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Metabolic dysfunction-associated steatotic liver disease (MASLD) has become
the most prevalent chronic liver disease worldwide, but effective treatments are
still lacking. Metabolic disorders such as iron overload, glycolysis, insulin
resistance, lipid dysregulation, and glutaminolysis are found to induce liver
senescence and ferroptosis, which are hot topics in the research of MASLD.
Recent studies have shown that Hippo–YAP1/TAZ pathway is involved in the
regulations of metabolism disorders, senescence, ferroptosis, inflammation, and
fibrosis in MASLD, but their complex connections and contrast roles are also
reported. In addition, therapeutics based on the Hippo–YAP1/TAZ pathway hold
promising for MASLD treatment. In this review, we highlight the regulation and
molecular mechanism of the Hippo–YAP1/TAZ pathway in MASLD and
summarize potential therapeutic strategies for MASLD by regulating
Hippo–YAP1/TAZ pathway.
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1 Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic
disorder that can develop into metabolic dysfunction-associated steatohepatitis (MASH)
which can lead to liver fibrosis, cirrhosis, and even cancer (Lazarus et al., 2022). High-fat
obesity is the most prevalent cause of MASLD, affecting 20%–30% of the global population.
Metabolic disorders such as iron overload, glycolysis, insulin resistance, lipid dysregulation,
and glutaminolysis are the basis of MASLD (Chen et al., 2020). However, effective
treatments for MASLD are still lacking, and underlying molecular mechanisms
remain unclear.

The Hippo pathway is first discovered to regulate cell density and organ size through its
downstream effectors, Yes-associated protein 1 (YAP1) and transcriptional coactivator with
PDZ-binding motif (TAZ) (Russell and Camargo, 2022). Hippo-YAP1/TAZ pathway can
regulate the inflammation of macrophages or the fibrogenic program of hepatocytes by
binding to the TEA domain (TEAD) family (Mia and Manvendra, 2022). In addition,
Hippo–YAP1/TAZ pathway has been recently found to regulate metabolic disorders, which
induce senescence and ferroptosis, which are hot toptics in the research of MASLD
(Nguyen-Lefebvre et al., 2021). Cellular senescence, a hallmark of aging, is characterized
by a stable arrest of the cell cycle and a secretion of pro-inflammatory proteins known as
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senescence-associated secretory phenotypes (SASP), which promote
liver fibrosis (López-Otín et al., 2013). Ferroptosis, a new manner of
cell death characterized by iron-dependent phospholipid
peroxidation, is also found to regulate cell death and
inflammation in the pathological process of MASLD (Ogrodnik
et al., 2019; Minamino et al., 2009). However, the research of
Hippo–YAP1/TAZ pathway in MASLD are still in its infancy
and their contrast roles on senescence, ferroptosis, inflammation,
and fibrosis are also found.

In this review, we highlight the regulation and mechanism of the
Hippo-YAP1/TAZ pathway in metabolism disorders, cellular
senescence, ferroptosis, inflammation, and fibrosis on the
progression of MASLD, which may offer new insights for
developing effective treatment strategies for MASLD.

2 Hippo-YAP1/TAZ signaling pathway

Hippo signaling is first identified to regulate organ growth
(Moya and Halder, 2019; Ma et al., 2015). Hippo signaling senses
extracellular mechanical stimuli and triggers a kinase cascade, the
mammalian sterile 20-like kinase 1/2 (MST1/2), and large tumor
suppressor 1 and 2 (LATS1/2). MST1/2 phosphorylates its adaptor
protein salvador 1 (SAV1) to facilitates its interaction and
phosphorylation with LATS1/2. MST1/2 also phosphorylates
MOB kinase activator 1A/B (MOB1A/B), enabling MOB1A/B to
bind the auto-inhibitory region of LATS1/2 and promote full
LATS1/2 activation (Moya and Halder, 2019; Ma et al., 2015;
Hansen et al., 2015). The phosphorylation of LATS1/2 can
further phosphorylate YAP1 and TAZ, leading to their retention
in the cytoplasm and subsequent proteasomal degradation (Hansen
et al., 2015). Inhibition of YAP1 and TAZ phosphorylation facilitate
them to bind with TEAD as transcriptional coactivators, thus
regulating various cellular behaviors (d’Angelo et al., 2019).

Mitogen-Activated Protein Kinase 4 (MAP4K) family, 4 Fat
molecules (FAT1-4), and thousand and one kinases (TAOK1/2/3),
have been found to phosphorylate LATS1/2 directly, or through
activation of the MST1/2 kinases, respectively (Yu and Guan, 2013;
Angus et al., 2012; Xiao et al., 2011; Boggiano et al., 2011; Poon et al.,
2011; Meng et al., 2015; Zheng et al., 2015). In contrast, striatin-
interacting phosphatase and kinase (STRIPAK) complex was found
to inactivate MST1/2 (Zheng Y. et al., 2017; Bae et al., 2017), while G
protein-coupled receptors (GPCRs) family was found to inhibit
LATS1/2 activity, thus inhibiting the phosphorylation of YAP1/
TAZ and promoting their nuclear translocation to activate
transcription factors (Hansen et al., 2015; Feng et al., 2014; Yu
et al., 2014; Cai et al., 2018; Zhao et al., 2012). Notably, many other
post-translational modifications such as O-GlcNAcylation are also
reported to affect YAP1 phosphorylation by interrupting the
LATS1/2 interaction (Zhang et al., 2017a).

3 Pathological regulations of metabolic
disorders on MASLD

Metabolic disorders including iron, glucose, and lipid
dysregulations are the basis of MASLD. For example, the
imbalance of iron homeostasis has been shown to correlate with

obesity and the development of MASLD (Folgueras et al., 2018).
Dietary iron intake correlated with the increased prevalence of
MASLD in a dose-responsive manner (Alferink et al., 2019).
Pathological iron overload can catalyze the generation of reactive
oxygen species (ROS) through the Fenton reaction, contributing to
chronic liver disease (Nakamura et al., 2019; Lunova et al., 2014). In
addition, insulin resistance, enhanced glycolysis activity, increased
lactic acid, and abnormal lipid accumulation are also found to
increase the inflammatory cytokines, and cause liver damage and
fibrosis in MASLD or MASH (Ye et al., 2016; Reyes-Gordillo
et al., 2017).

Metabolic disorders have been found to induce senescence,
which is a permanent cessation of the cell proliferation cycle,
induced by internal or external factors (Kuilman et al., 2010).
For example, palmitic acid (PA) can promote iron overload and
induce senescence of hepatocytes (Qi et al., 2021). Senescent cells
exhibit aberrant oxidative stress, excessive production of pro-
inflammatory cytokines known as SASP, and mitochondrial
dysfunction, which contribute to the progression of MASLD
(Dabravolski et al., 2021). Inhibition of hepatocyte senescence
could improve the pathological process of MASLD (Ogrodnik
et al., 2017).

Metabolic disorders such as iron and lipid homeostasis
impairments have been found to promote MASLD development
by inducing ferroptosis, which is a new manner of cell death
characterized by iron-dependent phospholipid peroxidation
(Kuilman et al., 2010). Iron-export protein ferroportin 1 is
downregulated, and iron-import proteins DMT1, transferrin
receptor 1 (TfR1), and ferritin are upregulated in MASLD
(Philpott, 2020; Mancias et al., 2014; Liu et al., 2022; Mitsuyoshi
et al., 2009). Iron overload has been shown to exacerbate liver injury
in a dose-responsive manner in a phase 2 trial of MASLD (Beaton
et al., 2013). Similarly, a high-iron diet for 8 weeks can induce mouse
liver ferroptosis and damage (Yu et al., 2020). Ferroptosis initiates
cell death and inflammation at the onset of MASH by directly
increasing the expression of prostaglandin endoperoxide synthase 2,
which accelerates the metabolism of arachidonic acid and promotes
inflammation (Tsurusaki et al., 2019). Inhibition of ferroptosis
alleviates hepatic inflammatory responses and steatosis (Qi et al.,
2020). Ferritinophagy is involved in regulating iron metabolism and
ferroptosis (Lunova et al., 2014). Nuclear receptor coactivator 4
(NCOA4) is required for the delivery of ferritin to the lysosome via
autophagosomes. Deferoxamine (DFO), an iron-chelating agent,
inhibits lipid accumulation in the liver of MASH mice induced
by ferroptosis inducer RSL3 (Shao and Chung, 2024).

4 Regulation of Hippo-YAP1/TAZ
pathway in MASLD

Metabolites are also found to regulate the Hippo-YAP1/TAZ
pathway. For example, elevated glucose levels enhance YAP1 activity
by promoting O-GlcNAc modification or inhibiting adenosine
monophosphate-activated kinase (AMPK) (Zhang et al., 2017b;
Peng et al., 2017). In contrast, glucose starvation increased Hippo
pathway phosphorylation and YAP1/TAZ cytoplasmic localization
via activation of AMPK (Wang et al., 2015a). G-protein-coupled
receptor (GPCR) signaling has also been discovered to control
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Hippo and YAP1/TAZ signaling (Yu et al., 2012). Glucagon or
phospholipids such as lysophosphatidic acid can increase LATS1/
2 activity and YAP1 phosphorylation by activating GPCR (Yu et al.,
2013). Cholesterol-induced activation of TAZ is linked to lipid
dysregulation and MASLD pathogenesis in mice (Wang et al.,
2020). Mechanically, high-level cholesterol activates and stabilizes
TAZ by triggering the inositol trisphosphate receptor (IP3R)-
calcium-RhoA pathway in AML12 cells (Wang et al., 2020).

The Hippo-YAP1/TAZ pathway is also found to regulate
metabolic disorders. Moreover, the Hippo-YAP1/TAZ pathway is
involved in the regulation of senescence and ferroptosis,
inflammation, and fibrosis caused by metabolic disorders in the
MASLD (Sztolsztener et al., 2020).

4.1 Regulation of the Hippo-YAP1/TAZ
pathway in metabolic disorders in MASLD

Hippo signaling has been reported to regulate metabolic
abnormalities in MASLD (Minamino et al., 2009). For example,
YAP1 can modulate iron concentration in MASLD patients by
affecting TfR1 and ferritinophagy (Protchenko et al., 2021; Zhu
et al., 2021a). NCOA4 is one of the specific mediators of
ferritinophagy that degrade ferritin, which is critical for iron
homeostasis (Philpott, 2020; Mancias et al., 2014). In addition,
YAP1 is also found to suppress gluconeogenesis, a normal
process in which the liver produces glucose in the fasted state
(Hu et al., 2017). Mechanically, YAP1 represses the transcription
of peroxisome proliferator-activated receptor gamma co-activator-
1 alpha (Pgc1α), which plays an important role in gluconeogenesis
(Hu et al., 2017). YAP1 can also drive glycolysis partially through the
regulation of the glucose transporter glucose transporter 3 (GLUT3),
which promotes glucose uptake (He et al., 2021). Moreover,
YAP1 was found to induce glycolysis by up-regulating long
noncoding RNA BCAR4, which was reported to increase the
expression of hexokinase 2 (Zheng X. et al., 2017). Key metabolic
enzyme AMPK regulates glucose metabolism by directly
phosphorylating YAP1 (Wang et al., 2015b). Hippo-YAP1/TAZ
signaling was also found to promote glucose metabolism by up-
regulating insulin receptor substrate 2 (Irs2) and protein kinase B
(Akt) (Wang C. et al., 2016). YAP1 can also activate Foxm1, which
is a crucial regulator of insulin resistance and lipid metabolism and
contributes to the progression of MASLD (Jeong et al., 2018).
Moreover, Hippo signaling is involved in lipid metabolism by
regulating the expression of MST1, which inhibits cholesterol
accumulation by reducing constitutive sterol regulatory-element
binding protein (SREBP) activity (Aylon et al., 2016; Geng et al.,
2016). Consistently, SREBF2 promotes cholesterol and fatty
acid synthesis by driving the expressions of HMGCR and
FASN (Geng et al., 2016; Romani et al., 2019). Long non-
coding RNA LncARSR is found to promote the accumulation
of fat in the liver by targeting YAP1 in MASLD by potentiating
IRS2/AKT activity. In addition, YAP1 is found to increase
glutamine levels in zebrafish liver by directly promoting the
expression of glula and glulb (Cox et al., 2016). Furthermore,
YAP1 promotes glutaminolysis and myofibroblastic features in
the hematopoietic stem cells (HSCs) of patients and mice with
acute or chronic fibrosis (Du et al., 2018).

4.2 Regulation of the Hippo-YAP1/TAZ
pathway in senescence and ferroptosis
in MASLD

Hippo-YAP1/TAZ pathway is involved in the regulation of
liver senescence. The YAP1 level is reduced and the iron level is
increased in LO2 cells treated with PA. Over-expression of
YAP1 can mitigate iron overload and alleviate hepatocyte
senescence by inhibiting ferritinophagy (Qi et al., 2021). It is
favored that over-expression of NCOA4 largely aggravates lipid
droplet deposition and cellular senescence in PA-treated LO2 cells
(Qi et al., 2021). LncRNA MAYA is also increased in PA-treated
LO2 cells and high-fat diet (HFD)-induced hepatic steatosis in
MASLD mice. Suppression of MAYA alleviates iron overload and
cellular senescence by up-regulating YAP1 expression (Yuan et al.,
2021). Selectively inhibition of YAP1 in HSCs induces senescence,
but decreases liver injury and fibrosis by promoting ferroptosis
resistance (Du et al., 2023).

The Hippo-YAP1/TAZ pathway can affect many essential
ferroptosis pathways, such as the cystine/glutathione (GSH)/
glutathione peroxidase 4 (GPX4) axis, the guanosine triphosphate
cyclohydrolase 1 (GCH1)/tetrahydrobiopterin (BH4)/dihydrofolate
reductase (DHFR) axis, and the ferroptosis suppressor
protein 1 (FSP1)/coenzyme Q (CoQ) axis (Zheng and Conrad,
2020). Moreover, YAP1 increased the iron concentration in
hepatocellular carcinoma cells (HCC) through transcriptional
elevation of TfR1 via its O-GlcNAcylation (Zhu et al., 2021b).
Downregulation of YAP1 partially reversed Fibroblast growth
factor 21 (FGF21)-mediated ferroptosis of HCC (Xia et al., 2024).
TAZ is also reported to mediate ferroptosis by indirectly regulating
the expression of the ROS-generating nicotinamide adenine
dinucleotide phosphate oxidass (NOX) in ovarian cancer cells
(Yang et al., 2020). The p53/YAP1 axis is essential for lipid
peroxidation and ferroptosis induced by cytoglobin, a heme-
binding protein, that is critical for maintaining redox
homeostasis within cells (Ye et al., 2021). However, YAP1/TAZ is
also found to inhibit lipid peroxidation and ferroptosis by up-
regulating the expressions of solute carrier family 7 member 11
(SLC7A11) and lipoxygenase 3 (Chalasani et al., 2012; Qin et al.,
2021). Consistently, YAP1 knockdown aggravated liver injury and
inflammation, as well as accelerated hepatocyte ferroptosis induced
by cecal ligation and puncture (Wang et al., 2022). Increase in
YAP1 nuclear translocation can inhibit ferroptosis of HSCs in
carbon tetrachloride (CCl4)-induced mouse liver fibrosis model
(Zhu et al., 2024).

Evidence regarding the role of YAP1/TAZ in senescence and
ferroptosis within the liver remains controversial. Nevertheless,
the regulatory mechanisms of YAP1/TAZ in senescence and
ferroptosis have not been thoroughly in the context of
the MASLD.

4.3 Regulation of the Hippo-YAP1/TAZ
pathway in inflammation and fibrosis
of MASLD

YAP1 activation was found to suppress the infiltration of
macrophages and neutrophils and reduce the activation of HSCs
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and liver fibrosis (Liu et al., 2019). YAP1 was increased in
macrophages derived from the livers of human cirrhotic
patients or CCl4-induced mice (Feng et al., 2024). YAP1 acts
as a coactivator for β-catenin, which regulates its target gene
X-box binding protein 1, resulting in decreased NOD-like
receptor protein 3/caspase-1 activity in macrophages isolated
from mouse livers (Wu et al., 2021). It was favored that
MST1 can promote reactive oxygen species (ROS)-induced
pyroptosis accompanied by decreased YAP1 level in mouse
pancreatic cancer model (Cui et al., 2019). MST1/2 depletion
in liver macrophages enhanced liver inflammation and fibrosis
accompanied by increased YAP1 level in MASLD (Zhang J. et al.,
2024). Pharmacological inhibition of YAP1 in KCs has been
shown to attenuate the expression of inflammatory cytokines
and liver damage in NASH mice (Song et al., 2020).
Mechanically, YAP and TAZ are found to promote the
production of inflammatory cytokines in MASH mice by
enhancing the secretion of Indian hedgehogs (Song et al., 2020;
Wang X. et al., 2016). YAP1/TAZ is also reported to promote
inflammation in metabolically stressed hepatocytes by up-
regulating the expression of cysteine-rich angiogenic inducer
61 (CYR61) in mice (Mooring et al., 2020). The transcription
factor Nrf2 mitigates YAP1-mediated inflammation by reducing

reactive oxygen species (ROS) and MST1/2 phosphorylation
(Wang et al., 2019). Notably, chronic inflammation also
prolongs YAP1/TAZ activation in murine MASLD models and
liver biopsies from patients with MASLD (Hyun et al., 2021). Pro-
inflammatory cytokines including TNFα can directly modulate
hepatocyte YAP1 activity in a dose-dependent manner (Zhao
et al., 2020), suggesting that the interplay between YAP1/TAZ
and inflammatory signaling is complex.

In addition, YAP1/TAZ can directly activate a fibrogenic
program of HSCs via regulation of proliferation (Swiderska-Syn
et al., 2016). YAP1-positive ductular liver cells were correlated
with pro-fibrogenic factors (Tgfβ1, Ctgf, and phosphor-SMAD2)
in MASH (Machado et al., 2015). Integrin β1 is required
for activating pro-fibrotic hepatocytes by promoting
YAP1 expression and its nuclear localization (Martin et al.,
2016). The pharmacological blockade of YAP1 with verteporfin
prevented collagen formation in culturedmouse HSCs (Martin et al.,
2016). Omega-3 polyunsaturated fatty acids have been reported to
inhibit the proliferation and activation of HSCs by degradating
YAP1/TAZ (Zhang et al., 2016). It is favored that YAP1 promotes
the proliferation of cardiac fibroblasts and their transdifferentiation
to myofibroblasts in a murine dilated cardiomyopathy model (Jin
et al., 2019). Notably, hepatocyte proliferation is generally beneficial
for repopulating tissues and YAP1/TAZ is critical for liver
regeneration by regulating neurofibromatosis-2 (NF2), which is a
negative regulator of liver regeneration (Benhamouche et al., 2010).
Inhibiting YAP1/TAZ rescues hepatocyte- and cholangiocyte-
overgrowth phenotypes of Nf2-knockout mice (Benhamouche
et al., 2010). Pharmacological inhibition or genetic deletion of
MST1/2 enhances liver regeneration (Lu et al., 2018). Loss of
integrin-linked kinase increased YAP1 expression and liver
regeneration following partial hepatectomy (Apte et al., 2009).
Precise consequences of YAP1/TAZ activity depend on the
overall health of the liver micro-environment (Miyamura
et al., 2017).

5 Treatment targeting Hippo-YAP1/TAZ
pathway in MASLD

By focusing on the YAP1/TAZ pathway, new pharmacological
treatments or MASLD might be found. Si-Ni-San is one of the
representative formulas for treating patients with MASLD and is
used to reduce lipid droplet deposition and YAP1 expression in the
liver inmice (Wang et al., 2021). Lian-Mei-Yin, a traditional Chinese
medicine formula, has been used for treating liver disorders by
inhibiting YAP1-mediated Foxm1 activation, which is crucial for the
occurrence and development of MASLD in zebrafish and mice
(Zhang P. et al., 2024). Curcumol is an ingredient extracted from
the volatile oil of a traditional Chinese herb zedoary turmeric and
inhibits hepatocyte senescence by targeting YAP1/NCOA4 in
MASLD (Sorrentino et al., 2014). Statins have been widely used
to reduce cholesterol levels in patients with hypercholesterolemia
and have recently been identified to inhibit YAP1/TAZ through
Rho-mediated modulation of actin cytoskeleton, indicating that
statins might be used for treating MASLD (Wang et al., 2015c).
In addition, hepatocyte-specific N-acetylgalactosamine-conjugated
siRNA targeting TAZ is sufficient to ameliorate HFD-induced liver

FIGURE 1
The effects and mechanisms of Hippo-YAP1/TAZ Pathway in
MASLD. Metabolic disorders such as iron overload, glycolysis, insulin
resistance, lipid dysregulation, and glutaminolysis can induce
senescence, ferroptosis, inflammation, and fibrosis to promote
the development of MASLD via regulation of Hippo-YAP1/TAZ
Pathway. MST1/2, 20-like kinase 1/2; LATS1/2, large tumor suppressor
1 and 2; P, phosphorylation; MAP4K, Mitogen-Activated Protein Kinase
4; MOB1A/B, MOB kinase activator 1A/B; TAOK, thousand and one
kinases; GPCRs, G protein-coupled receptors; STRIPAK, striatin-
interacting phosphatase and kinase; FAT; Fat molecule.
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fibrosis in mice (Liu-Chittenden et al., 2012). Furthermore,
verteporfin, MYF-01–37, and XMU-MP-1 have been discovered
to interact with YAP1 with TEAD, suggested that they might be used
to treat MASLD in the future (Martin et al., 2016; Liu-Chittenden
et al., 2012; Kurppa et al., 2020; Fan et al., 2016).

6 Conclusion and perspectives

In this review, we highlight the regulations and mechanisms of
Hippo- YAP1/TAZ signaling inMASLD by focusing onmetabolism,
senescence, ferroptosis, inflammation, and fibrosis. Metabolic
disorders such as iron overload, glycolysis, insulin resistance,
lipid dysregulation, and glutaminolysis can induce senescence,
ferroptosis, inflammation, and fibrosis to promote the
development of MASLD via regulation of Hippo-YAP1/TAZ
pathway (Figure 1). The drugs targeting Hippo-YAP1/TAZ
signaling might be used to treat MASLD in the future. However,
the interplay between YAP1/TAZ and inflammation or fibrosis is
complex, precise consequences of YAP1/TAZ activity depend on the
overall health of the liver micro-environment, which need further
investigation.
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