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Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-
EVs) are increasingly recognized for their therapeutic potential in regenerative
medicine, driven by their capabilities in immunomodulation and tissue repair.
However, MSCs present risks such as immunogenic responses, malignant
transformation, and the potential to transmit infectious pathogens due to their
intrinsic proliferative and differentiative abilities. In contrast, MSC-EVs, particularly
exosomes (MSC-exosomes, 30–150 nm in diameter), offer a safer therapeutic
profile. These acellular vesicles mitigate risks associated with immune rejection
and tumorigenesis and are inherently incapable of forming ectopic tissues,
thereby enhancing their clinical safety and applicability. This review highlights
the therapeutic promise of MSC-exosomes especially focusing on the
modulation of miRNA (one of bioactive molecules in MSC-EVs) profiles
through various preconditioning strategies such as exposure to hypoxia,
chemotherapeutic agents, inflammatory cytokines, and physical stimuli. Such
conditioning is shown to optimize their therapeutic potential. Key miRNAs
including miR-21, miR-146, miR-125a, miR-126, and miR-181a are particularly
noted for their roles in facilitating tissue repair and modulating inflammatory
responses. These functionalities position MSC-exosomes as a valuable tool in
personalized medicine, particularly in the case of exosome-based interventions.
Despite the potential of MSC-EVs, this review also acknowledged the limitations
of traditional MSC therapies and advocates for a strategic pivot towards
exosome-based modalities to enhance therapeutic outcomes. By discussing
recent advances in detail and identifying remaining pitfalls, this review aims to
guide future directions in improving the efficacy of MSC-exosome-based
therapeutics. Additionally, miRNA variability in MSC-EVs presents challenges
due to the diverse roles of miRNAs play in regulating gene expression and cell
behavior. The miRNA content of MSC-EVs can be influenced by preconditioning
strategies and differences in isolation and purification methods, which may alter
the expression profiles of specific miRNAs, contributing to differences in their
therapeutic effects.
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1 Introduction

Mesenchymal stem/stromal cells (MSCs) are non-hematopoietic
multipotent stem cells known for their self-renewal capacity and
ability to differentiate into various lineages. These cells are integral
to tissue regeneration and maintaining homeostasis, while also
exhibiting significant immunomodulatory properties. As such,
MSCs are pivotal in therapeutic strategies aimed at enhancing
tissue repair and modulating immune responses (Wang et al.,
2014). However, recent studies have revealed that the application
of MSCs in tissue support and immune regulation is constrained by
their low engraftment rates and short lifespan (Moll et al., 2019).
Consequently, there is growing interest in the therapeutic potential
of extracellular vesicles released by MSCs (MSC-EVs). MSC-EVs
enhance therapeutic outcomes for a range of diseases and mitigate
the risk of immune rejection. In particular, there is evidence that
MSC-EVs ability to modulate various immune cells, providing
therapeutic benefits in inflammatory diseases (Liu et al., 2023).
Their therapeutic potential spans a broad spectrum of conditions,
highlighting the importance of further investigation into their
mechanisms of action and optimal applications (Martí-Chillón
et al., 2023; Adamiak et al., 2018).

EVs are pivotal in intercellular communication, carrying a range
of bioactive molecules including proteins, lipids, and nucleic acids
[microRNAs (miRNAs) and mRNA], crucial in mediating the
therapeutic effects traditionally attributed to parent MSCs (Lee
and Kim, 2022; Zhu et al., 2023a). Exosomes, distinct from other
EVs such as microvesicles and apoptotic bodies, excel in therapeutic
applications due to their unique biogenetic origin and nano-scale
size (30–150 nm) (Rezaie et al., 2022). Arising from endosomal
compartments, exosomes exhibit specific molecular profiles that
facilitate targeted interaction and uptake by recipient cells. This
selective cargo loading and inherent stability in circulation position
exosomes as superior candidates for precision drug delivery and
regenerative therapies. They offer enhanced delivery efficiency and
reduced immunogenicity compared to larger EVs, whose formation
and content are less controlled. The high specificity and
customizable nature of exosomes make them highly valuable in
advancing personalized medicine strategies (Gurunathan et al.,
2019). Exosomes derived from MSCs (MSC-exosomes) are
increasingly recognized as potential cell-free therapies for various
diseases, notably due to the miRNAs encapsulated in these EVs
because they play pivotal roles in various biological processes (Wang
et al., 2018). Ongoing studies continue to demonstrate that the
miRNA profiles of MSC-exosomes are not static but rather dynamic,
significantly influenced by external processing conditions. This
variability underscores the complexity of exosome-based
therapeutics, highlighting the need for precise characterization
and modulation of their miRNA content to enhance therapeutic
efficacy (Kurian et al., 2021).

miRNAs are non-coding RNAs approximately
21–23 nucleotides in length that regulate gene expression by
binding to the 3′ untranslated region (UTR) of target mRNAs
(Rossi, 2011). MSC-EVs are increasingly recognized for their
stability and safety compared to parent MSCs, particularly in
clinical applications. While MSC-EVs hold promise in
regenerative medicine, variability in miRNA profiles poses
challenges for therapeutic consistency. Addressing this,

preconditioning strategies play a pivotal role in modulating
miRNA content to align with therapeutic goals. With
advancements in high-throughput gene sequencing technology,
differences in miRNA expression profiles in MSC-exosomes can
be identified under various stimulatory conditions (Leidal and
Debnath, 2020). This provides powerful tools for a
comprehensive understanding of the regulatory mechanisms of
miRNAs under different processing conditions. For instance,
conditions such as hypoxia, stimulation by inflammatory factors,
and chemical or physical stimuli have been reported to significantly
alter the miRNA expression profiles in exosomes (Strecanska et al.,
2024). Alterations in miRNA expression profiles in exosomes can
significantly impact their biological functions and consequent
therapeutic outcomes. This review seeks to collate and critically
evaluate the literature concerning variations in miRNA content in
exosomes secreted byMSCs across diverse treatment conditions. We
will investigate the correlations between these miRNA alterations
and exosomal functions as well as discuss potential therapeutic
leveraging miRNA regulatory mechanisms. Our analysis aims to
optimize the use of MSC-exosome therapeutics in various disease.

Herein, we explore the connection between these miRNA
changes in MSC-exosomes and exosome functions, and discuss
their regulatory mechanisms during treatment with MSC-
exosomes in order to optimize the manufacture and generation
of MSC-exosomes in the future. This review emphasizes the
regulatory and clinical landscape for MSC-EVs, focusing on their
role in inflammatory and immune diseases and the importance of
quality control in therapeutic applications.

2 Pre-conditioning strategies for MSCs

ConditioningMSCs to enhance the therapeutic potential of their
EVs through miRNA modulation involves a variety of strategies.
These approaches aim to manipulate the cellular environment or
apply physical stimuli to induce specific changes in the miRNA
profile of the EVs, thereby optimizing their regenerative and
immunomodulatory functions.

2.1 Biological modulators

2.1.1 Lipopolysaccharide
LPS is a potent endotoxin derived from the outer membrane of

Gram-negative bacteria and is commonly used in research to
simulate inflammatory conditions. LPS is commonly used in
MSC conditioning due to its potent ability to activate the
immune response. Notably, the application of LPS, at low doses,
exhibits protective effects against numerous diseases. Different doses
of LPS induce MSCs to secrete exosomes with distinct mechanisms
of action, likely due to varying miRNA content at each dose level.
For instance, Zhang, P. et al. observed that stimulating BMSCs with
0.1 μg/mL LPS enhanced the expression of miR-222-3p in exosomes
(Zhang et al., 2023). Similarly, Liu, H.-Y. et al. found that a dose of
0.5 μg/mL LPS increased the expression of miR-181a-5p in BMSC
exosomes (Liu et al., 2020a). Furthermore, Zheng, T. et al. applied
1 μg/mL LPS to BMSCs, altering the miRNA expression profile in
EVs and upregulating miR-150-5p (Zheng et al., 2024). These
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findings illustrate that varying LPS concentrations lead to different
miRNA profiles in exosomes and distinct biological effects, yet all
contribute to mitigating inflammatory damage. Low doses of LPS
induce MSCs to secrete exosomes with distinct miRNA profiles and
biological effects, highlighting dose-dependent responses that
mitigate inflammatory damage. Given that low doses of LPS have
inherent protective effects in disease treatment, it prompts the
investigation into whether other compounds might also exhibit
dose-dependent differential responses in MSC-derived exosomes.

2.1.2 Inflammatory cytokines and growth factors
The primary function of immune checkpoints (ICPs) is to

prevent the initiation of adverse reactions and to regulate
immune responses, thereby maintaining homeostasis. ICPs are
produced by various types of immune regulatory cells, and
deficiencies in their expression or function can result in
overactive immune responses, potentially leading to autoimmune
diseases. MSCs contribute to immune regulation by producing ICPs,
immune checkpoint ligands (ICPLs), and modulating immune cell
responses via secretion and direct interactions (Hazrati et al., 2024).
Pretreatment of MSCs in inflammatory conditions enhances their
therapeutic potential. promoting anti-inflammatory cytokine
production and increasing ICPL expression. MSC-derived EVs
encapsulate miRNAs that significantly influence immune
modulation, offering strategies for regenerative medicine and
inflammatory disease treatment.

2.1.2.1 TNF-α
TNF-α initiates the inflammatory response and collaborates

with various factors to participate in inflammation and tissue
repair. TNF-α significantly influences the fate and functional
reprogramming of MSCs in the inflammatory microenvironment,
thereby enhancing their immune regulatory and tissue repair
capabilities (Li W. et al., 2023). Although some studies have
found that the protein content of exosomes increased after TNF-
α stimulation of MCSs, which can directly promote the polarization
of macrophages, it is undeniable that miRNAs also play a crucial role
in this process (Harting et al., 2018). Liang, Y.-C. et al. conducted a
study and found that low-dose TNF-α (10 ng/mL) stimulation of
human umbilical cord mesenchymal stem cells (hucMSCs) led to an
increase in the content of miR-146a in exosomes (Liang et al., 2019).
In another study using higher dose of TNF- α, Domenis, R. et al.
found that human adipose-derived mesenchymal stem cells
(hadMSCs) stimulated by TNF-α (20 ng/mL) not only showed
an increased content of miR-146a in exosomes but also a notable
rise in miR-34 levels (Domenis et al., 2018). These findings suggest
a dose-dependent response, with higher TNF-α concentrations
amplifying miRNA alterations in exosomes and enhancing
immunomodulatory effects.

Moreover, IL-1β stimulation of bone marrow MSCs (BMSCs)
increased miR-146a in EVs, promoting macrophage polarization
and improving organ injury in sepsis (Song et al., 2017). Gingival
tissue-derived MSCs (GMSCs) showed increased miR-21-5p under
low-dose TNF-α (10 ng/mL) (Yu et al., 2022) and miR-1260b under
high-dose (100 ng/mL) stimulation (Nakao et al., 2021). However,
moderate doses of TNF-αmay inhibit cell proliferation and promote
autophagy and apoptosis, raising questions about the practical
applicability of high-dose stimulation (Li W. et al., 2023).

Additionally, miR-299-3p and miR-24-3p were upregulated in
hucMSC (Zhang et al., 2020) and menstrual blood MSC
(MenSC) exosomes under 20 ng/mL TNF-α stimulation (Xu
et al., 2023).

These studies underscore the specificity of miRNA responses to
TNF-α across MSC sources, suggesting tailored strategies for
therapeutic applications. Future research should explore the dose-
dependent effects and verify findings in human MSCs for
clinical use.

2.1.2.2 IFN-γ
IFN-γ alone or combined with TNF-α enhances MSC

immunosuppressive capacity (Harting et al., 2018; Chen et al.,
2024). Moreover, the application of 50 ng/mL IFN-γ to stimulate
BMSCs increases the levels of miR-125a and miR-125b in their
exosomes (Yang et al., 2020). Ragni et al. performed sequencing
analysis on adipose-derived stem cells (ASCs) stimulated with IFN-γ
(10 ng/mL). The study identified that secreted molecules and
miRNAs can promote M2 macrophage polarization and reduce
the inflammation marker VCAM-1 in chondrocytes (Ragni et al.,
2020). The overexpressed miRNAs included miR-146b-5p, miR-
146b-3p, miR-155-5p, miR-210-3p, miR-29b-3p, miR-455-5p, and
miR-886-3p. IFN-γ was found to decrease the expression of miR-
149, which is involved in inflammation, while increasing miR-
210 levels.

2.1.2.3 IL-6 and MIF
Although most studies on IL-6 focus on its secretion in MSC-

derived EVs, stimulation with IL-6 (1 ng/mL) increased miR-455-3p
expression in hucMSC-derived exosomes (Shao et al., 2020).
Meanwhile, macrophage migration inhibitory factor (MIF) has
emerged as a novel stimulus. MIF-stimulated MSCs showed
upregulation of LncRNA-NEAT1 in exosomes, highlighting its
therapeutic potential (Zhuang et al., 2020).

These findings highlight the complexity of miRNA responses to
inflammatory cytokines, emphasizing the need for standardized
protocols in MSC pretreatment to optimize therapeutic efficacy.
The heterogeneity of miRNA profiles necessitates careful selection of
cytokine dosage and MSC sources. Dose-dependent and synergistic
effects should be further investigated to refine therapeutic
applications.

In summary, miRNAs in MSC-derived EVs are central to
immune regulation and regenerative medicine. Future research
should prioritize exploring combined stimuli, verifying dose-
dependent effects, and identifying optimal conditions for clinical
applications.

2.1.3 Oxidative and sulfide compounds
Oxidative and sulfide compounds play a critical role in

modulating the biological activity of MSCs and their secreted
EVs. These compounds influence the expression and packaging
of miRNAs within EVs, resulting in altered miRNA profiles that
enhance their antioxidative, anti-inflammatory, and cytoprotective
properties.

Hydrogen peroxide (H₂O₂) is utilized to stimulate MSCs to
modulate miRNA profiles. Specifically, treatment of bone marrow-
derived MSCs (BMSCs) with 100 μM H₂O₂ elevates the levels of
miR-21 in the EVs they secrete, which aids in reducing H₂O₂-
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induced apoptosis (Shi et al., 2018). Additionally, hydrogen sulfide
(H₂S), known for its protective effects on central nervous system
injuries, enhances the neuroprotective and anti-inflammatory
functions of microglia and monocyte macrophages by
upregulating miR-7b-5p in MSC-derived EVs when used as a
pre-treatment (Chu et al., 2020). Nitric oxide (NO) has been
shown to increase levels of vascular endothelial growth factor
(VEGF) and miR-126 in exosomes derived from human
placenta-derived MSCs, promoting angiogenesis (Du et al., 2017).
MiR-126 is responsive to various stimuli, including hypoxia.

Heme oxygenase-1 (HO-1), a stress-inducible protein
abundantly expressed in tissues, catalyzes the breakdown of heme
into biliverdin, free divalent iron, and carbon monoxide (CO). This
enzymatic activity prevents free heme from sensitizing cells to
apoptosis, thereby mitigating the development of various
immune-mediated inflammatory diseases (Gozzelino et al., 2010).
Stimulation of bone marrow-derived mesenchymal stem cells
(BMSCs) with 10 μM HO-1 in complete culture medium
enhances the miR-183-5p content in secreted exosomes, which
subsequently inhibits cardiomyocyte senescence via the HMGB1/
ERK pathway (Zheng et al., 2021). Heme oxygenase (HO), the rate-
limiting enzyme in heme catabolism, produces equimolar amounts
of CO. Direct exposure of human umbilical cord mesenchymal stem
cells (hucMSCs) to 250 ppm CO gas for 4 h elevates the levels of
miR-145-3p and miR-193a in the EVs, indicating differential
miRNA regulation compared to HO-1 stimulation (Hwang et al.,
2024). This suggests that while HO-1 facilitates the production of
multiple byproducts, its effects differ significantly from direct CO
exposure, highlighting the importance of enzyme-specific pathways
in cellular responses.

Peroxiredoxin II (Prx II) is an antioxidant enzyme that rapidly
quenches low concentrations of intracellular reactive oxygen species
(ROS) by stabilizing the mitochondrial membrane potential (Jin
et al., 2019). PrxII regulates mesenchymal cell growth through the
Wnt/β-catenin signaling pathway (Han et al., 2020). Stimulation of
DMSCs (dermal mesenchymal stem cells) leads to downregulation
of miR-221 and upregulation of miR-21-5p in the secreted
exosomes, which subsequently promotes skin wound healing (Jin
et al., 2021).

These findings underscore the importance of selecting
appropriate stimuli to tailor miRNA content in MSC-derived
EVs, thereby enhancing their therapeutic potential for treating a
wide range of conditions from tissue degeneration to inflammatory
diseases. Future studies should focus on further elucidating the
mechanisms by which these treatments modulate miRNA profiles
and their subsequent biological effects.

2.1.4 Pharmacological agents
Various pharmacological compounds and biochemical stimuli

can modulate the miRNA content in MSC-(EVs, enhancing their
therapeutic potential for a wide range of medical conditions.

Advanced glycation end products (AGEs), which form through
non-enzymatic reactions between proteins and glucose, induce
vascular complications in diabetes by increasing the secretion of
miR-146a in exosomes from BMSCs (Wang et al., 2018; Bodiga et al.,
2014). This miRNA is implicated in several chronic diseases, with its
dysregulation linked to abnormal levels of pro-inflammatory
cytokines (Shahriar et al., 2020). Exposure of BMSCs to the

traditional Chinese medicine compound Tongxinluo (TXL) also
increases miR-146a-5p levels in exosomes, initially thought tomimic
statin effects (Xiong et al., 2022). Similar stimulatory effects are
observed with atorvastatin (ATV), which enhances miR-221-3p
secretion from human BMSCs (Yu et al., 2020). The impact of
LncRNA H19 upregulation by ATV mirrors that seen with AGEs,
although targeting different miRNAs (Huang et al., 2019).
Furthermore, cardiovascular drugs like nicorandil induce the
overexpression of multiple miRNAs such as miR-148a-3p, miR-
125a-5p, miR-100-5p, among others, in murine BMSC-derived
exosomes, underscoring the diverse miRNA-mediated
mechanisms activated by pharmacological stimulation of MSCs
(Gong et al., 2024).

Treatment with Buyang Huanwu Decoction (BYHWD), a
traditional Chinese medicine, elevates miR-126 levels but also
decreases miR-221 and miR-222 expressions (Yang et al.,
2015a). Furthermore, incubation of BMSCs with 2.5 mM
lithium chloride for 24 h markedly boosts the concentrations of
miR-132 and miR-1906 in the EVs (Haupt et al., 2020). MiR-132
has been associated with cardioprotective effects in myocardial
infarction (Ma et al., 2018), while miR-1906 offers neuroprotection
in stroke treatment, highlighting the diverse therapeutic potential
of modulating miRNA profiles in MSC-derived EVs across various
medical conditions.

Tropoelastin (TE) has been observed to reduce wound healing
duration and exhibit anti-inflammatory properties (Wang et al.,
2024a). In osteoarthritis treatment, exosomes derived from MSCs
stimulated with tropoelastin demonstrate enhanced therapeutic
effects compared to the direct application of TE. This superior
efficacy is attributed to the increased expression of miR-451-5p
within the exosomes (Meng et al., 2023). Melatonin treatment of
MSC resulted in increased miR-18a-5p content in EV and reduced
hyperoxy-induced lung injury (Zou et al., 2024).

Certain biomolecules possess intrinsic therapeutic properties for
various diseases, which are further amplified when MSCs are
stimulated. This amplification is closely associated with
alterations in the miRNA content of the cells. These changes
suggest that exosomes derived under such stimulatory conditions
hold potential for broader applications in treating additional
diseases. Although further validation is necessary due to the
limited number of studies, the current evidence strongly supports
ongoing research to unlock the full therapeutic potential of
this approach.

2.2 Hypoxia

The environment in which MSCs are cultured can significantly
affect their proliferation, differentiation, and therapeutic potential.
Unlike conventional cultured cells in vitro, MSCs are typically
exposed to hypoxic conditions in vivo. Thus, studying MSCs
under hypoxia can enhance the understanding of exosome
secretion from these cells (Mohyeldin et al., 2010). An oxygen
concentration range of 1%–5% is usually used to simulate an
oxygen-deficient environment. However, even within this range,
variations in oxygen concentration can lead to different effects on
regulating miRNA expression under hypoxic conditions. Hypoxia
profoundly influences the exosomes secreted by MSCs upon
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stimulation, with its impacts being extensively studied in the field of
regenerative medicine.

2.2.1 Human MSCs
Experimental studies have demonstrated that hypoxia

preconditioning plays a crucial role in tissue damage repair. In a
study investigating exosomal miR-126 from human umbilical cord
mesenchymal stem cells (hucMSCs) (Liu et al., 2020b), it was found
that HIF-1α activation in hucMSCs under 1% oxygen conditions
resulted in an increased miR-126 concentration in exosomes,
enhancing endothelial cell proliferation, angiogenesis, and
migration. Similarly, under the same hypoxic conditions (1% O₂
at 37°C for 48 h), levels of miR-17-5p (Chu et al., 2023) and miR-7-
5p (Hu et al., 2023) in hucMSC-derived exosomes were significantly
elevated. These findings highlight the adaptive roles of hucMSCs in
modifying miRNA profiles in exosomes under specific
environmental conditions, thereby driving targeted cellular
responses essential for tissue regeneration.

Several studies have documented that members of the let-7
miRNA family are upregulated in human adipose-derived
mesenchymal stem cells (hADSCs) under hypoxic conditions (5%
O2) (Zhu et al., 2020). However, alterations in this hypoxic
environment led to the downregulation of specific let-7 miRNAs,
including LET-7i-5P, LET-7A-5P, LET-7F-5P, alongside miR-125a-
5p and miR-26a-5p (Koch et al., 2022). Despite the consistent
overexpression of the let-7 family under hypoxia, its relevance to
certain disease treatments has limited its focus in further
investigations. Notably, the overexpression of let-7 under such
conditions remains significant. Studies on MSCs predominantly
centers on bone marrow-derived MSCs, with a relatively smaller
focus on human-derived MSCs, which typically necessitate
confidentiality regarding donor information. Additionally, under
hypoxic conditions, miR-424 levels are found to increase in EVs, a
finding supported by experimental evidence (Mathew et al., 2023).
Under 5% oxygen, although exosomal miRNAs such as miR-181c-
5p, miR-18a-3p, miR-376a-5p, and miR-337-5p are downregulated,
they continue to exhibit therapeutic potential (Zhang B. et al., 2022).

2.2.2 Mouse MSCs
In addition to human mesenchymal stem cells (MSCs), mouse

MSC are frequently utilized due to their accessibility and utility in
disease modeling for experimental studies, facilitating the validation
of EV therapeutics. Under 1% oxygen conditions, miR-126a-5p
expression is upregulated in BMSC-derived exosomes, influencing
microglial polarization (Liu et al., 2020c) and chondrocyte
proliferation (Rong et al., 2021). Similarly, miR-17-5p in BMSC-
derived exosomes is involved in regulating nucleus pulposus cells
(Zhou et al., 2022), and miR-205-5p enhances cartilage repair when
used with injectable silk fibroin hydrogels (SF/ACs/H-Exos) (Shen
et al., 2022). Under 3% O₂ conditions, miRNA-421-3p expression in
EVs was increased (Deng et al., 2023), alongside elevated levels of
circRNA_Nkd2 (Wang et al., 2024b) and lncRNA XIS T (Ren et al.,
2023) in EVs under hypoxic conditions. Mao, C.-Y. et al. reported
that miR-224-5p levels in exosomes from hypoxically cultured
mouse ADSCs were increased, which alleviated early myocardial
ischemia (Mao et al., 2022). The study also found that miR-21 levels
were elevated at 1% O₂ (Li et al., 2024). These studies, utilizing high-
throughput sequencing, revealed that miRNA expression is not

limited to singular upregulation but encompasses a broad range
of differential gene expression, and the remaining unstated miRNAs
can be search in the table (Table 1). Hypoxic conditions also elevate
the expression of circRNAs such as circ-Scmh1 and circ-Erbb2ip,
suggesting a significant regulatory role of circRNAs in therapeutic
applications. Reviewing miRNA expression changes in exosomes
from hypoxia-preconditioned MSCs underscores the potential for
expansive study across various diseases. For example, hypoxia plays
a significant role in the tumor microenvironment, raising questions
about whether hypoxia could contribute to cancer therapy (Jahangiri
et al., 2023).

Hypoxia significantly alters the secretion and miRNA content of
exosomes from MSCs, enhancing their therapeutic potential,
particularly in regenerative medicine. Studies have demonstrated
that hypoxic conditions (1%–5% O₂) modulate the miRNA profiles
within MSC-derived exosomes, with specific miRNAs like miR-126
and miR-17-5p showing increased expression.

Although hypoxia remains the primary focus in MSC
preconditioning, the influence of other environmental conditions,
such as pH and thermal stress, should not be overlooked. Limited
research exists on MSC-EVs under these conditions, but one study
has shown that thermal stress can significantly enhance the adhesive
potential, migratory capacity, surface marker expression, and
multilineage differentiation of MSCs, albeit with reduced
proliferation. Notably, this preconditioning was found to boost
MSCs’ tumor-targeting capabilities (Rühle et al., 2020). Given the
sparse data on the impact of thermal stress and other environmental
factors on MSC-EVs, additional studies are required to determine
the potential research prominence of these factors.

2.3 Physical stimuli

Various physical modalities, including ultrasound, electrical
stimulation, and ionizing radiation, have been shown to augment
the secretion of MSC-derived exosomes or mimetic nanoparticles.
This enhancement facilitates large-scale production and modifies
biological functionality through differential miRNA expression (Wu
et al., 2024a). Specifically, low-intensity pulsed ultrasound (LIPUS),
a non-invasive mechanical stimulus with a power density
significantly lower than conventional ultrasound, at an intensity
of 90 mW/cm2, can increase miR-935 content in stem cells from the
apical papilla (SCAP) EVs following a 30-min exposure (Zhang T.
et al., 2022). When LIPUS is applied to BMSCs at 300 mW/cm2,
there is a 3.66-fold increase in the release of EVs, with enhanced IL-
10 levels and elevated expressions of miR-328-5p and miR-487b-3p
(Li X. et al., 2023). Additionally, the presence of 50 μg/mL Fe3O4

nanoparticles combined with a 100 mT static magnetic field (SMF)
markedly increases exosome production and upregulates miR-143-
3p, miR-23a-3p, miR-1260a, and miR-3960 (Wu et al., 2021). In
terms of photostimulation, blue light (455 nm) is more efficacious
than red light (638 nm) in promoting wound healing and
upregulating miR-135b and miR-499a in exosomes (Yang et al.,
2019). Moreover, other physical stimuli such as mechanical forces,
ionizing radiation, and electrical pulses remain underexplored and
may offer additional avenues for enhancing the yield and
functionality of MSC-derived EVs. Investigating and harnessing
these physical factors could optimize the clinical application and
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TABLE 1 Effects of different pre-conditioning approaches on miRNA profiles, miRNA targets and functions.

Pretreatment miRNA Target & pathway Function MSC Reference

1% O2 miR-126 SPRED1/Ras/Erk Promotes angiogenic fracture
healing

hucMSC Liu et al. (2020b)

1% O2 miR-17-5p TLR4/ROS/MAPK Blocking NET formation hucMSC Chu et al. (2023)

1% O2 miR-423-5p↑, miR-7-5p↑,
miR-708-5p↑, miR-483-
5p↓, miR-891a-5p↓, miR-
652-5p↓

p65/TNF-α/NF-κB/Cxcl2 Inflammatory
microenvironment involved in
disc degradation promotes
proliferation of nucleus pulposus
cells, enhances proteoglycan
synthesis and collagen formation

hucMSC Hu et al. (2023)

1% O2 & Reduce the nutrient
content of the medium (e.g.,
glucose, amino acids, etc.)

miR-181c-5p↑, miR-18a-
3p↑, miR-376a-5p↑, miR-
337-5p↑

— Promotes angiogenesis and
tissue regeneration

hucMSC Zhang B. et al.
(2022)

Serum-and glucose-deprived miR-29a-3p CTNNBIP1/Wnt/β-catenin Promote angiogenesis hucMSC Wu et al. (2024b)

5% O2 let-7b-5p↑, let-7f-5p↑, let-
7a-5p↑, let-7i-5p↑, let-7c-
5p↑, let-7e-5p↑, let-7g-5p↑,
let-7d-5p↑

let-7/AGO1/VEGF Promote the survival of fat grafts;
activity of proliferation,
migration and tube formation in
HUVECs

hADSC Zhu et al. (2020)

1% O2 let-7i-5P↓, let-7A-5P↓, let-
7F-5P↓, let-7F-5P↓, miR-
125a-5p↓, miR-26a-5p↓

— Anti-inflammatory effect on
epithelial cells

hADSC Koch et al. (2022)

1% O2 miR-424↑, (miR-7i↑, miR-
455↑, miR-19a↑, miR-
19b↑, miR-146b↑, miR-
27b↑, miR-210↑, miR-
380) ↑

— Reducing inflammatory cytokine
production in retinal microglia,
and attenuating oxygen free
radicals in Muller cells and
microvascular endothelial cells

hBMSC Mathew et al.
(2023)

1% O2 & XFS miR-214↑, miR-145↑
(miR-21↑, let-7b-5p↑, miR-
301a-3p↑, miR-30b-5p↑,
miR-30c-5p↑)

Wnt, TGF-beta and PI3K-Akt
(DIANA myRPath 3.0.)

IL-1α-induced inflammation and
to reduce production of pro-
inflammatory cytokines

hBMSC Palamà et al.
(2023)

5% O2 miR-181c-5p↓, miR-18a-
3p↓, miR-376a-5p↓, miR-
337-5p↓

miRNA-18-3P/JAK-STAT;
miRNA-181c-5p/MAPK

Promote proliferation and
migration and inhibit apoptosis

hBMSC Zhang B. et al.
(2022)

Serum-free miR-17-92↑ — Accelerated cell proliferation,
migration, angiogenesis, and
enhanced against erastin-
induced ferroptosis in vitro

hBMSC Nie et al. (2023)

1% O2 & 10% Mill Creek Life
Sciences

miR-23a↑, miR-125b↑,
miR-199a↑, miR-199b↑,
miR-4454↑, miR-7975↑

— Endocytosis, immune response,
inflammation, osteogenesis,
osteoblast differentiation, and
cell proliferation

hBMSC,
hucMSC,
hHDCs

Vaka et al. (2023)

1% O2 miR-216a-5p↑ (miR-99b-
5p, miR-301a, miR-126,
miR-210-3p)

TLR4/NF-κB/PI3K/AKT Microglia M1/M2 polarization BMSC Liu et al. (2020c)

1% O2 miR-216a-5p↑ JAK2/STAT3 Promote the proliferation,
migration, and apoptosis
inhibition of chondrocytes

BMSC Rong et al. (2021)

1% O2 miR-17-5p TLR4/PI3K/AKT Modulate proliferation and
synthesis of nucleus pulposus
cells (NPCs) matrix

BMSC Zhou et al. (2022)

1% O2 miR-205-5p PTEN/AKT Promote cartilage regeneration BMSC Shen et al. (2022)

3% O2 miRNA-421-3p mTOR/ULK1/FUNDC1 Activating autophagy BMSC Deng et al. (2023)

0% O2 miR-224-5p TXNIP/HIF-1α Improve myocardial hypoxia
tolerance

ADSC Mao et al. (2022)

1%O2 miR-21-5p (miR-1-3p) SPRY1/PI3K/AKT HUVEC proliferation,
migration, and angiogenesis

ADSC Li et al. (2024)

(Continued on following page)
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TABLE 1 (Continued) Effects of different pre-conditioning approaches on miRNA profiles, miRNA targets and functions.

Pretreatment miRNA Target & pathway Function MSC Reference

TNF-α (10 ng/mL) miR-146a↑ — Reduced antifibrotic effects hucMSC Liang et al. (2019)

TNF-α (10 ng/mL) miR-21-5p↑ PDCD4 Alleviating apoptosis GMSC Yu et al. (2022)

TNF-α (20 ng/mL) miR-34↑, miR-146a↑ Notch1/IRAK1 Enhance M2 macrophage
polarization

hADSC Domenis et al.
(2018)

TNF-α (100 ng/mL) miR-1260b↑ Wnt5a/RANKL Enhance M2 macrophage
polarization and inhibit
periodontal bone loss

GMSC Nakao et al.
(2021)

TNF-α (20 ng/mL) miR-299-3p↑ NLRP3 Attenuates inflammatory
damage caused and promotes
liver tissue repair

hucMSC Zhang et al.
(2020)

TNF-α (20 ng/mL) miR-24-3p↑ Interferon regulatory factor 1
(IRF1)

Promoted the polarization of
M2 macrophages

MenSC Xu et al. (2023)

IL-1β (10 ng/mL) miR-146a↑ — Enhance M2 macrophage
polarization

BMSC Song et al. (2017)

IFN-γ (50 ng/mL) miR-125a↑, miR-125b↑ Stat3 Repress Th17 cell differentiation BMSC Yang et al. (2020)

IFN-γ (10 ng/mL) miR-146b-5p, miR-146b-
3p, miR-155-5p, miR-210-
3p, miR-29b-3p, miR-455-
5p, and miR-886-3p↑

— Modulated the polarization and
inflammatory response of
macrophage

ADSC Ragni et al.
(2020)

IL-6 (1 ng/mL) miR-455-3p↑ PIK3r1 Suppress monocyte/macrophage
activation and alleviate acute
liver injury

hucMSC s Shao et al. (2020)

rhGDF7 (50 ng/mL) miR-369-3p↑ PDE4D/AMPK Preventing I/R-induced
inflammation, oxidative stress
and neural damage

BMSC Wang et al.
(2022)

Tropoelastin miR-451-5p↑ — Maintain Chondrocyte
Phenotype, Formation of
Cartilage Extracellular Matrix

ADSC Meng et al.
(2023)

Peroxiredoxin II miR-221↓, miR-21-5p↑ — Wound healing DMSCs Jin et al. (2021)

LPS (0.1ug/mL) miR-222-3p↑ NF-κB/NLRP3/procaspase-1/
IL-1β

The polarization of
M1 macrophages while
increasing the proportion of
M2 cells

BMSC Zhang et al.
(2023)

LPS (0.1ug/mL) miR-181a-5p↑ Irs1/PI3K/Akt/mTOR Modulated the polarization and
inflammatory response of
macrophage

BMSC Liu et al. (2020a)

LPS (0.5ug/mL) miR-150-5p↑ ATF2 Inhibits myocardial
inflammation and oxidative
stress

BMSC Zheng et al.
(2024)

H₂O₂ (100 µM) miR-21↑ PTEN/PI3K/AKT Protection against oxidative
stress-triggered cell death

BMSC Shi et al. (2018)

H₂S (1 μM) miR-7b-5p↑ FOS CD45 low microglia and
CD45 high brain mononuclear
phagocytes toward a beneficial
phenotype

BMSC Chu et al. (2020)

NO miR-126↑ hP-MSCs Du et al. (2017)

CO (250ppm) miR-145-3p↑, miR-
193a-3p↑

— Enhance autophagy huc-MSC Hwang et al.
(2024)

Hemin (10 μM) miR-183-5p↑ HMGB1/ERK pathway Enhance the cardioprotective
effects by regulating
mitochondrial fission

hBMSC Zheng et al.
(2021)

AGEs (200 μg/mL) miR-146a↑ TXNIP BMSC Wang et al.
(2018)

(Continued on following page)
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efficacy of MSC-EVs, potentially leading to improved
therapeutic outcomes.

2.4 Nutritional and metabolic stress

Incorporating or removing different nutrients from the culture
medium can significantly impact the characteristics of EVs
produced by MSCs, making it an important research direction.
Fitzgerald, J. C.et al. highlighted significant differences in clonal
formation, proliferation, differentiation potential, and
immunomodulatory capacity of MSCs depending on the culture
media used. Specifically, for hBMSCs, the protein profiles of EVs
varied markedly under different media conditions (Fitzgerald et al.,
2023), although miRNA content was not extensively examined.

2.4.1 Serum-free media
Culturing MSCs under serum-free conditions has emerged as a

significant approach due to its impact on various cellular functions
and exosome composition (Giannasi et al., 2023). These
modifications enhance the therapeutic potential of MSC-EVs,
positioning serum-free conditions as a promising strategy for
regenerative medicine. Serum-free culture media have been
shown to influence mitochondrial antioxidant functions and alter
metabolic products in ASCs. In hBMSCs, the application of serum-
free media resulted in an increase in EV-associated miR-17-92 (Nie
et al., 2023). Similarly, when HUCMSCs were cultured in serum-free
media with glucose deprivation, an elevated level of miR-29a-3p was
observed in the EVs (Wu et al., 2024b). Furthermore, combining
hypoxia with nutrient-reduced culture medium led hucMSC to
increased levels of miR-181c-5p, miR-18a-3p, miR-376a-5p, and
miR-337-5p in exosomes (Zhang B. et al., 2022), which promoted
chondrocyte proliferation and migration. These findings underscore
the research significance of serum-free conditions, highlighting their

potential to modulate the miRNA content of EVs and enhance their
therapeutic efficacy.

2.4.2 Nutrient modification
The addition of various substances to specialized culture media

is crucial for enhancing the quantity of EVs secreted by MSCs due to
its ability to influence cellular functions, metabolic processes, and
the miRNA composition of EVs, and several methods have proven
effective in this regard. A common approach is to supplement the
culture mediumwith platelet lysate and growth factors. For instance,
when 10% platelet lysate (Mill Creek Life Sciences) is added to the
medium under 1% hypoxic conditions for 48 h, different MSC
sources, including hBMSCs, heart-derived cells (HDCs), and hUC-
MSCs, exhibit overexpression of miRNAs such as miR-23a, miR-
125b, miR-199a, miR-199b, miR-4454, and miR-7975. These
miRNAs are implicated in processes like endocytosis, immune
response, inflammation, osteogenesis, osteoblast differentiation,
and cell proliferation (Vaka et al., 2023).

Additionally, incorporating a specialized xeno-free supplement
(XFS) into the culture medium induces the overexpression of miR-
145 and miR-214 in EVs, further enhancing their regulatory and
therapeutic functions (Palamà et al., 2023). The effects observed with
XFS supplementation indicate influences beyond hypoxia alone,
underscoring the complexity of culture conditions.

Growth Differentiation Factor 7 (GDF7), also known as
BMP12 and CDMP3, is a member of the transforming growth
factor-β (TGF-β) superfamily, which is vital for various biological
processes, including cell differentiation, survival, embryonic
development, and tumorigenesis (Wang et al., 2022).
GDF7 significantly contributes to cartilage regeneration and
injury repair via the TGF-β signaling pathway (Kong et al.,
2023). When bone marrow-derived mesenchymal stem cells
(BMSCs) are exposed to recombinant human GDF7 (rhGDF7) at
a concentration of 50 ng/mL, the resulting exosomes are enriched

TABLE 1 (Continued) Effects of different pre-conditioning approaches on miRNA profiles, miRNA targets and functions.

Pretreatment miRNA Target & pathway Function MSC Reference

Increased ROS production in
VSMCs promotes their
osteogenic differentiation

Tongxinluo (TXL) (400 μg/mL) miR-146a-5p↑ IRAK1/NF-κB p65 pathway Protect H9C2 cells against
hypoxic injury

BMSC Xiong et al.
(2022)

Atorvastatin (1 μM) miR-221-3p↓ AKT/eNOS pathway Proliferation, migration, tube
formation, and VEGF secretion
in endothelial cells

hBMSC Yu et al. (2020)

Nicorandil (200 μmol/L) miR-125a-5p↑ TRAF6/IRF5 signaling
pathway

Cardiac repair effects and
macrophage polarization toward
M2 phenotype

BMSC Gong et al. (2024)

Low-intensity pulsed ultrasound
(90 mW/cm2)

miR-935↑ — Osteogenic differentiation and
anti-inflammation

SCAP Zhang T. et al.
(2022)

Low-intensity pulsed ultrasound
(300 mW/cm2)

miR-487b-3p↑, miR-
328-5p↑

MAPK pathway Anti-inflammatory phenotype BMSC Li W. et al. (2023)

50 μg/mL Fe3O4 and a
100 mT SMF

miR-1260a↑ HDAC7 and COL4A2 Bone regeneration and
angiogenesis

hBMSC Wu et al. (2021)

Blue (455 nm) monochromatic
light

miR-135b-5p↑, miR-
499a-3p↑

MEF2C signaling HUVEC migration and vessel
formation

hucMSC s Yang et al. (2019)
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with miR-369-3p, suggesting their potential therapeutic application
in treating cerebral ischemia/reperfusion (I/R) injury (Tao
et al., 2023).

In summary, several approaches have been discussed here to
facilitate changes in miRNA content in EVs, enhancing their
therapeutic potential. Recently, some studies have discovered
more preconditioning methods that can selectively alter the
expression of specific miRNAs. Engineering MSC-EVs has
emerged as a promising acellular therapeutic approach, utilizing
techniques such as CRISPR/Cas9, co-transfection, lentiviral and
adenoviral transduction, nanoparticle carriers, and
electroporation (Christoffers et al., 2024). CRISPR/Cas9 allows
for precise genome editing by introducing the Cas9 nuclease and
specific guide RNAs, enabling targeted miRNA modulation. Other
miRNAs, such as miR-200a-3p (Zhang et al., 2024a) and miRNA-
223-3p (Zhao et al., 2020), have been incorporated into MSC-EVs
through alternative methods, contributing to their therapeutic
efficacy in various diseases.

3 Challenges in MSC-EV therapy and
potential solutions

The therapeutic potential of SC-EVs is significant, but several
challenges need to be addressed to optimize their clinical
applications.

3.1 Source-related variability of MSCs

One of the major limitations in current studies is the variability
introduced by MSCs derived from different sources, such as bone
marrow, adipose tissue, or umbilical cord. These sources exhibit
inherent biological differences that can significantly affect the
therapeutic properties of their EVs (Wu et al., 2018). This
variability presents a challenge for standardizing preconditioning
methods and ensuring consistent results across studies. In view of
practical clinical applications, it is suggested that human MSC
should be preferentially selected in subsequent studies to reduce
the impact of species differences (Darlington et al., 2011). To address
these challenges, standardized protocols must be developed to
harmonize differences between MSC sources and facilitate
reliable comparisons. Moreover, under identical conditions,
MSCs from different sources may lead to differential expression
of miRNAs, emphasizing the need for more research into
preconditioning methods tailored to specific MSC sources to
ensure the therapeutic potential of their EVs is fully optimized.

3.2 Purification and miRNA variability in
MSC-EVs

Ultracentrifugation remains the most commonly used method
for MSC-EV purification, though clinical applications have explored
the use of purification reagents (Takakura et al., 2024; My et al.,
2018). However, the efficacy of these methods has not been fully
validated, and further investigation into their comparative
effectiveness is necessary. One promising solution is a novel

microbead-based immunocapture method, which integrates
subpopulation selection, electroporation-mediated miRNA
loading, and post-electroporation purification into a unified
workflow. This approach can effectively eliminate vesicles that
lack miRNAs, enhancing the therapeutic efficacy of MSC-derived
EVs and optimizing their application for various diseases (Torabi
et al., 2024).

3.3 Gene editing for miRNA modulation
in MSCs

Developing advanced gene-editing protocols using tools like
CRISPR/Cas9 presents a promising avenue to precisely modulate
miRNA expression in MSCs, thereby controlling the miRNA
composition of their EVs (Zhu et al., 2023b). By knocking out
undesirable miRNAs that may promote adverse effects or
introducing beneficial miRNAs with proven therapeutic efficacy,
researchers can engineer MSCs to produce EVs with specific,
disease-targeted miRNA profiles. This approach shows significant
potential for directly inducing the overexpression of specific
miRNAs in MSC-derived EVs to achieve therapeutic effects.
However, its practical feasibility and applicability remain
uncertain, as further research and validation are required to
confirm its safety and effectiveness in real-world clinical settings.

Moreover, standardized protocols are essential to address
challenges such as off-target effects, reproducibility, and
scalability, ensuring consistent and predictable therapeutic
outcomes. These advancements could pave the way for the
clinical translation of engineered MSC-EVs as a targeted and
innovative therapeutic tool.

3.4 Batch-to-batch consistency in EV
production

Variations in culture conditions, cell passage numbers, and EV
isolation methods can lead to inconsistencies in EV miRNA content
and functionality (Nazari-Shafti et al., 2020). To ensure
reproducibility in clinical applications, it is critical to address
batch-to-batch variability. Advanced analytical techniques, such
as next-generation sequencing and proteomics, should be
employed to characterize miRNA profiles across different batches
(Roura and Bayes-Genis, 2019). Additionally, refining standard
operating procedures for MSC culture, EV isolation, and storage
conditions will help reduce variability and ensure consistent and
reliable EV production. This approach is essential for the successful
clinical translation of MSC-EV-based therapies, offering effective
treatments for a range of diseases.

4 Conclusion and prospects

MSC-EV therapy is distinguished by its stability and its ability to
address various safety concerns including oncogenicity,
immunogenicity, and genomic variability. This therapeutic
approach has demonstrated significant potential (Racchetti and
Meldolesi, 2021) in managing a broad spectrum of inflammatory
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(dos Santos et al., 2024) and immune (Liu et al., 2021) disorders. The
efficacy of each preconditioning method varies, influenced by the
treatment objectives, desired outcomes, and the origin of the MSCs.
Under diverse stimulation conditions, the exosomes produced by
MSCs show an enhanced expression of multiple miRNAs, which are
consistently validated across studies for their roles in various
diseases. For instance, the miR-21 family is recognized for its
implications in various cancers, influencing lipid metabolism
(Baer et al., 2013), autophagy (Yang et al., 2015b), and apoptosis
(Sadri Nahand et al., 2021). The miR-146 family, which includes
miR-146a and miR-146b, modulates immune and inflammatory
responses (Paterson and Kriegel, 2017) and exhibits cancer-
suppressive effects in pathways such as those involving platelet-
derived growth factor and NF-κB (Liu et al., 2015). The miR-125
family, crucial for immune defense and hematopoietic regulation
(Sun et al., 2013), and miR-126, significant for vascular endothelial
cell function and inflammation reduction (Liao et al., 2024), are also
of interest (Shaham et al., 2012). The regulatory roles of miR-126
and the miR-17/92 family in endothelial cells, alongside the impact
of the miR-143/145 family and miR-21 in smooth muscle cell
regulation, are particularly relevant in regenerative medicine
(Liao et al., 2024). The pre-conditioning approaches mentioned
in the paper and the corresponding changes in miRNAs, especially
their targets and functions, are summarized (Table 1). It is
noteworthy that the extensive validation of the role and
mechanism of a specific miRNA may lead to future study focus
that inadvertently neglects the exploration of other miRNAs.

Accordingly, we should pursue a balanced approach to miRNA
study, ensuring that while certain miRNAs are rigorously
characterized, the exploration of other miRNAs is not neglected,
thus preserving a wide-ranging focus in the field. To provide an
intuitive overview, we present a flow chart summarizing the current
state of research on different pretreatment methods applied toMSCs
and their effects (Figure 1).

The expression of miRNAs in exosomes exhibits variability not
only at the level of individual miRNAs but extends to broader
patterns, although studies have often concentrated on miRNAs
associated with specific diseases. This indicates that a more
holistic approach is warranted in future investigations, especially
in determining the potential role of MSC-derived EVs, produced
under external stimuli, in cancer therapy. Immune checkpoint
blockade (ICB) is pivotal in the tumor immune
microenvironment, and the exploration of miRNA targeting to
augment ICB efficacy in cancer treatment is a promising area of
research (Zhang et al., 2024b). Gene-editing technologies such as
CRISPR/Cas9 offer promising avenues for the precise regulation of
miRNA expression in MSC-EVs, thereby enhancing their
therapeutic potential. Moreover, the integration of these
advanced techniques with traditional preconditioning methods
could optimize the therapeutic efficacy of MSC-EVs, particularly
in cancer therapy where ICB is critical. In conclusion, MSC-EV
therapy is advancing toward clinical application as a promising cell-
free therapeutic modality (Zhao et al., 2021). However, the lack of
standardized protocols for MSC-EV preconditioning and

FIGURE 1
Overview of preconditioning strategies for extracellular vesicles derived from MSCs of different origins. The figure summarizes current
preconditioning approaches for MSCs from various sources, such as bone marrow, adipose tissue, and umbilical cord. These strategies include hypoxia,
pharmacological treatments, chemical stimulation, and physical stress, aiming to enhance the biological properties and therapeutic efficacy of EVs they
produce. Differences in response to preconditioning between MSC sources are highlighted, emphasizing the importance of source-specific
optimization in future applications.
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purification remains a significant challenge. Future research should
focus on elucidating miRNA changes under diverse preconditioning
strategies to develop more targeted therapeutic approaches and
improve EV purification techniques. Expanding MSC-EV
applications to a broader range of diseases, including cancer,
immune disorders, and degenerative conditions, is also crucial.
Integrating advanced technologies, such as gene editing and
innovative purification methods like microbead-based
immunocapture, can enhance therapeutic efficacy and facilitate
clinical translation. These advancements will help bridge the gap
between experimental research and clinical application, unlocking the
full potential of MSC-EVs for personalized and effective therapies.
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