
CCL2, VEGFC, TGFB1, TGFB2, TGFB3, CSF1, FGF2 and PDGFC,
which were predicted in relevance with PPARG expression. At the
mRNA level, four immunosuppressive cytokines (IL6, TGFB1,
TGFB2 and VEGFC) showed significant downregulation in both
PPARG knockout cell lines (Figures 8G–J). Simultaneously, their
secretion levels in the supernatant were decreased (Figures 8K–N), as
confirmed using ELISA. The other four (e.g., CCL2, CSF1, PDGFC
and TGFB3) were downregulated in PPARG knockout TU212 cells
(Supplementary Figures S6E–H), while the rest (e.g., FGF2, IL1A,
IL18 and CXCL11) mostly showed no significant change
(Supplementary Figures S6I–L), as quantified by qRT-PCR.

3.5 The UbRGs-based signature provided
insights to the personalized therapies
in clinics

Since the distinct immune landscape in LC had been defined
with the UbRGs-based signature and applied to the prognosis of OS,

its instructiveness for immunotherapy was subsequently
investigated. With the TIDE algorithm, a slight trend of higher
response to immunotherapy was predicted in the low-risk group
(41% vs. 31%), but unfortunately, no significance in statistics was
shown (Supplementary Figure S7A). However, differential
expression of immune checkpoint genes was exhibited with the
ssGSEA algorithm (Figure 7C). The vast majority of immune
checkpoints (e.g., PDCD1, CD244, CD27, ICOSLG, TNFRSF4,
CD40LG, BTLA, TMIGD2, LAG3 and TNFRSF18) presented
significant elevation of expression in the low-risk group, while
only a few (e.g., ATIC, OLA1 and CD276) in the high-risk group
(p < 0.05, Figure 9A). The differential expression data suggested that
immune checkpoint inhibitor treatment may be more effective for
LC patients with lower risk scores.

Alternatively, sensitivity to chemotherapy and targeted
therapeutic agents was also analyzed. The reference tumor cell
lines recorded in GDSC were employed as a reference to
correlate gene expression signature and IC50 of drugs in a
quantitative model. In high- and low-risk groups, the sensitivity
to each drug was then evaluated via comparing the gene expression
profiles of patients in either group with the reference tumor cell
lines. The resultant IC50 values were presented in a 2D format
similar to the volcano plot. For each drug, the Y-coordinate
presented the -Log2(IC50high-risk/IC50low-risk) value to show the
difference of IC50 values between the two groups, while the
-Log10(p-value) was projected as the X-coordinate to indicate the
significance of the difference. A total of 48 agents were identified
with a significant difference in sensitivity between the high- and low-
risk groups (p < 0.05, Figure 9B). To find specific therapeutic agents
suitable for either group, the IC50 ratio was set to >1.5 or <0.667
(displayed as |Log2(IC50high-risk/IC50low-risk)| > 0.585 in the plot),
nine drugs were more sensitive in the high-risk group (gemcitabine,
cytarabine, SCH772984, talazoparib, camptothecin, AZD6738,
dasatinib, VX-11e and ERK-6604), and three drugs (TAF1-5496,
AZD5991 and ABT737) in the low-risk group (Figure 9C;
Supplementary Figures S7B–L). However, once the IC50 ratio
was moved to 10 or 0.1 (|Log2(IC50high-risk/IC50low-risk)| >3.322),
only gemcitabine, a commonly used chemotherapy agent, remained
in the high-risk group preferentially (Figure 9C).

4 Discussion

The incidence rate of LC is increasing yearly and has currently
become the second most common head and neck cancer (Bray et al.,
2024). Due to its insidious onset, easy recurrence and treatment
resistance, the 5-year overall survival rate of LC patients is only
25%–60% (Steuer et al., 2017). To improve survival, it is crucial to
develop effective strategies for accurate prediction of the prognosis
in LC patients and personalized therapies in clinics. Based on the
functional role of UbRGs in the homeostasis of substrate proteins,
various cellular processes are affected by their dysregulation. As
suggested by accumulating evidence, tumourigenesis will be
promoted in turn (Sun et al., 2020). On the other side, UbRGs
had been employed as the marker genes for the prognosis of cancers.
The predictive efficacy of the related signatures was reported as 69%
in ovarian cancer and 65% in melanoma, respectively (Luo et al.,
2023; Zhang et al., 2023). Therefore, systematic investigations of
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UbRGs are valuable to reveal their prognostic potential and
oncological characteristics, and will possibly benefit the
development of new applications of UbRGs in the prognosis and
treatment of LC.

In this study, a total of 111 differentially expressed UbRGs
were identified in LC and 3 of them, PPARG, LHX1 and LCK,
were highlighted as the independent prognostic markers. The
signature generated based on these three genes effectively
discriminated LC patients with different OS and showed
excellent applicability in most clinical conditions. The
performance of this signature for 3-year OS in LC patients
reached 81% and 70% in the training and validation sets,
respectively, which was more powerful than earlier reported
UbRGs-based signatures in other cancers (Luo et al., 2023;
Zhang et al., 2023). The nomogram incorporating risk score
and gender showed considerable advantages over other factors,
such as the TNM stage and clinical stage. The consequent model
had stronger predictive power and higher clinical benefit for 3-
year OS in LC patients. In one word, this UbRGs-based signature
will not only satisfy the risk stratification of LC patients but also
enable the individualized assessment of the prognosis.

The functional linkages behind the UbRGs-based signature were
then excavated with GSEA enrichment and subsequent panels of
prediction, through which a significant association with immune in
LC was demonstrated. T- and B-cell-mediated immune processes
were enriched in the low-risk group, whereas there was no
significant enrichment of immune processes in the high-risk
group. As reported, UbRGs can induce the formation of
immunosuppressive TME by affecting the stability of proteins
important in the anti-tumor immune process, thereby promoting
the immune escape of tumors (Çetin et al., 2021). For Instance, the
E2 enzyme UBE2T inhibited CD8+ T-cell infiltration and expression
of immune-promoting factors (IFN-γ, TNF-α and IL-2) in lung
adenocarcinoma by activating the glycolytic pathway upon binding
to FOXA1 (Pu et al., 2024). In colon cancer, a deubiquitinating
enzyme USP4 suppressed anti-tumor immune responses by
deubiquitinating TRAF6 and IRF3, hindering the nuclear
localization of the latter protein and thus inhibiting cellular
interferon responses and antigen presentation (Zhou et al., 2024).
With further exploration of the immune microenvironment, it was
observed that the low-risk group had a higher degree of infiltration
of anti-tumor immune cells, more activated immune modules,

FIGURE 9
Prediction of sensitivity to clinical treatments for the high- and low-risk groups of LC patients. (A) Immune checkpoints differentially expressed in the
high- and low-risk groups. (B) Predicted sensitivity to chemotherapy and targeted agents in the high- and low-risk groups. Data were plotted as
-Log10(p-value) on the x-axis and -Log2(IC50high-risk/IC50low-risk) on the y-axis. (C) Predicted IC50 for gemcitabine in both groups. *p < 0.05; **p < 0.01;
***p < 0.001.
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stronger expression of immune-promoting cytokines and lower
expression of immune-suppressing cytokines. Therefore, the
active immune landscape in low-risk rather than high-risk
populations may be one of the major forces shaping the different
clinical outcomes.

Besides the correlation between cancer immunity and the entire
signature in our study, reviewing the correlation with selected
individual UbRGs also provides valuable insights into
understanding the effectiveness of this signature. In previous
reports, PPARG was mainly a regulator of immune cell
differentiation and cytokine secretion (Riaz et al., 2023; Zhao et
al., 2024). The essentiality of PPARG was indicated in the
differentiation of fetal monocytes into alveolar macrophages
(Schneider et al., 2014). In mouse models of colitis, it was
observed that PPARG agonists can shift the immune response
from a Th1-type to a Th2-type, resulting in a decrease in the
expression of Th1-associated transcription factors, cytokines, and
chemokines, and simultaneously an increase in the expression of
Th2-associated factors (Celinski et al., 2013; Saubermann et al.,
2002). Deficiency of this gene in a similar mouse model was
associated with a decreased number of CD4+Foxp3+ regulatory
T cells (Guri et al., 2010). Additionally, PPARG was also
observed to inhibit the secretion of pro-inflammatory cytokines
(such as TNF-α and IL-1β) and promote anti-inflammatory
cytokines (such as TGF-β and IL-10) (Riaz et al., 2023). In a
cancerous context, Liu et al reported the accelerative role played
by activated PPARG in KRAS-mutant pancreatic carcinogenesis.
The tumor immune microenvironment was remodeled by PPARG
via recruiting and promoting the M2 polarization of macrophages
through the CCL2/CCR2 signaling axis (Liu et al., 2022). But the
actual functional roles of PPARG playing in laryngeal cancer are still
lack of investigation. Similar to our work, the other risk gene
LHX1 was also adopted in a recent published prognostic
signature of breast cancer. With consistence, correlation was
observed between LHX1 and lymph node metastasis, infiltration
of multiple immune cells (including CD8+ T cells, B cells, dendritic
cells, antigen-presenting cells, neutrophils and regulatory T cells)
and enrichment of immune functions in patients (including B-cell
receptor signaling pathway, PD-L1 expression, and the PD-1
checkpoint pathway) (Pan et al., 2024). However, the potential
role of LHX1 was only suggested with the trend of dysregulation
in cancer, but not yet by the functional assays in normal and
oncogenic circumstance. Additionally, the protective gene LCK,
one of the non-receptor tyrosine kinases in the Src family, was
reported as a crucial player in T cell-mediated immune responses in
previous reports (Wu et al., 2021; Lanz et al., 2024). It precisely
regulated T cell activation and the subsequent cascade of immune
reactions by initiating T cell receptor (TCR) signal transduction.
Once TCR binding to the antigenic peptide-MHC complex, LCK
was activated with the synergistic participation of co-receptors
CD4 or CD8. The activated LCK prompted the subsequent
phosphorylation of CD3 and ζ-chain immunoreceptor tyrosine-
based activation motifs, recruiting and activating ZAP-70, and
led to the formation of LAT signaling bodies through further
phosphorylation of LAT and SLP-76. A panel of downstream
signaling pathways were triggered consequently, including ERK
and PI3K/Akt, and thus, the T cell-mediated immune responses
were launched ultimately. Meanwhile, LCK can also indirectly

connect ZAP-70 and LAT, and promote their phosphorylation,
thus TCR signal transduction is enhanced (De Sanctis et al.,
2024). Another report about Jurkat E6-1 leukemia cells by Wan
et al demonstrated the expression of LCK was under the regulation
of SMAD4, and affected the proliferation of chimeric antigen
receptor-T cells through perturbation of PI3K/Akt signal (Wan
et al., 2025). In multiple tumor cell lines, as reported by Ahn
et al, the tumor surveillance was mediated by LCK-ERK signal
through the activation of T cells (Ahn et al., 2025). These
accumulating clues suggested the rationality of our choice of
signature genes, and further, the derived risk signature for prognosis.

In our wet-lab works, the expression was validated for
12 cytokines predicted according to the according to the
association with signature genes, either promotors and
suppressors of cancer immunity. Among them, four
immunosuppressors supported by PPARG were confirmed
through CRISPR-based gene knockout, including IL6, TGFB1,
TGFB2 and VEGFC, which was consistent with an earlier report
(Riaz et al., 2023). Since then, the cytokine expression and functions
in LCs are worthy of further investigation to provide more insights
into our signature and help the stratification of patients.

Another potential value of this signature is to facilitate the
optimization of clinical treatments for LC patients. Based on the
properties of the immune microenvironment, the low-risk group
tends to be “hot” tumors, while the high-risk group tends to be
“cold” (Duan et al., 2020). Due to the presence of higher numbers of
effector T cells in “hot” tumors, combined with the preferential
expression of 10 checkpoint genes, treatment with immune
checkpoint inhibitors will be more effective in the low-risk group
(Cejuela et al., 2022). Of all the targets that predominate in the low-
risk group, immune checkpoint inhibitors against PDCD1, CD27,
CD40LG, BTLA and LAG3 have been approved for clinical use or
trials in patients with other tumors (Sharma et al., 2024; Lutfi et al.,
2021; Liu et al., 2021; Dalle et al., 2024; Ibrahim et al., 2023), and
thus, worthy to be tried in LC patients. Additionally, the prediction
of drug sensitivity showed little preference between the high- and
low-risk groups scored with the UbRGs-based signature, except for
gemcitabine, a traditional chemotherapy agent, which showed
hypersensitivity in the high-risk group. This drug works through
inhibition of DNA synthesis as pyrimidine antimetabolites and is
commonly applied in pancreatic cancer but not LC (Han et al.,
2022). However, based on our signature, at least a certain portion of
LC patients in the high-risk group may benefit from the
administration of gemcitabine, which will be a potential
alternative choice for LC patients, like cisplatin and paclitaxel
(Fang et al., 2023). Regardless, the UbRGs-based signature
provides new insights into the choice of therapeutic agents and
strategies for LC.

Despite the encouraging performance and advantages of the
UbRGs-based prognostic signature, more investigations shall be
carried out in the future. Firstly, due to the limited number of
LC patients contained in the TCGA and GEO databases, larger
clinical cohorts are necessary for comprehensive validation of this
signature. Secondly, the oncological and immunological roles of
PPARG, LHX1 and LCK should be explored in depth, particularly in
LC, to specify their functions and prognostic values. Thirdly, the
prediction of drug sensitivity based on the signature still requires
extensive assessments in different models and ultimately in patients,
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since the prediction was fundamentally based on the collection of
gene expression profiles in cancer cell lines.

5 Conclusion

In conclusion, we systematically analyzed the molecular
characteristics and prognostic potential of UbRGs in LC for the
first time, and established a prognostic signature based on UbRGs.
This signature demonstrated good clinical value in predicting the
patients’ prognosis, speculating the immune microenvironment and
suggesting anticancer therapies, thus facilitating the risk
stratification of clinical patients and providing new ideas for
formulating individualized treatment.
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