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Breast cancer is among themost commonmalignancies and the leading cause of
cancer-related deaths in women. SRSF1 proteins belong to an important splicing
factor (SF) family and bind to different splicing regulatory elements (SREs) to
promote or inhibit splicing, such as oncogenic splice-switching of PTpMT1,
which promoting the progression of cancer. Cyperotundone (CYT) is the
major bioactive component of sedge and reported to exhibit multiple
biological functions, including its potent cytotoxic effect on breast cancer
cells. However, the detailed impact and molecular mechanisms of CYT in
breast cancer remain poorly understood. This study aimed to investigate the
effects of CYT on breast cancer drug resistance and to explore the molecular
mechanisms. CYT significantly suppressed the in vitro and in vivo growth of BC
cells without affecting the normal cells at different doses (P < 0.001), induced cell
apoptosis, and inhibited the migration and invasion of drug-resistant BC. In
comparison with the mono treatment with CYT, combination of CYT and
doxorubicin (Dox) enhanced the effects. CYT treatment regulated the RNA
and protein levels of epithelial mesenchymal transition (EMT) biomarkers,
suppressed the sphere formation ability and expression of cancer stem cell
biomarkers in drug resistant BC cells. Results from transcriptome sequencing
analysis and experiments identified significantly decreased SRSF1 level in drug
resistant cells after CYT treatment. RNA and protein levels of SRSF1 and MYO1B
were higher in drug resistant BC cells (P < 0.01). SRSF1 regulated alternative
splicing of MYO1B to enhance the ability of drug resistance. Knockdown of
SRSF1 significantly decreased expression of full-length MYO1B protein in drug-
resistant BC cells (P < 0.05). Overexpression of SRSF1 and MYO1B revered the
inhibitory effects of CYT. In conclusion, CYT repressed the growth andmetastasis
of BC cells and recovered drug sensitivity, through SRSF1-regulated the
alternative splicing of MYO1B RNAs, which may represent a novel molecular
mechanism to overcome drug resistance in breast cancer. Targeting SRSF1 or
MYO1B may be identified as a novel molecular mechanism to against drug
resistant in breast cancer.
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1 Introduction

Breast cancer (BC) is one of the most commonmalignancies and
ranks as the second leading cause of cancer-related deaths in women
(Khongkow et al., 2013). Despite the effects of surgical intervention,
chemotherapy and radiotherapy, the frequently developed
chemotherapy resistance and advanced metastasis lead to high
mortality and poor prognosis of BC (Ma et al., 2021; Zhang
et al., 2021). A deep understanding of the molecular mechanisms
underlying drug resistance is urgent and essential to improve the
therapeutic efficacy and survival of patients with advanced BC.

Alternative splicing (AS) is a post-transcriptional process that
widely exists in genes and plays a critical role in expanding the
transcript and protein diversity, and is increasingly recognized for its
role in cancer progression and therapy resistance (Baralle and
Giudice, 2017; Bergsma et al., 2018). In breast cancer (BC), AS
events contribute to disease progression and metastasis, which are
key determinants of patient survival (Bhadra et al., 2020; Bonnal
et al., 2020). Abnormal AS can lead to the production of protein
isoforms that promote cell growth, resistance to apoptosis, and
increased metastatic potential, all of which are critical for the
aggressiveness of BC (Zheng et al., 2020; Cherry and Lynch,
2020; Liu and Rabadan, 2021). While AS has been extensively
studied for its role in therapeutic resistance, the contribution of
splicing factors (SFs), such as SRSF1, to BC progression and drug
resistance is gaining increasing recognition and deserves further
investigation.

SRSF1, a key SF, binds to different splicing regulatory elements
(SREs), such as exonic splicing enhancers (ESEs) and intronic
splicing enhancers (ISEs), to regulate AS by promoting or
inhibiting the recognition of splice sites (Paz et al., 2021). In
addition, SRSF1 performs other biological functions, including
transcriptional activation, RNA stabilization, mRNA transport,
and translation control (Paz et al., 2021). Notably, the
carcinogenic effects of SRSF1 and SRSF1-mediated AS events
have been reported in BC. Our early study also demonstrated
that SRSF1 reduces cisplatin chemosensitivity of triple-negative
BC cells through the circSEPT9/GCH1 axis. Besides,
SRSF1 promotes BC progression via oncogenic splice switching
of PTpMT1 and PRMT1-mediated SRSF1 methylation could
suppress oncogenic exon inclusion events and breast
tumorigenesis (Du et al., 2021; Shao et al., 2023). However, its
clinical significance, specific targets and detailed regulatory
mechanisms in BC remain unclear.

Exploring the molecular mechanisms of SRSF1 in breast cancer,
as above mentioned, may help to identify a new target to
chemotherapy resistance, finding drugs to overcome drug
resistance could explore a potential therapeutic approach to solve
the clinical problem. Our early findings had demonstrated the
anticancer activity of Cyperus rotundus ethanol extract (EECR)
on triple-negative breast cancer. The cyperus rotundus belongs to
the sedge family and has been widely reported in pharmacological
studies (Ribeiro et al., 2019). As an important source of traditional
medicine, sedges have been reported as potential treatments for a
variety of diseases (Ribeiro et al., 2019). Cyperotundone (CYT) is the
main active component of sedge and exhibits multiple biological
functions such as anti-inflammatory, anti-oxidation, antibacterial,
neuroprotective, anti-cancer, anti-depression, anti-obesity, anti-

arthritis, vasodilatation, bronchiectasis, spasmolysis and estrogen
(Shao et al., 2023; Wang et al., 2019). Recent studies have suggested
that CYT may play a significant role in overcoming drug resistance
in BC by modulating processes involved in oxidative stress and
apoptosis. In particular, CYT has been shown to enhance the
chemosensitivity of BC cells to conventional chemotherapeutic
agents, suggesting its potential as a therapeutic agent to combat
drug resistance in BC. However, the specific role and underlying
molecular mechanisms of CYT in BC remain unclear. In this study,
we explored the effects of CYT on drug resistance of BC and
investigated the correlated molecular mechanisms.

2 Material and methods

2.1 Cell culture

Human breast cancer cell lines MCF7, MDA-MB-231 and
human normal mammary epithelial cells MCF10A were cultured
in MEM medium (Hyclone, SH30024.01B) with 1% streptomycin
and penicillin (Sigma) and 10% fetal bovine serum (Gibco) at 37 °C
in a humidified incubator with 95% air and 5% CO2. Drug-resistant
breast cancer cell lines MCF7-DR and MDA-MB-231-DR were
cultured in MEM medium containing low concentration of
doxorubicin (DOX, 0.1 µM; MCE). All cells were cultured in a
37°C incubator containing 5% CO2.

2.2 Cell treatment and transfection

The cells were digested and seeded into 6-well plates at a
density of 106 cells/well. After attachment, the cells were starved
in serum-free medium for 2 h, then the mixture of
Lipofectamine 2000 (Invitrogen, 15 µL) and plasmids 6 µg or
siRNAs 200 pmol (Biomed) was added to incubate for 8 h. The
medium was changed to complete and incubated for another
40 h. Cells were then collected and used for following
experiments.

2.3 Quantitative real-time polymerase chain
reaction (qPCR)

Cells were lysed with Trizol reagent (Beyotime, China), followed
by the addition of chloroform and gentle mixing to remove the
organic phase. RNA was precipitated by adding isopropanol to the
aqueous phase. The RNA pellet was washed with 75% ethanol and
resuspended in TE buffer. RNA concentration was determined, and
2 μg of RNA was used for reverse transcription, utilizing the
GoScript Reverse Transcription System (Promega, USA). SYBR
qPCR Super Mix Plus (Takara, Japan) was employed for qRT-
PCR according to manufacturer’s introduction. GAPDH served as
the internal control. Relative RNA level was calculated relative to
GAPDH gene expression using the 2–ΔΔCT formula: ΔCT (test) = CT
(target, test) – CT (ref, test); ΔCT (calibrator) = CT (target,
calibrator) – CT (ref, calibrator); Target gene fold change =
2– (ΔCT (test) – ΔCT (calibrator)). Primers used in this study are
listed in (Supplementary Table S1).
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2.4 Western blotting assay

Total proteins were collected using RIPA lysis buffer
(Beyotime). After centrifuge at 12,000 rpm for 10 min, the
supernatant was collected and separated in SDS-PAGE gel.
The gel concentration was 12% when the molecular weight of
target proteins was less than 50kd, while gel concentration was
10% if molecular weight more than 50kd. The proteins were
transferred to PVDF membranes (Millipore), followed by
blocking with 5% non-fat milk in TBS at room temperature
for 1 h. The protein bands were then probed with primary
antibodies (Proteintech) overnight at 4°C. Next day, the
membranes were washed with PBST and hatched with HRP-
conjugated anti-mouse or anti-rabbit antibody at room
temperature for 1 h. The dilution factors of antibodies were
determined by manufacturer’s introduction, usually 1:1,000. The
bands were visualized after reaction with ECL reagent
(Millipore). ImageJ software was used to analyze the gray
value of the band and calculate the relative gray value of the
target band (relative gray value = gray value/gray value of the
reference band of the same sample).

2.5 Cell counting kit 8 (CCK-8) assay

The cells were collected after digestion and re-suspended to 5 ×
103 cells/100 µL as the initial plating density in complete media.
Then 100 μL cell suspension was added to each hole of the 96-well
plates, and the plate was placed in the 37°C cell incubator. After
attachment, the media containing CYT (25 μM; MCE) and/or DOX
(4 µM) were replaced and incubated for 24 h or the specified time.
After that, 10 µL CCK-8 reagent (SolarBio) was added to each well,
and the absorbance values at the wavelength of 450 nm were
determined by microplate reader.

2.6 EdU assay

EdU experiment was conducted to examine cell proliferation. In
short, cells were digested and seeded into 6-well plate. After
attachment, the cells were treated with indicated drugs for 24 h,
and then incubated with EdUworking solution (SolarBio, 10uM) for
2 h without any positive controls. The cells were then washed with
PBS and fixed for 15 min. After that, cells were reacted with Click
solution for 20 min, washed with PBS, stained with Hoechst 33,342
(Beyotime) for 10 min. The Images were taken under a fluorescence
microscope.

2.7 Colony formation assay

Cells were digested and suspended as single cells in complete
medium and seeded into 6-well plate with 1,000 cells per well of
9.5 cm2. After incubation in 37°C incubator for 2 weeks, the colonies
were stained with 2% crystal violet dye (in methanol) for 20 min.
The cells were then washed with distilled water and air-dried. Images
were taken by digital camera.

2.8 Wound healing

Cells were cultured in plates to form a tight monolayer. Drawing
a straight line across the cell monolayer by a sterile scratch tool to
form a “wound”. Cells were washed with serum-free culture medium
to remove cell debris and non-adherent cells in the scratch. Cells
were continued in culture and allowed to migrate to fill the scratch
area. The healing of the scratch area was observed and recorded by
microscope at different time points after the start of the experiment
(0 h, 24 h, 48 h), and the distance of cell migration at different time
points were compared.

2.9 Transwell assay

Cells were plated in the upper chamber withMatrigel coating for
invasion assays, and the number of cells that migrated to the lower
chamber was quantified after 24 h using crystal violet staining.

2.10 Cell apoptosis detection

Cell apoptosis was detected by Annexin V/PI apoptosis
detection kit (Beyotime). In short, adherent cells were transfected
and treated with indicated drugs, digested with enzyme without
EDTA (Gibco), supplemented with complete medium, centrifuged
at 1,000 rpm for 5 min, and the supernatant was discarded. Cells
were then suspended with PBS that added with FITC-Annexin V
reagent and PI reagent and incubated for 30 min. The samples were
then examined by flow cytometer (BD Biosciences, USA). Data were
acquired from a minimum number of events (at least
10,000 cells).and analysis was conducted using FlowJo software,
wherein the populations of normal, early apoptotic, and late
apoptotic cells were gated in the untreated group and these gates
were directly applied to the treated group.

2.11 Xenograft tumor model

Balc/c nude female mice (Beijing Vital River Laboratory Animal
Technology Co., Ltd.) that weighted about 20 g and aged 4–5 weeks
old were housed in pathogen free environment for 1 week to
acclimate. MDA-MB 231 cells were digested and resuspended in
PBS at 1 × 108/mL. A total of 100 μL cell suspension was injected
subcutaneously to the right mammary gland. After the tumor size
reached 100 mm3, the mice were randomly divided into three groups
(Con/DOX/CYT + DOX)and given intraperitoneal injections of
normal saline, Dox (3 mg/kg body weight), or CYT (15 mg/kg
body weight) + Dox. Treatment was administrated every 3 days and
tumor size was measured and calculated every 3 days and calculated
as Volume (mm3) = 0.5 × (width2 × length). The mice were then
succumbed to death by anesthesia injection, and tumors were
collected and divided into two parts, one of which was fixed in
4% PFA (Thermo) and the other part was frozen in −80°C for
protein and RNA measurement. All animal experiments were
authorized by the Ethical Committee of Shandong Cancer
Hospital (SDTHEC2021003102).
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2.12 Immunohistochemical (IHC) staining

Tumor tissues were fixed, dehydrated in graded ethanol
(Aladdin), and made into 5-µm slices. The tissue sections were
heated in at 65°C and dewaxed in xylene and ethanol. After
incubation with 3% H2O2 and 0.1% TritonX-100 (SolarBio),
antigen retrieval was performed using sodium citrate. The
samples were blocked in goat serum (Beyotime) and probed with
anti-KI-67 antibody (Abcam) overnight at 4°C. Next day, the
samples were hatched with secondary antibody for 1 h, and dyed
with DAB reagent (Beyotime). The nuclei were stained with
hematoxylin (Thermo). Images were taken with a microscope
(Leica, Germany).

2.13 RNA sequencing analysis

The transcriptome sequencing samples were total RNA
extracted from cells. RNeasy Mini Kit (250) Qiagen#74106 kit
was used for sample RNA extraction in accordance with the kit
procedures. The quality of obtained RNA samples was tested
using Agilent Bioanalyzer 2,100 (Agilent technologies, Santa
Clara, CA, US). Total RNA was quantified using
Qubit®3.0 Fluorometer and NanoDrop One
spectrophotometer. For cDNA library construction, the mRNA
in the obtained RNA samples was separated and fragmented, and
double-stranded cDNA was synthesized, the end of the strand
was repaired and tailed, and the junction was added for
enrichment. Then Qubit® 3.0 Fluorometer was used to detect
the concentration and Agilent 2,100 to detect the size of the
library. Illumina NovaSeq 6,000 platform adopted for sequencing
to generate raw data, which were processed to remove low-quality
sequences, joint contamination, ribosome sequences (rRNA) to
obtain high-quality sequences (Clean Reads). All subsequent
analyses were based on Clean Reads. Clean Reads were
compared to reference genes using Hisat2 software, FPKM was
used to characterize different gene expression levels using
Stringtie software, and genes were statistically quantified using
edge software. Differentially expressed genes (DEGs) were then
calculated with log2(FC) > 1 as the criterion. In order to
determine the biological functions and signaling pathways of
DEGs, we annotated each gene based on Gene Ontology (GO)
and KEGG databases.

2.14 Statistical analysis

SPSS 20.0 and GrapgPad Prism 9.0 were used for statistical
analysis, and the statistical differences among groups were tested by
one-way ANOVA (single variance analysis). Paired Student’s t-test
was used for the comparison of parameters between two groups.
Data in each group were the average of three independent
experiments, and the data were expressed as the mean ±
standard deviation (SD). *P < 0.05 was considered as statistical
difference.

3 Results

3.1 Cyperotundone stimulates the
chemosensitivity of breast cancer
cells in vitro

We first determined the effects of cyperotundone (CYT) on
proliferation of cells and observed that CYT significantly inhibited
the survival of breast cancer (BC) cells but not the normal breast
epithelial cells MCF10A (Figure 1A). We observed that Doxrubicin
(Dox) dose-dependently inhibited the survival of parental
MCF7 and MDA-MB-231 (Figure 1B). Then, we evaluated the
effects of CYT on drug resistance of BC cells using drug resistant
MCF-7-DR and MDA-MB-231-DR cells (Figure 1C). The results of
EdU (Figure 1D), CCK-8 (Figure 1E), and colony formation
(Figure 1F) showed that compared with the Dox treatment
group, combined treatment with CYT and Dox significantly
inhibited cell growth and the proportion of EdU positive cells.
Moreover, Dox treatment induced apoptosis of breast cancer
resistant cells, which was significantly enhanced when combined
with Epi (Figure 1G).

3.2 Cyperotundone suppresses metastasis
and cancer stemness of drug resistant breast
cancer cells

The results from wound healing and Transwell assay showed
that Dox treatment repressed the invasion and migration ability of
drug-resistant BC cells, and combination of CYT and Dox further
enhanced these effects (Figures 2A, B). The protein and RNA
expression of N-Cadherin, Vimentin and Snail in MCF7-DR and
MDA-MB-231-DR cells were notably downregulated, and
E-Cadherin was upregulated by CYT treatment (Figures 2C, D).
Moreover, the sphere formation ability of MCF7-DR and MDA-
MB-231-DR cells were significantly repressed by CYT compared
with control cells (Figure 2E), along with decreased RNA and
protein levels of USP37, ALDH1, OCT4 and Smo/Gli-1
(Figures 2F, G).

3.3 Cyperotundone sensitize the in vivo anti-
tumor effects of dox

We also established xenograft model using MDA-MB-231 cells
to determine the in vivo effects of CYT on Dox sensitivity. Similar
with the results from in vitro experiments, Dox treatment
suppressed the in vivo growth of breast cancer cells and the
tumor size, which was enhanced by combination with CYT
(Figures 3A,B), simultaneously suppressed the KI-67 level
(Figure 3C). Besides, by measure the RNA and protein level by
qPCR and Western blotting, the expression of mesenchymal
biomarkers (Figures 3D, E) and cancer stemness biomarkers
(Figure 3F, G) was decreased in tumor tissues that treated with
Dox, and CYT enhanced these effects.
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FIGURE 1
Cyperotundone stimulates the chemosensitivity of BC cells in vitro. (A) Effects of cyperotundone (CYT) on proliferation of normal mammary
epithelial cells (MCF 10A) and breast cancer (BC) cells (MCF 7, MDA-MB-231 and MDA-MB-468). (B) Growth curve of MCF7 and MDA-MB-231 under
doxorubicin (Dox, 0.1 µM) treatment. (C) Growth curve of drug resistant MCF7-DR and MDA-MB-231-DR compared with parental cells under Dox
treatment. (D–F)Cell proliferation ofMCF7-DR andMDA-MB-231-DR under treatment with CYT andDoxwasmeasured by EdU, CCK-8, and colony
formation assay. (G) Cell apoptosis was measured by flow cytometry. *P < 0.05, **P < 0.01, ***P < 0.001.
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3.4 Cyperotundone affects the growth,
metastasis, and drug resistance of breast
cancer cells via SRSF1

Next, we performed RNA sequencing analysis to determine the
potential targets of CYT for drug resistance of BC cells. We performed
GO and KEGG analysis on the differentially expression genes and
identified that CYT treatment notably affected the genes that involved
in regulation of uridine kinase activity, pre-mRNA binding, nucleotide

phosphatase activity, protein synthesis, and cell cycle (Supplementary
Figure S1A, B). We screened that the expression of SRSF1 and its
potential downstream regulatory gene MYO1B are modulated by CYT
treatment. Results from qPCR and Western blotting further verified
decreased RNA and protein levels of SRSF1 and MYO1B in parental
and doxorubicin resistant BC cells (Supplementary Figure S2A–C).
Noteworthy, the expression of SRSF1 was notably higher in drug
resistant BC cells compared with the parental cells (Supplementary
Figure S2D, E). We next investigated the role of SRSF1 in CYT-treated

FIGURE 2
Cyperotundone suppresses metastasis and cancer stemness of doxorubicin resistant BC cells. MCF7-DR and MDA-MB-231-DR cells were treated
with CYT andDox. (A)Migrationwas detected bywound healing experiment. (B)Cell invasion andmigrationwas determined by Transwell experiment. (C)
Protein levels and (D) RNA levels of E-Cadherin, N-Cadherin, Vimentin, and Snail were determined byWestern blot assay and qPCR assay. (E) Self-renewal
ability of cells was detected by sphere formation assay. (F) Protein levels and (G) RNA levels of USP37, ALDH1,OCT4, Smo, andGli-1were determined
by Western blot and qPCR assay. *P < 0.05, **P < 0.01.
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by ectopic expression of SRSF1 in BC cells. We observed that
overexpression of SRSF1 recovered BC cell growth curve
(Figure 4A), colony formation ability (Figure 4B), and the EdU-
positive cells (Figure 4C and Supplementary Figure S3A) that
suppressed by CYT. Besides, the cell migration and invasion
suppressed by CYT were notably enhanced by
SFSR1 overexpression, as was shown in Transwell expression
(Figure 4D). Consistently, the expression of mesenchymal
biomarkers N-Cadherin, Vimentin and Snail and cancer stemness
biomarkers USP37, ALDH1, OCT4 and Smo/Gli-1 in BC cells was

suppressed by CYT and markedly recovered by SRSF1 overexpression
(Figure 4E and Supplementary Figure S3B).

3.5 Cyperotundone modulates the growth
of via SRSF1-regulated alternative splicing
of MYO1B

SRSF1 plays a role in regulating alternative splicing in breast
cancer cells. To determine whether SRSF1 is involved in the

FIGURE 3
Cyperotundone suppresses the in vivo BC cell growth. Xenograft tumor model was established using MDA-MB-231 cells. (A) Image of xenograft
tumors. (B) Tumor growth curve. (C) Expression of Ki-67 in tumor tissues. (D) Protein levels and (E) RNA levels of E-Cadherin, N-Cadherin, Vimentin, and
Snail in mouse tumor tissues were determined by Western blotting and qPCR assay. (F) Protein levels and (G) RNA levels of USP37, ALDH1, OCT4, Smo,
and Gli-1 in mouse tumor tissues were checked by Western blot and qPCR assay. *P < 0.05, **P < 0.01, ***P < 0.001.

Frontiers in Pharmacology frontiersin.org07

Li et al. 10.3389/fphar.2025.1510161

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1510161


inhibitory effect of CYT on breast cancer cells by affecting
alternative splicing, we examined several representative target
genes. As shown in Figures 5A, B, the full-length MYO1B

transcript (MYO1B-fl) level was decreased in SRSF1 depleted
cells compared with the control cells, whereas the level of
transcript with exon 23 depletion was elevated. Similarly,

FIGURE 4
Cyperotundone affects the growth, metastasis, and doxorubicin resistance of BC cells (MCF 7-DR, MDA-MB-231-DR) via SRSF1. Cell proliferation
was measured by (A) CCK-8, (B) colony formation and (C) EdU assay. (D) Cell invasion was measured by Transwell assay. (E) Protein levels of EMT and
stemness biomarkers. *P < 0.05, **P < 0.01.
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knockdown of SRSF1 can reduce the full-length transcript levels of
CTNN, PRMT2, DBF4B, OS9, HNRNPDL, USP8, KTN1 and TNC
(Figure 5A). Moreover, the expression levels of full-length MYO1B
transcript (MYO1B-fl) and full-length protein in parental and drug-
resistant BC cell lines were significantly decreased after CYT
treatment, while SRSF1 overexpression could restore both levels
(Figures 5C, D). These data suggested that CYT1 affects the SRSF1-
regulated alternative splicing of MYO1B. Furthermore, the

overexpression of SRSF1 or MYO1B could significantly restore
the growth (Figures 6A–C) and invasion ability (Figure 6D) of
MCF7-DR andMDA-MB-231-DR cells under the treatment of CYT
in vitro. Similar with the in vitro results, the analysis by xenograft
tumor model suggested that CYT notably reduced the tumor size
(Figure 7A) and growth curve (Figure 7B) of MDA-MB-231-DR
cells, along with decreased level of KI-67 (Figure 7C), whereas
overexpression of SRSF1 and MYO1B reversed these effects.

FIGURE 5
Cyperotundone regulates the alternative splicing effects of SRSF1 on MYO1B in parental (MCF 7, MDA-MB-231) and doxorubicin resistant (MCF 7-
DR, MDA-MB-231-DR) BC cells. (A) The RNA levels of full length and alternative sliced transcript of targeted genes were detected by RT-PCR assay. (B)
The expression of full length MYO1B was detected by Western blotting experiment. (C) The RNA levels of full length and alternative sliced transcript of
targeted genes were detected by RT-PCR assay. (D) The expression of full length MYO1B was detected byWestern blot experiment. *P < 0.05, **P <
0.01 vs. control; #P < 0.05, ##P < 0.01 vs. CYT group.
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Compared with the control group, CYT notably downregulated the
RNA levels of N-Cadherin, Snail, Vimentin, USP37, Smo, Gli-1,
ALDH1, and OCT4, which were recovered by SRSF1 or MYO1B
overexpression (Figures 7D, E).

4 Discussion

The emergence of chemotherapy resistance is one of the criticle
reasons for cancer recurrence and poor prognosis of patients (Yao
et al., 2019). Investigating therapeutic strategies that can alleviate
chemotherapy drug resistance is crucial to improve the efficiency of
breast cancer chemotherapy, which is a major clinical demand and
an important scientific issue.

Some studies have reported the effects of extracts of Cyperus
rotundus on tumors, such as 11,12-dihydroxy-4-ene-3-one, which
demonstrated cytotoxic effects on ovarian cancer cells (Nogueira
et al., 2020). Similarly, ethanol extracts of Cyperus rotundus have

shown anticancer activity in triple-negative breast cancer (Wang
et al., 2019). However, unlike these extracts, cyperotundone (CYT), a
compound isolated from Cyperus rotundus, when combined with
doxorubicin, not only induced apoptosis in tumor cells but also
effectively inhibited chemotherapy-resistant breast cancer cells
through inducing ROS production and NRF2/ARE signaling
(Shao et al., 2023).

In our study, we found that CYT treatment significantly
inhibited the proliferation of breast cancer cells and showed a
dose-dependent trend but had no effect on the proliferation of
normal breast epithelial cells. Moreover, administration of CYT
notably suppressed the migration and cancer cell stemness, which
was enhanced in CYT + Dox treatment. These experimental data
suggesting that the preclinical activity of CYT is promising.
However, the pharmacokinetic characteristics of CYT need to be
further studied to explore the optimal human tolerated dose. Phase I
clinical trials need to conduct to explore the side effects and
appropriate dosage of CYT, and following phase II and III

FIGURE 6
Cyperotundone affects doxorubicin resistant BC cell (MCF 7-DR, MDA-MB-231-DR) proliferation and metastasis via SRSF1/MYO1B axis. Cell
proliferation was detected by (A) CCK-8 assay, (B) EdU assay, and (C) colony formation assay. (D) Cell invasion was measured by Transwell assay. *P <
0.05, **P < 0.01 vs. control; #P < 0.05, ##P < 0.01 vs. CYT group.
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clinical trials to explore the efficacy and safety of CYT with Dox. The
translation of our findings into clinical practice is possible through
these standardized drug-development processes.

Alternative splicing is a widespread post-transcriptional
regulation process of genes (Agosto and Lynch, 2018) (Bates
et al., 2017). In recent years, it has been confirmed that it plays an
important role in regulating the expression of oncogenes and
tumor suppressor genes, and plays an important role in the
occurrence and development of cancer (Agosto and Lynch,
2018). As an important alternative splicing modulator,
SRSF1 could bind with different splicing regulatory elements
to promote or inhibit splicing (Lv et al., 2021; Zhou et al., 2019).
Several previous studies reported the important role of SRSF1-
mediated alternative splicing in breast cancer (Xie et al., 2023;
Kędzierska and Piekiełko-Witkowska, 2017; Yu and Fang, 2022;
Anczuków et al., 2015). It has been reported that SRSF1 regulates
alternative splicing events and harbors a binding motif involved
in the splice switching of PTPMT1. By directly interacting with
its motif in the exon 3 region, SRSF1 modulates this splice

switching, partially contributing to its oncogenic function via
the AKT/C-MYC axis. One study reported that long non-coding
RNA HCG11 is downregulated in HR-positive breast cancer
tissues and cell lines, and HCG11 could inhibit the malignant
progression of breast cancer in vivo and in vitro (Xie et al., 2023).
Mechanistically, HCG11 recruits SRSF1-targeted β-catenin and
promotes its translation (Xie et al., 2023). Circular RNA
RPAP2 was found to be downregulated in breast cancer
samples and cell lines and correlated with the metastasis and
TNM stage of breast cancer. Mechanistically, circRPAP2 could
bind to SRSF1, which consequently inhibited SRSF1-mediated
alternative splicing of PTK2, resulting in decreased levels of
PTK2 mRNA and protein (Yu and Fang, 2022). While
previous research has shown that SRSF1 overexpression is
associated with increased malignancy and drug resistance in
breast cancer, our results demonstrate that CYT treatment
significantly reduces SRSF1 expression in drug-resistant cells
(Song et al., 2024). SRSF1overexpression have been reported
to involved in multiple resistance pathway. For example,

FIGURE 7
Cyperotundone inhibits the in vivo growth of BC cells (MDA-MB-231) through SRSF1/MYO1B axis. (A) Image of xenograft tumors in xenograft mouse
model. (B) Tumor growth curve in xenograft mouse model. (C) Expression of Ki-67 in tumor tissues. (D, E) RNA level of E-Cadherin, N-Cadherin, Snail,
Vimentin, USP37, Smo, Gli-1, ALDH1, and OCT4 in xenograft tumors. *P < 0.05, **P < 0.01 vs. control; #P < 0.05, ##P < 0.01 vs. CYT group.
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CRNDE inducing cisplatin resistance through SRSF1/
TIA1 signaling pathway in ovarian cancer (Wu et al., 2022).
Circ_0001786 facilitates gefitinib resistance and malignant
progression in non-small cell lung cancer via miR-34b-5p/
SRSF1 (Ouyang et al., 2024). Notably, our data indicate that
by targeting SRSF1-mediated alternative splicing of MYO1B,
CYT can inhibit the chemo-resistance of breast cancer. The
full-length MYO1B transcript (MYO1B-fl) level was decreased
in SRSF1 depleted cells. The expression levels of full-length
MYO1B transcript (MYO1B-fl) and full-length protein in
drug-resistant BC cell lines were significantly decreased after
CYT treatment, while SRSF1 overexpression could restore its
levels. SRSF1 regulates the alternative splicing of MYO1B gene
and inhibits its protein level, thereby inhibiting the proliferation,
metastasis and stem cell properties of breast cancer cells, and
promoting the chemosensitivity of drug-resistant breast
cancer cells.

In clinical breast cancer samples, the expression of SRSF1 was
upregulated and positively correlated with tumor grade, Ki-67
expression and poor prognosis. SRSF1 promoted the proliferation
and migration of breast cancer cells and inhibited the apoptosis of
breast cancer cells via regulating the alternative splicing of PTPMT1
(Du et al., 2021). In this study, through transcriptome sequencing
analysis, we found that the SRSF1 level in breast cancer resistant cells
was significantly reduced after receiving CYT treatment, and the
cellular experiments verified this finding.

In addition, the expression levels of SRSF1 protein and RNA in
drug-resistant breast cancer cells were significantly increased
compared with parental cells, suggesting the SRSF1 may be the
target of CYT in overcoming drug resistance. Knockdown of
SRSF1 can reduce the expression level of full-length MYO1B
protein in both drug-resistant and parental breast cancer cells,
indicating that SRSF1 regulated the alternative splicing of
MYO1B in breast cancer cells.

However, our study does have certain limitations. We only used
two cell lines, MCF7 (HR positive BC cell) and MDA-MB-231
(TNBC cell), and found that CYT could overcome doxorubicin
resistance. There are still many uncertainties from vitro findings into
clinical practice, such as potential off-target effects of CYT,
variability in preclinical models. Future research can be directed
towards patient cohorts to help ascertain the correlation between the
expression levels of SRSF1 and clinical outcomes, such as tumor
grade, Ki-67 expression, and prognosis. Additionally, combination
therapy approaches can be explored to investigate the concurrent
administration of CYT with other anti-tumor agents, which may
provide insights into its potential to overcome drug resistance and
improve therapeutic efficacy. Our results only showed the effect of
CYT in the above cell lines and indicated the potential effect in HR-
positive breast cancer and triple-negative breast cancer. Further
studies on HER2-positive breast cancer were also explored in our
subsequent studies.

SRSF1 is a pivotal splicing factor that participates in the
regulation of splicing processes, leading to a decrease in the
expression of drug resistance-related proteins to enhance the
sensitivity to chemotherapeutic agents. Thus, the development of
small-molecule inhibitors or modulators targeting SRSF1 or
MYO1B may provide a novel therapeutic strategy for drug-
resistant breast cancer. Our findings identified the effects of CYT

on identifying the potential regulatory with SRSF1/MYO1B axis via
transcriptome analysis and experiment verification, supporting the
anti-tumor effects of CYT against drug resistant breast cancer.
Combining CYT with chemotherapeutic agents will enhance the
uptake and sensitivity to chemotherapy, thereby achieving improved
therapeutic efficacy.

5 Conclusion

In this study, we identified the effects of CYT on overcoming
drug resistance of breast cancer and identified the potential
regulatory with SRSF1/MYO1B axis via transcriptome analysis
and experiment verification. Our findings supported the anti-
tumor effects of CYT against drug resistant breast cancer and
identified SRSF1 as a novel molecular mechanism.
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