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This cohort study aimed to evaluate the prognostic outcomes of patients with
acute ischemic stroke (AIS) and diabetes mellitus following intravenous
thrombolysis, utilizing machine learning techniques. The analysis was
conducted using data from Shenyang First People’s Hospital, involving
3,478 AIS patients with diabetes who received thrombolytic therapy from
January 2018 to December 2023, ultimately focusing on 1,314 patients after
screening. The primary outcome measured was the 90-day Modified Rankin
Scale (MRS). An 80/20 train-test split was implemented for model
development and validation, employing various machine learning
classifiers, including artificial neural networks (ANN), random forest (RF),
XGBoost (XGB), and LASSO regression. Results indicated that the average
accuracy of the XGB model was 0.7355 (±0.0307), outperforming the other
models. Key predictors for prognosis post-thrombolysis included the
National Institutes of Health Stroke Scale (NIHSS) and blood platelet count.
The findings underscore the effectiveness of machine learning algorithms,
particularly XGB, in predicting functional outcomes in diabetic AIS patients,
providing clinicians with a valuable tool for treatment planning and improving
patient outcome predictions based on receiver operating characteristic
(ROC) analysis and accuracy assessments.
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Introduction

Stroke is one of the leading causes of death and disability
worldwide (Benjamin et al., 2018) and has become the primary
cause of death in China, imposing a significant social and economic
burden on society and families (Zhou et al., 2019). Acute ischemic
stroke (AIS) accounts for approximately 69.6%–70.8% of all stroke
cases (Wang D. et al., 2017; WangW. et al., 2017). Alteplase (rt-PA),
when administered within 4.5 h of symptom onset, has been shown
to improve long-term outcomes in stroke patients. Furthermore,
alteplase is the only pharmacological intervention approved for the
treatment of acute ischemic stroke (Zeinhom et al., 2024).

In addition, diabetes mellitus is a prevalent chronic disease and a
recognized risk factor for stroke (Visseren et al., 2021). The
prevalence of diabetes among all types of stroke is 28%. Studies
have shown that ischemic stroke (33%) is more common than
hemorrhagic stroke (26%) (Lau et al., 2019). Among patients
with ischemic stroke, those with diabetes tend to be relatively
younger and have more comorbidities than nondiabetic patients
do (Echouffo-Tcheugui et al., 2018). In addition, people with
diabetes are at a greater risk of experiencing a recurrence of
stroke than are those without diabetes (Zhang et al., 2021).

Diabetes mellitus is a significant risk factor affecting the prognosis
of patients with AIS who undergo intravenous thrombolysis with
recombinant tissue plasminogen activator (rt-PA) (Jian et al., 2023).
Although previous studies have indicated that various risk factors
influence the prognosis of patients with diabetes mellitus and AIS
following intravenous thrombolytic therapy, there has been a lack of
research utilizing machine learning methods to predict outcomes in
patients with such comorbidities. Therefore, our objective was to
develop and assess the applicability of machine learning (ML) models
for predicting prognosis after intravenous thrombolysis in patients
with diabetes mellitus and AIS. Additionally, we analyzed and
highlighted the importance of the input variables to identify the
most significant predictors of patient prognosis.

Methods

Standard protocol approval, registration,
and patient consent

This study was designed as an observational, single-center,
retrospective cohort study that included data from the follow-up
center of Shenyang First People’s Hospital. The primary objective of
this study was to assess and compare the efficacy of different
machine learning models in predicting the prognosis of ischemic
stroke in patients with diabetes following thrombolytic therapy. To
ensure ethical considerations and maintain research integrity, this
study was officially approved by the Research Ethics Committee of
Shenyang First People’s Hospital (Grant No. 2023SYKYPZ58).

Study design and population

Patients with acute ischemic stroke who were admitted to our
hospital had received rt-PA thrombolytic therapy within 4.5 h were
eligible for the study. All patients were evaluated and managed

according to the criteria outlined in institutional stroke protocols,
adhering to both international and domestic guidelines. In addition
to laboratory tests, MRS is assessed in patients with acute ischemic
stroke 3 months after the onset of symptoms.

The inclusion criteria for this study were as follows: 1) patients who
experienced consecutive ischemic strokes between 2018 and 2023; 2)
patientswith a documented history of diabetesmellitus or those exhibiting
fasting blood glucose ≥100mg/dL orHbA1c≥ 5.7%11; and 3) individuals
who received rt-PA therapy within 4.5 h of symptom onset. Participants
were excluded on the basis of the following criteria: 1) underwent
urokinase thrombolytic therapy; 2) received stent therapy; 3)
underwent balloon therapy; 4) lacked 90-day MRS; 5) other surgical
procedures; and 6) individuals without a history of diabetes mellitus,
fasting blood glucose measurements, or HbA1c laboratory markers. In
addition, in order to deal withmissing values in the data, we use theMICE
(Multiple Imputation Chain Equation) method (Supplementary Table 4).

Clinical variables

Data on baseline and demographic factors, including patient age
and sex, were collected. The clinical factors included the National
Institutes of Health Stroke Scale (NIHSS) score and stroke subtype,
as classified by the Acute Stroke Treatment (AIS) classification in the
ORG 10172 trial (TOAST). Additionally, data on vascular risk
factors, including systolic blood pressure and smoking status,
were gathered. Laboratory results, which included measurements
of weight, fasting blood glucose (FBG), white blood cell count, blood
platelet count, hemoglobin, HbA1c, cholesterol (CHOL), albumin
(ALB), globulin (GLOB), albumin-to-globulin ratio (AG), alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
creatinine, stress hyperglycemia (SHR), DL-homocysteine, and
hypersensitive C-reactive protein, were also obtained. The
outcomes were assessed at 3 months via the modified Rankin scale.

Primary results

The clinical outcomes of the patients were monitored 3 months
after the onset of symptoms. Functional outcomes were assessed via
the 90-day MRS, a widely recognized instrument for measuring
disability and evaluating recovery post-stroke. Two definitions of a
favorable functional outcome were established: MRS of 0–1 and MRS
of 0–2. The primary outcome was defined as 90-day MRS of 0–1,
indicating that patients with 90-dayMRS ranging from two to six were
associated with a poor prognosis, whereas those with 90-day MRS of
0–1 were associated with a favorable prognosis. The secondary
outcome was defined as a 90-day MRS of 0–2, with patients
scoring between three and six reflecting a poor prognosis, whereas
those with 90-dayMRS of 0–2 demonstrated a good prognosis. All the
data were collected by trained study coordinators who remained
blinded to the baseline characteristics of the subjects.

Machine learning model development

A total of 38 clinical and laboratory indicators were utilized in
the development of an ML model aimed at predicting the prognosis
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of patients with comorbidities following intravenous thrombolysis.
Clinical and laboratory indicators using p < 0.05 were used as
inputs for machine learning. Experiments were subsequently
conducted employing four machine learning classifiers, namely,
LASSO regular logistic regression (LASSO) (Kang et al., 2021),
random forest (RF) (Jin et al., 2023), extreme gradient boosting
(XGB) (Lei et al., 2023), and artificial neural network (ANN)
(Chun-An Cheng and Hung-Wen Chiu, 2017), to construct a
proprietary model for predicting each study outcome. In this
investigation, hierarchical k-fold cross-validation, class
weighting, and random search techniques were implemented to
mitigate overfitting and optimize the model. Initially, the dataset
was partitioned into a training set and a test set in an 80:20 ratio,
comprising 1,051 and 263 participants, respectively. The training
dataset was further divided into five segments, and cross-validation
was performed by ensuring that each segment maintained the same
class proportions. This cross-validation process helps prevent
overfitting to specific datasets and fosters the development of a
more generalized model. To address the issue of data imbalance,
class weighting techniques were applied alongside focus loss and
resampling methods. The categorical ratio for each outcome
variable was determined on the basis of the 90-day MRS, which
was calculated as the average loss of contribution.

In recent years, the enhancement of machine learning (ML)
model performance has increased the significance of explainable
artificial intelligence (XAI), which aims to elucidate model
outcomes. Among the various methodologies employed, SHAP
(SHapley Additive exPlanations) (Dewi et al., 2023) is utilized to
quantitatively represent feature attribution. It is essential that feature
attribution adheres to the principles of local accuracy, omission, and
consistency. Notably, the SHAP value is the sole additive feature
importance metric that fulfills these three criteria. Furthermore, the
model’s impact is assessed by accounting for the interdependencies
among variables. Consequently, the contribution of each variable to
prognostic predictions can be visually analyzed. Therefore, the
feature importance and relationships among prognostic
correlation variables were derived through the application of
SHAP values.

Statistical analysis

Categorical variables are presented as counts with
corresponding percentages (%), whereas continuous variables are
reported as the means with standard deviations (SD) or medians
with interquartile ranges (IQR). The Kolmogorov-Smirnov test was
employed to verify the presence of a normal distribution. To
evaluate differences between parametric continuous variables, the
t-test was utilized; for nonparametric variables, the Mann‒Whitney
U test was applied; the chi‒square test was used for categorical
variables; and Fisher’s exact test was conducted for 2 × 2 contingency
tables. No adjustments were made for multiple comparisons. A
bilateral p value of less than 0.05 was considered statistically
significant. The area under the ROC curve (AUC), accuracy, and
F1 score for each machine learning model were computed to assess
the performance of the developed machine learning model. All
analyses were conducted via R version 4.4.0 and Python version
3.11.7. Optuna:1.4.0,TensorFlow version 2.6.0 and scikit-learn

version 1.0.2 are used for model training. SHAP 0.40.0 is used to
calculate the SHAP value.

Results

Baseline characteristics

During the study period, a total of 3,478 patients were admitted
to the hospital for acute stroke, of which 1,314 patients were
enrolled in this study (Figure 1). The mean age of the participants
was 64.00 years (with a range of 58.25–71.00 years), and the
duration from stroke onset to the return visit was 3 months.
Within our cohort, the median NIHSS score was 3 (IQR 1–4).
According to the MRS score, 779 of the 1,314 enrolled patients
exhibited a favorable prognosis 3 months post-stroke. The baseline
characteristics of the groups with good and poor prognoses are
presented in Table 1. Poor prognosis was significantly associated
with older age, a history of cardiac disease, hyperlipidemia, lower
body weight, and a higher initial NIHSS score. Additionally, the
group with poor prognostic outcomes had lower lymphocyte
counts and albumin‒globulin ratios (AGs), as well as elevated
neutrophil counts, blood platelet counts, total bilirubin (TBL),
direct bilirubin (DBL), globulin (GLOB), creatinine, hypersensitive
C-reactive protein, and DL‒homocysteine levels (Table 1).
Therefore, we used these abnormal indicators as inputs to the
machine learning model to verify which machine learning
predicted the prognosis of patients with the highest accuracy
(Supplementary Table 1).

Predictive models

Four predictive models, namely, the LASSO, RF, XGB, and ANN
models, were developed to assess patient prognosis. The mean
predicted prognostic accuracies were 0.7269 (±0.0317) (XGB),
0.7088 (±0.03653) (LASSO), 0.7250 (±0.0201) (RF)and 0.5613
(±0.0252) (ANN) (Figure 2). Additionally, the receiver operating
characteristic (ROC) curves for the best-performing models, along
with their corresponding confusion matrices, are presented in
Figure 2. Notably, the XGB model demonstrated the highest
average accuracy, followed by RF, LASSO, and ANN (Figure 3).

FIGURE 1
Study enrollment process.
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TABLE 1 Demographic and clinical features and laboratory indices of diabetic patients receiving rt-PA thrombolytic therapy after stroke for primary
outcome.

Overall (1314) Good prognosis (779) Poor prognosis (535) p Test

Demographic characteristics

Male (%) (man) 921 (70.1) 554 (71.1) 367 (68.6) Exact

Age (median [IQR]) 64.00 [58.25, 71.00] 63.00 [58.00, 69.00] 66.00 [60.00, 74.00] <0.001 Nonnorm

Weigh (median [IQR]) 70.00 [63.00, 78.00] 70.00 [65.00, 80.00] 70.00 [60.00, 75.50] 0.003 Nonnorm

Vascular risk factors

Systolic pressure (mean (SD) 149.72 (18.22) 148.91 (18.15) 150.90 (18.26) 0.052

Diastolic blood pressure (mean (SD) 85.99 (11.59) 85.97 (11.27) 86.02 (12.05) 0.942

smoking (%) 752 (57.2) 429 (55.1) 323 (60.4) 0.061 Exact

History of heart failure (%) 1282 (97.6) 769 (98.7) 513 (95.9) 0.002 Exact

History of alcohol consumption (%) 929 (70.7) 545 (70.0) 384 (71.8) 0.498 Exact

diabetes (%) 634 (48.2) 376 (48.3) 258 (48.2) 1 Exact

Hyperlipidemia (%) 1125 (85.6) 653 (83.8) 472 (88.2) 0.031 Exact

Stroke characteristics

Toast (%) <0.001 Exact

LAA 977 (74.4) 568 (72.9) 409 (76.4)

SAO 218 (16.6) 160 (20.5) 58 (10.8)

CE 91 (6.9) 32 (4.1) 59 (11.0)

SUE 27 (2.1) 18 (2.3) 9 (1.7)

SOE 1 (0.1) 1 (0.1) 0 (0.0)

NIHSS (median [IQR]) 3.00 [2.00, 6.00] 3.00 [2.00, 4.00] 5.00 [3.00, 10.00] <0.001 Nonnorm

Laboratory findings

FBG (mean (SD)) 9.01 (4.00) 8.86 (4.03) 9.24 (3.94) 0.088

White blood cell count (mean (SD)) 8.38 (18.53) 7.64 (2.20) 9.45 (28.90) 0.081

Lymphocyte count (mean (SD)) 1.80 (0.63) 1.86 (0.61) 1.70 (0.64) <0.001

Neutrophil count (mean (SD)) 5.44 (2.32) 5.14 (2.05) 5.88 (2.61) <0.001

RBC (mean (SD)) 4.58 (1.29) 4.57 (0.64) 4.59 (1.86) 0.865

Blood platelet count (mean (SD)) 142.86 (108.62) 130.03 (107.17) 161.55 (108.09) <0.001

Hemoglobin (mean (SD)) 155.80 (84.66) 158.26 (89.89) 152.22 (76.35) 0.204

HbA1c (mean (SD)) 7.36 (1.74) 7.33 (1.69) 7.41 (1.81) 0.39

CHOL (mean (SD)) 4.96 (1.21) 4.99 (1.20) 4.92 (1.22) 0.283

HDL-C (mean (SD)) 1.02 (0.26) 1.02 (0.27) 1.03 (0.25) 0.893

LDL-C (mean (SD)) 3.23 (0.83) 3.23 (0.80) 3.24 (0.87) 0.756

TG (mean (SD)) 1.93 (1.48) 1.99 (1.49) 1.84 (1.46) 0.066

TBIL (mean (SD)) 16.73 (6.88) 16.22 (6.23) 17.48 (7.67) 0.001

DBIL (mean (SD)) 2.95 (1.62) 2.87 (1.55) 3.07 (1.71) 0.022

TP (mean (SD)) 66.78 (5.78) 66.60 (5.55) 67.03 (6.10) 0.186

ALB (mean (SD)) 40.90 (3.56) 41.03 (3.46) 40.71 (3.70) 0.111

GLOB (mean (SD)) 25.88 (4.69) 25.57 (4.66) 26.32 (4.70) 0.004

(Continued on following page)
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Functional importance

We identified significant variables for predicting prognosis through
the SHAP values derived from the optimal predictive model, XGB.
The most critical variables for assessing stroke prognosis include the
discharge NIHSS score and blood platelet count. SHR ranks as the
secondmost important prognostic predictor, followed by age,creatinine
and lymphocyte count (Figure 4). Other notable features identified from
the 3 ML models include weight, GLOB, neutrophil count, and TBIL
(Supplementary Figure 1).

Secondary outcomes

The 90-day MRS (0–2) was used as a secondary outcome
measure. The factors that had a greater impact on the
secondary outcome (p < 0.05) were selected as input items for
machine learning (Supplementary Tables 2, 3). The average
accuracy of the prognostic predictions via the 4 ML models was
as follows: 0.8088 (0.0242) for XGBoost, 0.7888 (0.0203) for ANN,
0.7840 (0.0203) for RF, and 0.8030 (0.0184) for LASSO
(Supplementary Figure 2). XGB exhibited the highest average

TABLE 1 (Continued) Demographic and clinical features and laboratory indices of diabetic patients receiving rt-PA thrombolytic therapy after stroke for
primary outcome.

Overall (1314) Good prognosis (779) Poor prognosis (535) p Test

AG (mean (SD)) 1.65 (0.41) 1.68 (0.46) 1.60 (0.32) 0.001

ALT (mean (SD)) 22.55 (17.67) 22.69 (16.26) 22.35 (19.55) 0.729

AST (mean (SD)) 21.84 (13.90) 21.98 (14.64) 21.63 (12.75) 0.656

Creatinine (mean (SD)) 73.38 (32.19) 70.86 (26.78) 77.06 (38.46) 0.001

SHR (mean (SD)) 1.20 (0.36) 1.19 (0.36) 1.23 (0.36) 0.025

Blood urea nitrogen (mean (SD)) 5.88 (1.88) 5.82 (1.87) 5.96 (1.91) 0.191

Hypersensitive C-reactive protein (mean (SD)) 6.69 (13.76) 6.04 (13.29) 7.64 (14.37) 0.038

DL-Homocysteine (mean (SD)) 17.82 (10.94) 17.22 (10.88) 18.68 (10.97) 0.017

Abbreviations: TOAST, Trial of ORG, 10172 in Acute Stroke Treatment, LAA, large artery atherosclerosis; SVO, Small vessel occlusion; CE, Cardioembolism; OD, Other determined; UD,

undetermined, NIHSS NIH, Stroke Scale score; FBG, fasting blood glucose; CHOL, Cholesterol; HDL-C, High-density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; TG,

triglyceride; TBIL, total bilirubin; DBIL, direct bilirubin; TP, total protein; ALB, albumin; GLOB, globulin; AG, Albumin-to-globulin ratio,ALT, alanine aminotransferase; AST, aspartate

transaminase; SHR, stress hyperglycemia.

The bold values indicates that the P-value is less than 0.05.

FIGURE 2
Comparison ofmachine learningmodel performance for the prediction of thrombolytic therapy prognosis according to the primary outcome of the
best-performing model, XGB.
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accuracy, followed by LASSO, ANN and RF. The ROC curves for
the best-performing models are presented in the supplementary
figure. The area under the curve (AUC) for prognostic prediction
was 0.76 for XGBoost, 0.76 for RF, 0.74 for ANN and 0.72 for
LASSO (Supplementary Figure 3).

Discussion

This study aimed to develop and validate a machine learning
(ML) model intended to predict the prognosis of diabetic patients
following thrombolysis in cases of acute ischemic stroke. The results

FIGURE 3
Receiver operating characteristic curves for the developed machine learning models and the confusion matrix of the best-performing model, XGB.

FIGURE 4
SHapley additive exPlanation values of the best prediction model, XGB.
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indicate that ML techniques, particularly the XGB model, can
effectively predict patient outcomes post-thrombolysis. This
advancement offers a novel tool for the management of
individuals with diabetes mellitus and stroke. Furthermore, our
findings provide empirical evidence supporting the application of
ML technology in medical prognostication and suggest potential
avenues for future research.

Among the 4MLmodels examined in this study, the XGBmodel
demonstrated the highest accuracy and the largest area under the
curve (AUC), suggesting superior performance in predicting
prognosis following thrombolysis in patients with diabetes
mellitus and AIS. Since there is still some controversy about how
to classify MRS to represent the prognosis of patients (Bala et al.,
2023), we will determine the impact of two different grading
methods on the prediction of machine learning models, and find
that the XGB model performs well and accurately under different
MRS grades. This finding aligns with the literature, as previous
studies have indicated that XGB models are effective in various
medical prediction tasks. For example, the prognosis of AIS patients
was accurately forecasted via the XGB model, which exhibited high
predictive performance on the basis of three key biomarkers: age,
weight, and the NIHSS score (Chung et al., 2023). Consequently, our
predictive analysis utilizing the XGB model identified several
significant predictors, including stroke severity (NIHSS), blood
platelet count,SHR,age, lymphocyte count, and creatinine. These
predictors have been previously investigated in traditional models,
with the NIHSS score recognized as a critical predictor of patient
prognosis (Tanaka et al., 2013) in patients with acute ischemic stroke
complicated by diabetes. Furthermore, research examining the
relationship between blood platelet metrics (Chai et al., 2013)
and prognosis has highlighted the significant influence of blood
platelet reactivity (Harima et al., 2019) and aggregation on patient
outcomes, underscoring the importance of incorporating the blood
platelet count in functional outcome predictions. These findings
substantiate the accuracy of the predictors identified in our XGB
model and affirm their clinical relevance.

This study presents an innovative approach that integrates
machine learning (ML) techniques with demographic
information, past medical history, and laboratory data to predict
patient prognosis following thrombolysis. This methodology
contrasts with previous research that has relied predominantly on
traditional statistical models or isolated variables. Additionally, we
use the SHAP method to elucidate the contribution of each input
variable to the predictive outcomes, thereby enhancing the
explanatory power and transparency of our model. The SHAP
values offer an intuitive framework for understanding the
predictive logic of ML models, which is particularly crucial in the
context of healthcare predictive modeling. For example, a study
conducted by Lee et al. demonstrated that the XGB model could
effectively predict factors influencing patient prognosis via SHAP
values (Lee et al., 2023).

Nonetheless, several limitations are present in our study. First,
the research is based on data from a single center, which may restrict
the generalizability of the findings due to the specific patient
population and standard of care at that institution. Similar to the
limitations identified in our study, previous research has indicated
that results derived from single-center data may lack broad
applicability. Consequently, future investigations should aim for

external validation across multiple centers and diverse patient
cohorts to increase the generalizability and reliability of the
model. Second, owing to high attrition rates and suboptimal
follow-up after 1 year, we utilized the 90-day MRS as the
primary outcome variable instead of the score obtained after
1 year. The correlation between carotid atherosclerosis and the
90-day MRS (Wu et al., 2024), as analyzed in the study by Wu
et al., suggests that the 3-month MRS can serve as a predictor of
patient prognosis; however, scores obtained after 1 year typically
exhibit greater sensitivity and specificity. Therefore, future studies
should endeavor to minimize follow-up attrition and utilize long-
term outcome measures whenever feasible to comprehensively
evaluate the long-term prognosis of patients. Additionally, while
we have identified certain risk factors that can be managed through
medication (e.g., blood platelet count and creatinine), there is
limited evidence regarding the effectiveness of controlling these
factors to enhance patient outcomes. Relying solely on the
management of these risk factors may not be adequate to
significantly improve patient outcomes; thus, a combination of
comprehensive treatment strategies and individualized
management may be necessary. Future research should explore
the integration of machine learning prediction outcomes with
comprehensive treatment strategies to achieve improved
prognostic results.

In conclusion, our research demonstrates that machine learning
(ML) techniques, particularly the XGBoost (XGB) model, are
effective in predicting the prognosis following thrombolysis in
patients with acute ischemic stroke who also have diabetes
mellitus. This finding introduces a novel tool for the treatment
and management of individuals with both diabetes and stroke.
Future investigations should aim to validate these results in
multicenter cohorts and further examine how comprehensive
measures can be employed to enhance patient outcomes. By
deepening our understanding and utilizing the predictive
capabilities of ML models, we can anticipate improved outcomes
in the treatment and management of stroke.

Conclusion

To summarize, our study highlights the effectiveness of
extreme gradient boosting (XGB) as a machine learning
technique for predicting outcomes in patients with diabetes
mellitus who experience acute ischemic stroke following
intravenous thrombolysis. By utilizing the 90-day MRS (0–1)
as the primary outcome, we compared the predictive accuracy
of XGB with that of LASSO, RF, and ANN. XGB was ultimately
selected for its superior performance, and we elucidated its
advantages as a predictive tool. Additionally, we identified the
risk factors that most significantly influenced the prognostic
predictions by employing SHAP to interpret the XGB model’s
predictions. This methodology has allowed us to clarify the key
predictive determinants of thrombolytic therapy outcomes in
patients with acute ischemic stroke and diabetes. Despite
certain limitations, the XGB-based model presented in this
study serves as a robust tool for clinicians, offering valuable
insights for treatment planning and facilitating more accurate
predictions of patient outcomes.
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