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Achyranthes japonica (Miq.) Nakai (AJN) and Melandrium firmum (Siebold and
Zucc.) Rohrb. (MFR) are medicinal plants recognized for their bioactive
phytochemicals, including ecdysteroids, anthraquinones, and flavonoids. This
study investigates the anticancer properties of key constituents of these plants,
focusing on the BK002 formulation, a novel combination of AJN and MFR.
Specifically, the research employs advanced molecular docking and in silico
analyses to assess the interactions of bioactive compounds ecdysterone,
inokosterone, and 20-hydroxyecdysone (20-HE) with key prostate cancer-
related network proteins, including 5α-reductase, CYP17, DNMT1, Dicer, PD-1,
and PD-L1. Molecular docking techniques were applied to evaluate the binding
affinities contributions of the bioactive compounds in BK002 against prostate
cancer-hub network targets. The primary focus was on enzymes like 5α-
reductase and CYP17, which are central to androgen biosynthesis, as well as
on cancer-related proteins such as DNA methyltransferase 1 (DNMT1), Dicer,
programmed death-1 (PD-1), and programmed death ligand-1 (PD-L1). Based on
data from prostate cancer patients, key target networks were identified, followed
by in silico analysis of the primary bioactive components of BK002.In silico
assessments were conducted to evaluate the safety profiles of these
compounds, providing insights into their therapeutic potential. The docking
studies revealed that ecdysterone, inokosterone, and 20-hydroxyecdysonec
demonstrated strong binding affinities to the critical prostate cancer-related
enzymes 5α-reductase and CYP17, contributing to a potential reduction in
androgenic activity. These compounds also exhibited significant inhibitory
interactions with DNMT1, Dicer, PD-1, and PD-L1, suggesting a capacity to
interfere with key oncogenic and immune evasion pathways. Ecdysterone,
inokosterone, and 20-hydroxyecdysone have demonstrated the ability to
target key oncogenic pathways, and their favorable binding affinity profiles
further underscore their potential as novel therapeutic agents for prostate
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cancer. These findings provide a strong rationale for further preclinical and clinical
investigations, supporting the integration of BK002 into therapeutic regimens
aimed at modulating tumor progression and immune responses.
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BK002, Achyranthes japonica (Miq.) Nakai,Melandrium firmum (Siebold and Zucc.) Rohrb,
network pharmacology, molecular docking, 20-hydroxyecdysone, prostate cancer

1 Introduction

1.1 Chronic inflammation and cancer: a
complex interrelationship

The established link between chronic inflammation and cancer
has illuminated the intricate biological processes that fuel
carcinogenesis. Chronic inflammation, which can be driven by
persistent infections, autoimmune disorders, or prolonged
exposure to environmental carcinogens such as tobacco smoke,
industrial pollutants, or asbestos, sets the stage for continuous
tissue damage and abnormal cellular proliferation. This sustained
inflammatory environment creates fertile ground for neoplastic
transformations by promoting cellular repair mechanisms that,
paradoxically, can lead to the onset of malignancies (Khandia and
Munjal, 2020). Inflammation not only supports the survival and
proliferation of cancer cells but also fosters metastasis (Hasegawa
et al., 2006) by reshaping the tumor microenvironment (TME) to
favor malignant growth (Afshari et al., 2022). Epigenetic
alterations induced by inflammatory signaling further entrench
the cancer-inflammation nexus, as oncogenes are activated and
tumor suppressor genes are silenced through DNA methylation,
histone modification, and chromatin remodeling (Tan et al., 2022).
Within the TME, immune cells like macrophages, neutrophils, and
T-cells play dual roles, either suppressing or facilitating tumor
progression, thus complicating therapeutic interventions (Li et al.,
2019; Segovia et al., 2019; Vredevoogd et al., 2019; Segovia
et al., 2020).

A key mechanism by which tumors evade immune
surveillance is through the upregulation of immune
checkpoints such as programmed death-1 (PD-1) and
programmed death ligand-1 (PD-L1), which inhibit T-cell
activity and allow cancer cells to thrive unchecked (Wei et al.,
2019). The successful targeting of immune checkpoints has
revolutionized cancer treatment by reinvigorating the immune
system’s ability to combat tumors, as evidenced by the clinical
efficacy of anti-PD-1/PD-L1 and anti-CTLA-4 therapies
(Jacquelot et al., 2019; Theivanthiran et al., 2020). Notably,
the transcription factor NF-κB plays a pivotal role in
regulating PD-L1 expression, directly binding to the promoter
of the PD-L1 gene and upregulating its transcription.
Additionally, NF-κB influences post-transcriptional pathways
that stabilize PD-L1, contributing to tumor immune evasion
(Antonangeli et al., 2020). Recent discoveries reveal that
cancer stem-like cells (CSCs) exhibit heightened PD-L1
expression, further protecting them from immune attacks. The
regulatory mechanisms that enrich PD-L1 expression in CSCs
remain largely unexplored, underscoring a critical gap in our
understanding of tumor resistance (Hsu et al., 2018).

Interestingly, the mesenchymal-epithelial transition (MET) has
been identified as a novel mechanism regulating PD-L1 stability in
CSCs, with studies showing that targeting this pathway can enhance
the efficacy of cancer immunotherapy (Sharaf et al., 2014). The
influence of chromatin remodeling in response to inflammatory
signals has also gained attention, with genes like IL-1A and IL-1B
becoming dynamically repositioned within transcription factories
during immune responses. This spatial organization of gene
expression is crucial for mediating inflammatory effects within
tumors (Papantonis et al., 2012; Audia and Campbell, 2016;
Horton et al., 2016; Marazzi et al., 2018; Shokri et al., 2018; Das
et al., 2021; Ding et al., 2022). Similarly, the role of inflammasomes,
particularly NLRP3, in cancer has been increasingly recognized,
linking inflammation directly to cancer progression (Ding
et al., 2022).

Despite significant advances in immunotherapies, including
immune checkpoint inhibitors and CAR T-cell therapies, certain
cancers, such as pancreatic and prostate cancers, have shown limited
responses to these treatments (Ye et al., 2024). Understanding the
molecular drivers of resistance, such as aberrant inflammatory
signaling and immune evasion, remains key to improving the
clinical outcomes of these malignancies. Combining
immunotherapy with other treatment modalities, such as
chemotherapy or radiotherapy, has shown promise, but
additional research is required to fully unlock the potential of
these therapeutic strategies (Latchman et al., 2001; De Marzo
et al., 2007; Gandaglia et al., 2013; Powles et al., 2014).
Furthermore, focusing on critical protein networks in cancer
progression offers an opportunity to develop more precise, multi-
targeted therapies that address the complexity of cancer’s molecular
landscape. This approach holds the promise of better patient
outcomes and a more profound understanding of the interplay
between inflammation, the immune system, and cancer.

1.2 Comparative expression analysis of
DNMT-1, Dicer1, and PD-1/PD-L1 in normal
and prostate cancer patients and their
correlation with gleason score

Figure 1 provides a comprehensive analysis of the expression
levels of specific genes DNMT-1, PD1, Dicer1, and PD-L1 in
prostate cancer patients compared to normal individuals, sourced
from https://ualcan.path.uab.edu/index.htm. These levels are
correlated with a Gleason score, a grading system used to
evaluate the aggressiveness of prostate cancer.

Figure 1A reveals that DNMT-1 expression is significantly
elevated in prostate cancer patients compared to normal
individuals. DNMT-1, a key enzyme involved in DNA

Frontiers in Pharmacology frontiersin.org02

Park et al. 10.3389/fphar.2025.1504618

https://ualcan.path.uab.edu/index.htm
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1504618


FIGURE 1
Differential Gene Expression Profiles in Prostate Cancer Patients. Graphical representation of the expression levels of DNMT-1, PD1, Dicer1, and PD-
L1 in prostate cancer patients compared to normal individuals. The expression of (A) DNMT-1, (B) PD1, (C) Dicer1, and (D) PD-L1 is shown, highlighting
significant differences between normal and cancerous tissues (p-values: p* < 0.05, p *** < 0.001, as indicated). Additionally, panels (E) DNMT-1, (F) PD1,
(G) Dicer1, and (H) PD-L1 illustrate the correlation of their expression with the Gleason score, representing prostate cancer progression and
aggressiveness. Statistical significance is indicated by corresponding p-values, demonstrating the relationship between molecular expression and tumor
grade (p-values: p* < 0.05, p** < 0.01, p *** < 0.001, as shown).

Frontiers in Pharmacology frontiersin.org03

Park et al. 10.3389/fphar.2025.1504618

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1504618


methylation, plays a crucial role in maintaining the epigenetic
landscape of cancer cells, contributing to tumor progression and
silencing tumor suppressor genes (Park, 2023). Figure 1B describes
the expression of PD1, a protein that negatively regulates T-cell
activity, that is implicated in immune evasion by tumors, and that is
notably higher in cancer patients than in normal individuals. This
upregulation suggests that prostate cancer cells may employ
immune checkpoint mechanisms to evade immune surveillance.

In silico clinical trials, while offering valuable insights, must be
interpreted with an understanding of their inherent limitations
(Creemers et al., 2023). In our analysis, no statistically significant
correlation was observed between DNMT-1 and PD-1 expression
levels and patient outcomes. These findings highlight the
importance of complementing in silico results with experimental
validation and clinical studies to ensure robust and reliable
conclusions (Figures 1A, B).

TABLE 1 The complex role of DNMT-1 in Prostate cancer.

Key points Mechanism References

5 mC Loss Rapid loss of 5 mC during cancer progression, involving active enzymatic processes,
leading to significant gene expression alterations and tumorigenesis in prostate cancer
patient

(Storebjerg et al., 2018)

ITH ITH contributes to local recurrence in prostate cancer following radiation therapy, and
interactions among diverse tumor cell subpopulations may drive treatment resistance in
PC3 and DU145 cells

Paczkowski et al. (2021)

DNMT1 and EZH2 Co-Expression Co-expression linked with poor prognostic markers in prostate cancer, maintaining
tumor-promoting epigenetic landscapes in WPMY-1, DU145, PC-3, PC-3-shCtrl/
shDNMT1#1, and WPMY-1-Vector/DNMT1/TRAF6/(DNMT1+TRAF6) cells

Li et al. (2022)

EMT DNMT1 drives EMT, promoting increased invasiveness. It also facilitates the transition
to a CSC phenotype, enhancing tumor progression and resistance to therapy in PC3 and
DU145 cells

(Lee et al., 2016)

CAMK2N1 Downregulated via promoter hypermethylation, emphasizing DNMT1’s role in cancer
progression

Peng Y et al. (2023)

FAN107A DNMT1’s role in silencing FAM107A contribution to tumor progression through the
FAK/PI3K/AKT signaling pathway

Ke et al. (2022)

Metastasis DNMT1 knockdown enhances EMT induction and promotes the CSC phenotype. This
reduction also decreases H3K9me3 and H3K27me3 levels on the Zeb2 and
KLF4 promoters, as revealed in PC3GFP and DU145GFP cells

Lee et al. (2016)

miRNA-125b
miRNA-148a

miRNA-125b and miRNA-148a, modulate the p53-DNMT1 pathway, influencing genes
like BIRC5 (survivin) involved in prostate cancer (human and bovine)

Melnik (2017)

Abbreviation: 5-methylcytosine (5 mC): Intertumoral heterogeneity (ITH): DNA, methyltransferase (DNMT); Enhancer of Zeste Homologue (EZH2): TNF, receptor-associated factor 6

(TRAF6): Epithelial-to-mesenchymal transition (EMT): Cancer stem cell (CSC): Calcium/calmodulin-dependentprotein kinase II, inhibitor I (CAMK2N1): Focal adhesion kinase (FAK):

Baculoviral IAP, Repeat Containing 5 (BIRC5): Zinc Finger E-Box Binding Homeobox 2 (ZEB2): Kruppel-like transcription factor 4 (KLF4).

TABLE 2 The intricate role of Dicer in Prostate cancer.

Key points Mechanism References

Cell Proliferation and Survival Dicer silencing in prostate cancer cell lines (LNCaP, PC-3, DU145) reduces cell proliferation and increases
apoptosis. It also leads to cell cycle arrest G2/M in LNCaP; S phase in PC-3

Liu et al. (2020)

miRNA Processing and Disease
Progression

Dicer facilitates miRNAmaturation. MiRNAs like miR-200a, miR-370, and miR-31 are elevated in metastatic
prostate cancer, while miR-200a and miR-31 are downregulated in localized in PC-3, LNCaP

Bian et al. (2015)

EMT EMT unit comprising nc886, modulated via Dicer, and its neighboring genes, is driven by TGF-β1-mediated
differential transcription of Pol II and Pol III genes

Yang et al. (2022)

Impact on Apoptosis and Tumor
Suppressors

Dicer dysfunction increases apoptosis and senescence in prostate cancer cells, involving upregulation of
tumor suppressors such as P16/INK4a and P27/Kip1

Zhang et al. (2014)

Hypoxia-Induced Dicer Dysfunction Hypoxic conditions reduce miRNAs like miR-124 and miR-144, leading to autophagy and treatment
resistance. Overexpression of these miRNAs increases radio sensitivity by downregulating PIM1

Gu et al. (2016)

Androgen Receptor Reprogramming Dicer regulates miRNA processing related to AR signaling, with overexpression of MIR222HG promoting
androgen-independent tumor growth and altering AR-regulated genes

Sun et al. (2018)

Therapeutic Implications Targeting Dicer and its associated miRNAs presents new therapeutic avenues for CRPC, especially in
advanced, treatment-resistant cases

Ferreira et al.
(2024)

Abbreviation: Transforming growth factor-β1 (TGF-β1): RNA, polymerase III (Pol III): Serine/threonine-protein kinase pim-1(PIM): Androgen receptor (AR): Castration-resistant prostate

cancer (CRPC).
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Figure 1C shows that Dicer1, an enzyme essential for microRNA
processing (Goel and Goel, 2024), also exhibits increased expression
in prostate cancer tissues compared to normal tissues. Elevated
Dicer1 levels may contribute to the dysregulation of microRNA
pathways that are critical in cancer cell proliferation, invasion, and
metastasis (Dobrijević et al., 2021).

In normal cells, PD-L1(CD274) expression is typically low or
tightly regulated, and its upregulation occurs primarily in response
to inflammatory signals (e.g., cytokines like IFN-γ) or under
conditions of immune activation (Sun H. Y et al., 2020). As
shown Figure 1D, overall downregulation of PD-L1 expression in
prostate cancer tissues compared to normal tissues. This suggests
that, at the transcriptional level, PD-L1 expression may not
universally increase in prostate cancer.

The expression dynamics of PD-L1 (CD274) in prostate cancer
are complex and can vary depending on tumor stage, tumor

microenvironment, and specific cellular contexts. While some
studies report elevated PD-L1 levels in advanced or metastatic
prostate cancer (Zavridou et al., 2021). Figure 1H indicates a
positive correlation between PD-L1 expression and higher
Gleason scores. This suggests that, while PD-L1 expression may
be lower overall in prostate cancer tissues, higher-grade tumors may
exhibit relatively elevated PD-L1 levels compared to lower-grade
tumors within the prostate cancer cohort. PD-L1 binds to PD1 on
T-cells, leading to the suppression of the immune response, which
allows cancer cells to thrive by avoiding immune detection and
destruction (Topalian et al., 2015; Chen and Mellman, 2017).

The correlation of gene expression with Gleason score is
described in Figure lG−H. Figure 1E shows a positive correlation
between DNMT-1 expression and the Gleason score, indicating that
DNMT-1 expression increases with the severity and aggressiveness
of prostate cancer. Figure lF reveals similar trend with PD1, where its

TABLE 3 The potential stages related to PD-1/PD-L1 immunotherapy in Prostate cancer.

Key points Mechanism References

CTHRC1 CTHRC1 is positively correlated with MMP9, MUC1, and
SLC2B1.CTHRC1 may facilitate immune evasion by enhancing PD-1/PD-
L1 signaling, leading to T cell exhaustion and reduced immune response

Zhou et al. (2019)

EP4/YY001 EP4 (PTGER4) modulates the prostate cancer immune microenvironment.
YY001, an EP4 antagonist, inhibits MDSC differentiation and function while
enhancing T-cell proliferation and antitumor activity. It reduces MDSC
infiltration and boosts CD8+ T-cell activation, resulting in a robust antitumor
immune response in clinical

Peng et al. (2022)

cGAS/STING, IFN Docetaxel-based chemohormonal therapy increased tumor-infiltrating T cells by
activating the cGAS/STING pathway and IFN signaling, leading to upregulation
of PD1/PD-L1 expression and improved PSA progression-free survival in clinical
trials

Ma et al. (2022)

HnRNP L, YY1 Inhibition of HnRNP L reduces PD-L1 expression and destabilizes YY1, leading
to decreased levels of SLC7A11 and GPX4. This enhances T-cell-mediated
ferroptosis and antitumor immunity by involving key factors such as STAT1,
IFN-γ, IL-2, CD3, and CD28. These effects were observed both in vitro using co-
cultures of PC3, DU145, RM-1, and Jurkat cells and in vivo in C57BL/6 mice

Zhou et al. (2022)

Regulatory and memory
T lymphocytes

TIM-3 inhibition enhances anti-tumor immune responses in prostate cancer by
counteracting the immunosuppressive effects of regulatory T cells (Tregs),
thereby restoring T cell activity against prostate cancer

Molina et al. (2024)

Combining CDK4/6 inhibitor with PD-L1 The regulation of PD-L1 levels is controlled by proteasome-mediated
degradation, influenced by CDK4/6 and Cullin 3SPOP E3 ligase, where blocking
the phosphorylation of SPOP can increase PD-L1 expression in primary prostate
cancer specimens

Zhang et al. (2018), Palicelli et al. (2021)

Combining PD-1/PD-L1 with PARP
inhibitors

The improvement of clinical outcomes may result from combining PD-1/PD-
L1 inhibitors with tyrosine kinase inhibitors, PARP inhibitors, or radiotherapy

Mitsogiannis et al. (2022)

Combining PD-1/PD-L1, inhibitors with
Other Therapeutic Agents

The combination of PD-1/PD-L1 inhibitors with CXCR4, PARP inhibitors,
TGF-β inhibitors, chemotherapy, or radiation enhance in prostate cancer

Majidpoor and Mortezaee (2021), Palicelli
et al. (2021)

Docetaxel and Immune Suppression The upregulation of PD-L1 through ATM-NF-κB signaling by Docetaxel (DTX);
combining DTX with PD-1/PD-L1 inhibitors may counteract this effect

Xie et al. (2018), Wang et al. (2021), Wu et al.
(2023)

Ongoing Research Focus The research focus is on understanding the mechanisms of immune evasion and
developing strategies to enhance immune cell infiltration in prostate cancer

Wu et al. (2020)

Future Direction The materials that enhance immune response and balance aid in converting
“cold” tumors into “hot” tumors, thereby improving the effectiveness of

immunotherapy

Mortezaee (2020a), Mortezaee, 2020b;
Majidpoor and Mortezaee (2021)

Abbreviation: Programmed death receptor-1 (PD-1): PTGER4 (EP4): myeloid-derived suppressor cells (MDSCs): Heterogeneous nuclear protein L (HnRNP L): Signal transducer and activator

of transcription 1 (STAT1): Interferon gamma (IFN-γ): Interleukin-1 (IL-2): speckle-type POZ, protein (SPOP): Glutathione peroxidase 4 (GPX4): Collagen triple helix repeat containing 1

(CTHRC1): matrix metalloproteinase-9 (MMP9): solute carrier organic anion transporter family member 2B1 (SLC2B1): Docetaxel (DTX): C-X-C chemokine receptor type 4 (CXCR-4): Poly

(ADP-ribose) polymerase (PARP): Ataxia-telangiectasia mutated (ATM): Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB): Chimeric antigen receptor (CAR) T-cell.
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expression levels rise in tandem with the Gleason score. This
suggests that as prostate cancer becomes more aggressive, it
increasingly relies on immune checkpoint pathways to evade the
immune response. The expression of Dicer1 also shows a positive
correlation with the Gleason score, as shown in Figure lG. This
indicates that more aggressive prostate cancers may depend on the
dysregulation of microRNA processing pathways, mediated by
Dicer1, to sustain their growth and spread. Finally, Figure lH
shows that PD-L1 expression also shows a strong positive
correlation with the Gleason score, reinforcing the notion that
more aggressive prostate cancers are more adept at suppressing
immune responses, which is crucial for their survival and
proliferation.

The data presented in this figure suggest that the expression of
DNMT-1, PD1, Dicer1, and PD-L1 is markedly higher in prostate
cancer patients compared to normal individuals and that their
expression levels are positively correlated with the Gleason score.
This indicates that these genes may play a critical role in the

progression and aggressiveness of prostate cancer, and they could
serve as potential biomarkers for disease severity or as targets for
therapeutic intervention. The strong correlation between these gene
expressions and the Gleason score underscores their potential utility
in predicting the aggressiveness of prostate cancer and tailoring
treatment strategies accordingly.

1.3 Prostate cancer pathology

Prostate cancer is the second most commonly diagnosed
cancer worldwide and the fifth leading cause of cancer-related
mortality among men as of 2022, with an estimated 1.5 million new
cases and 397,000 deaths globally. Notably, in 52 countries, it
stands as the leading cause of cancer-related deaths among men,
underscoring its significant global health burden (Bray et al., 2024).
Prostate cancer is a complex disease influenced by numerous
biological, environmental, and genetic factors, with

TABLE 4 Comprehensive overview of AJN’s biological effects.

Compound/Extract Cell line/
Animal
model

Dose/Duration Efficacy Mechanism References

Achyranthes japonica Nakai root KU812F (human
basophilic cell
line)

10, 50, 100 μg/mL Anti-Allergic effect ↓ FcεRI, IgE, FcεRI α
chain, histamine, [Ca2+]i

Shim et al.
(2016)

Achyranthes japonica Nakai Sprague-Dawley
rats (6-week-old
male)

Methylsulfonylmethane (positive
control)
AJN 100 mg/kg body weight
[b.w.], AJN 300 mg/kg b.w.)

Osteoprotective
effect

↑ collagen typeI, type II
↓ PGE2, IL-1β, TNF-α, IL-6,
MMP-3, MMP-7, COX-2, PGE2,
aggrecan

Kim D et al.
(2020)

Achyranthes japonica Nakai root Chondrocytes
12-week-old
C57BL/6J mice

Achyranthes japonica Nakai root
(10, 20, 50 μg/mL) in presence of
IL-1β (1 ng/mL), IL-6 (100 ng/
mL), and TNF-α (10 ng/mL).
2 mg/kg) in 200 μL polyethylene
glycol 400 (PEG-400) twice a
week.10, 20, and 50 μg/mL

Anti-Inflammatory
Anti-Oxidant
effects

↑Aggrecan
↓ IL-1β, TNF-α
IL-6. Mmp3
Mmp13, Col2a1, Sox9

Zhao et al.
(2021)

Fermented AJN RAW 264.7
SW1353, CIA-
rabbits

10, 25, 50 μg/mL, and 100, 250,
500 μg/mL in vitro, (200 mg/kg),
or JOINS (200 mg/kg) for 4 weeks
in rabbit

Anti-Inflammatory,
anti-Osteoarthritis
effect

↓ NO, PGE2
TNF- α, IL-4
MMP-3

Lee et al. (2012)

Achyranthes japonica Nakai root RAW 264.7
C57BL/6 mice

50, 100, 250, 300 μg/mL for 1 h
500 μg/mL for 8 h in the absence
or presence of Act D (1 μg/mL) or
CHX (1 μg/mL)

Anti-Inflammatory
effect

↓ NO, iNOS, NF-κB
ERK, JNK, p38

Bang et al.
(2012)

BK002 (Achyranthes japonica Nakai
and Melandrium firmum Rohrbach)

PC3, DU145
MDBK

PC3 with AJN (100 μg/mL) and
MFR (50 μg/mL), DU145 with
AJN (50 μg/mL) and MFR
(25 μg/mL)

Anti-Cancer effect ↑miR-192-5p p-γH2A.X, CHOP
↓ Bcl-2, pro-PARP, survivin, pro-
caspase9, pro-caspase3, PI3K,
AKT, p-AKT

Park et al. (2022)

GCSB5(Saposhnikoviadivaricata
Schischek

Achyranthesjaponica Nakai
Acanthopanaxsessiliflorus Seem
Cibotium barometz J. Smith

Glycine max Merrill, and Eucommia
ulmoides Oliver)

iNOS
DPPH

A. sessiliflorus Seem, (4.55 ±
1.45 μg/mL to 7.22 ± 1.14 μg/mL)
A. japonica Nakai, (10.52 ±
0.45 μg/mL and 12.98 ± 0.58 μg/
mL)
E. ulmoides Oliver (4.88 ±
0.27 μg/mL to 6.40 ± 0.45 μg/mL)

Anti-Oxidative
Anti-Inflammatory
effect

↑Total starch, ↓ Nitric oxide, 3-
(4,5-dimethylthiazol-2-yl)-
2,5diphenyltetrazolium bromide
assay for cell viability

Zhao et al.
(2012)

Abbreviation: ↑upregulation; ↓ downregulation; Fc epsilon receptor I, high-affinity IgE Fc receptor (FcεRI); Immunoglobulin E (igE); Prostaglandin E2 (PGE2); Tumor necrosis factor alpha

(TNF-α); Interleukin 6 (IL-6); matrix metalloproteinase-3 (MMP-3); Collagen, type II, alpha 1 (COL2A1); nitric oxide (NO): inducible nitric oxide (iNOS); Nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB); Extra-cellular Signal Regulated Kinase (ERK); c-Jun N-terminal kinases (JNKs); phosphorylated gamma histone H2A.X (γH2A.X); B-cell lymphoma 2

(Bcl-2); Poly (ADP-ribose) polymerase (PARP); Phosphoinositide 3-kinases (PI3Ks); Protein kinase B (Akt); C/EBP, Homologous Protein (CHOP); diphenyl-2-picryl-hydrazyl (DPPH).
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inflammation playing a significant role in its development and
progression. The prostate is an immunocompetent organ, often the
site of a small number of inflammatory cells (Gandaglia et al.,

2013). Prostatic inflammation can stem from various sources, such
as viral or bacterial infections, dietary factors, hormonal
imbalances, autoimmune responses, and even urine reflux (De

FIGURE 2
BK002 Network Pharmacology Analysis in Prostate cancer. (A)Gene alignment KEGG pathway of AJN and MFR, (B)Gene alignment KEGG pathway
network, (C) Average equality alignment KEGG pathway of AJN and MFR, (D) average alignment KEGG pathway network, (E) overall network of AJN and
MFR and (F) target transcription factors of AJN and MFR.
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Marzo et al., 2007; Gandaglia et al., 2013). Accumulating evidence
from epidemiological, histopathological, and molecular research
strongly supports a link between chronic inflammation and the
initiation and advancement of prostate cancer (De Nunzio et al.,
2011; Sfanos et al., 2014). As inflammation persists, it creates a
microenvironment that fosters cellular proliferation, DNA
damage, and epigenetic changes, all of which contribute to
malignant transformation and tumor progression.

A cornerstone of prostate cancer treatment, especially in cases of
locally advanced or metastatic disease, has been androgen
deprivation therapy (ADT), which can be administered either
pharmacologically or surgically (El Badri et al., 2019). Androgen
suppression has long been recognized as a vital strategy in
controlling prostate cancer, dating back to 1941 when it was
discovered that reducing testosterone levels could slow tumor
growth (Huggins and Hodges, 1941). Historically, castration,
along with the use of estrogen injections to inhibit testosterone
production, proved effective in managing the disease (Mcleod, 2003;
Sharifi et al., 2005). Over time, ADT evolved to offer more
sophisticated approaches such as anti-androgens that block
testosterone receptors on prostate cancer cells. Another widely
used method involves luteinizing hormone-releasing hormone
(LHRH) agonists that prevent the anterior pituitary gland from
secreting luteinizing hormone, thereby reducing testosterone
production (Litwin and Tan, 2017).

Emerging research has highlighted the intricate interplay
between androgen signaling, growth hormone (GH), and
estrogen pathways in prostate cancer. GH and gonadal systems
are intimately linked in terms of growth, development, and
metabolism, yet their precise regulatory interactions remain only
partially understood (Marin et al., 1994). The enzyme aromatase,
which converts androgens into estrogens in various tissues, has
revealed a deep mechanistic connection between estrogen biology
and GH regulation. Local estrogen production can exert paracrine
effects that extend beyond classical endocrine pathways, influencing
GH secretion even in the absence of the androgen receptor
(Birzniece and Ho, 2021). Additionally, 5α-reductase, which
converts testosterone into dihydrotestosterone (DHT), plays a
crucial role in androgen action at the tissue level, further
impacting GH regulation and prostate cancer progression
(Veldhuis et al., 2009).

Testosterone acts as a prohormone, its effects being mediated
through its conversion into DHT and estradiol (E2) in tissue-specific
contexts (Jasuja et al., 2013; van den Beld et al., 2018; Kaufman et al.,
2019). Research has demonstrated that inhibiting 5α-reductase,
thereby reducing DHT, does not affect testosterone’s ability to
increase GH secretion. However, inhibition of aromatase, which
reduces estradiol levels, significantly disrupts GH production,
revealing estradiol as a critical mediator of GH’s effects in
prostate cancer (Link et al., 1986; Birzniece and Ho, 2021). In

FIGURE 3
Schematic of effect with Achyranthes japonica Nakai (AJN) and Melandrium firmum Rohrbach (MFR). AJN have anti-inflammatory, antioxidant,
antimicrobial, osteoprotective, anti-diabetic, and anticancer activities. MFR Inhibits osteoclast development, anti-obesity effects, potent anti-
inflammatory properties and anti-cancer effects. BK002 (combination of AJN and MFR), showing synergistic effects. Enhanced anticancer effects,
including inhibition of NF-κB activation and ERK, JNK, and p38 phosphorylation, contributes to the diverse pharmacological effects.
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recent clinical studies, 5α-reductase inhibitors have been explored as
a potential therapeutic option for prostate cancer patients (Hu et al.,
2020). Finasteride and dutasteride, two synthetic 5α-reductase
inhibitors (5ARIs), are commonly recommended for treating
conditions such as alopecia, lower urinary tract symptoms, and
benign prostatic hyperplasia. However, these medications carry a
range of significant side effects, including a heightened risk of high-
grade prostate cancer as well as neurological, psychiatric, endocrine,
metabolic, and ophthalmological issues. Because 5ARIs are
lipophilic, they can cross the blood-brain barrier, potentially
disrupting neurosteroid synthesis, altering neurochemistry, and
impairing neurogenesis. These effects underscore the urgent need
for further research into the long-term impact of 5ARIs and for
innovative therapeutic solutions (Leliefeld et al., 2023). The
complexity of these hormonal pathways underscores the
importance of understanding the broader regulatory networks
that influence cancer progression.

Furthermore, the link between obesity and prostate cancer
has become increasingly evident, as obesity triggers pathways
related to insulin resistance, chronic inflammation, and oxidative
stress. These pathways, including the IGF-1 system, adipokine
signaling, and the distribution of sex hormones, create a
favorable environment for cancer initiation and progression
(Birzniece et al., 2010; Birzniece et al., 2019). Insulin and IGF-
1, both key players in metabolic regulation, share sequence
similarities and can activate oncogenic signaling pathways
such as MAPKs and PI3K-AKT, which are known to promote
cancer cell proliferation and inhibit apoptosis. The dysregulation
of these pathways in obesity enhances the autocrine and
paracrine promotion of cancer, further complicating treatment
strategies (O’Brien et al., 2005; Fogarty et al., 2008; Pollak, 2008;
Avgerinos et al., 2019). Hormone-related cancers, particularly
those affecting organs governed by intricate feedback
mechanisms, are profoundly impacted when autocrine
pathways, such as insulin-related signaling, become
dysregulated. The activation of these feedback loops can

amplify oncogenic signals, driving cancer progression and
complicating treatment strategies (Park et al., 2022).
Addressing this challenge requires targeted therapeutic
approaches that restore and maintain homeostasis within these
systems while mitigating the risks associated with hormonal and
metabolic imbalances.

In addition to hormonal and metabolic factors, bone health is a
critical consideration in prostate cancer management, especially
given the high incidence of bone metastasis in advanced stages of
the disease. Sustained ADT significantly reduces bone mineral
density (BMD), leading to an increased risk of fractures and
osteoporosis (Zhang et al., 2020). Studies show that BMD can
decrease by between 4% and 13% annually during ADT, with the
risk of fractures rising correspondingly (Miyazawa et al., 2018). To
address these complications, it is essential to implement
comprehensive bone health evaluations before initiating ADT.
Recent guidelines have begun to prioritize bone health in
prostate cancer management, recommending the use of bone-
modifying agents (BMAs), such as bisphosphonates and
denosumab, to mitigate bone loss and reduce fracture risk
(Chakhtoura et al., 2021; Khan, 2023). However, patients with
metastatic castration-resistant prostate cancer (mCRPC) have not
seen an improvement in overall survival (OS) with bisphosphonates
or denosumab. Nonetheless, having demonstrated the ability to
postpone or avoid skeletal-related events (SREs) in patients with
mCRPC, both BMAs have been approved in this context (Saad et al.,
2004; Fizazi et al., 2011). About 90%–95% of patients with hormone-
sensitive prostate cancer (mHSPC) have bone metastases (Fizazi
et al., 2017; Parker et al., 2018). Unlike mCRPC, however, there is
little data to support prescription of bone protective medicines in
mHSPC (Cattrini et al., 2019). Notably, the lack of effective bone-
protective agents in managing mHSPC underscores the urgent need
to explore and develop novel therapies tailored to support bone
health in prostate cancer patients. This complexity further highlights
the necessity for multi-target therapeutic strategies capable of
addressing the diverse mechanisms driving prostate cancer

TABLE 5 Diverse biological effect of MFR.

Compound/
Extract

Cell line/Animal
model

Dose/Duration Efficacy Mechanism References

Melandrium firmum
Rohrbach

RAW 264.7
MC3T3-E1,
ovariectomized (OVX) rat

RANKL (100 ng/mL), MFR (12.5,
25, 50, 100 μg/mL) for 5D
Inhibition- RANKL (100 ng/mL),
MFR (50,100 μg/mL), vitexin
(0.0753, 0.147 μg/mL)

Anti-osteoclast
effects

↓ CA2/Ca2, TRAF6
NFATc1/c-Fos
Acp5, Atp6v0d2
DCSTAMP/Dc stamp, Oscar,
c-Src, Blimp-1/Prdm1

Kim et al., (2021)

Melandrium firmum
Rohrbach

3T3-L1. C57BL/6N 10 μg/mL insulin, 0.5 mM 3-
isobutyl-1-methylxanthine, 1 μM
examethasone, 10 and 50 μg/mL

Anti-adipogenic
Anti-lipogenic
effects

↓ PPAR-γ, C/EBP-α, aP2, SREBP-
1c, FAS, SCD-1, CD36

Kim H. Y et al.
(2020)

Melandrium firmum
Root extract

SH-SY5Y, B103, NIH3T3 20, 25, and 30 μg/mL Anti-cancer effects ↓Mcl-1, Bcl-2
↑Cleaved caspase-3, Bax

Rahman et al.
(2013)

Melandrium firmum
Rohrbach

Bone marrow-derived mast
cells (BMMCs)

IC50 21.04 μM
42.30 μM
32.82 μM,17.18 μM

Anti-inflammatory
effects

↓COX-2, 5-LOX Zheng et al. (2008)

Abbreviation: ↑upregulation; ↓downregulation; Carbonic anhydrase 2 (CA2/Ca2; TNF, receptor-associated factors (TRAFs); Nuclear Factor Of Activated T Cells 1 (NFATC1); tartrate-resistant

acid phosphatase 5 (ACP5/TRAP); ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d2 (Atp6v0d2); dendritic cell specific transmembrane protein (DC STAMP); dendritic cell specific

transmembrane protein (DC STAMP); Osteoclast-associated Ig-like receptor (Osca); B-lymphocyte-induced maturation protein 1 (BLIMP1); PR, domain zinc finger protein 1(Prdm1);

Peroxisome Proliferator-Activated Receptor (PPAR); CCAAT/enhancer binding protein (C/EBP); Sterol regulatory element-binding transcription factor 1 (SREBF1); fatty acid synthase (FAS);

Scd1 stearoyl-Coenzyme A desaturase 1 (SCID-1); Cyclooxygenase-2 (COX-2); 5-lipoxygenase (5-LO).
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TABLE 6 DNMT1, PD-L1, Dicer, PD-1, and Apoptosis Inducing Factor Binding amino acid as well as binding energy.

Compound and structure Component Target protein Binding amino
acids

Binding energy
(kcal/mol)

Luteolin Catechol moiety DNMT1 Asp119, Ser120, Tyr121 −8.5

Morin Catechol moiety PD-L1 Leu15, Arg17, Phe19 −7.8

Apigenin C2–C3 double bond Dicer Phe62, Thr64, Ser66 −8.2

Chrysin Carbonyl group on the
C-ring

PD-1 Glu12, Asp18, Ser22 −7.9

Galangin Benzo-γ-pyrone Apoptosis Inducing
Factor

Gly126, Val128, Arg130 −8.4

(Continued on following page)
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TABLE 6 (Continued) DNMT1, PD-L1, Dicer, PD-1, and Apoptosis Inducing Factor Binding amino acid as well as binding energy.

Compound and structure Component Target protein Binding amino
acids

Binding energy
(kcal/mol)

Saponins Glycoside backbone PD-1 Lys22, Gly26, Arg28 −8.1

Triterpenes Carbonyl oxygen Apoptosis Inducing
Factor

Ala150, Lys154, Ser158 −8.7

Phenolic Compounds Hydroxyl groups DNMT1 Thr140, Asp143, Glu145 −8.9

Isoflavones 3-Phenylchromen-4-one PD-L1 Met23, Val25, Ser27 −7.6

Flavonoids Benzo-γ-pyrone Dicer His34, Asp36, Lys40 −8.3
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progression. By targeting metabolic dysregulation, hormonal
feedback imbalances, and bone health simultaneously, multi-
component approaches hold the potential to significantly
enhance treatment efficacy, improve clinical outcomes, and
ultimately elevate the quality of life for patients.

Next-generation anti-androgens like apalutamide,
darolutamide, and enzalutamide have shown higher efficacy
compared to first-generation agents, not only by competitively
inhibiting the AR ligand-binding domain but also by preventing
AR translocation to the nucleus and AR-mediated transcription
(Crawford et al., 2018).

One of the most significant challenges in treating prostate
cancer is the emergence of resistance to androgen receptor (AR)-
targeted therapies. A major contributor to this resistance is the
androgen receptor splice variant 7 (AR-V7), which lacks the
ligand-binding domain necessary for traditional AR inhibitors
to be effective (Antonarakis et al., 2016). AR-V7 remains
constitutively active, driving cancer progression even in the
absence of androgens. This splice variant has been detected in
circulating tumor cells (CTCs) and is associated with resistance to
androgen receptor axis-targeted agents (ARATs) such as
enzalutamide and abiraterone (Antonarakis et al., 2016; Scher
et al., 2016). Only a few of the more than 20 distinct AR

variations that have been found have undergone in-depth
research. The most extensively studied AR variations, outside
AR-V7, are AR-V1, AR-V3, AR-V9, and ARv567es (Armstrong
and Gao, 2019). For patients who express AR-V7, chemotherapy
may prove more effective than AR-directed therapy, and ARATs
combined with ADT remain standard treatment options for
castration-resistant prostate cancer (CRPC) (Scher et al., 2012;
Fizazi et al., 2014; Ryan et al., 2015; Hussain et al., 2018; Armstrong
et al., 2019; Davis et al., 2019; Fizazi et al., 2019; Sternberg et al.,
2020). The concurrent use of abiraterone acetate with low-dose
prednisone is crucial to mitigate mineralocorticoid-related side
effects, such as hypertension and fluid retention, further
illustrating the complexity of managing advanced prostate
cancer (Hatano and Nonomura, 2023).

Thus, therapeutic resistance remains a significant challenge in
targeted cancer treatment due to tumor cell plasticity, which drives
the emergence of resistance mechanisms such as target mutations,
pathway reactivation, and interactions with the tumor
microenvironment. Although targeted therapies hold great
potential for personalized cancer treatment, the adaptability of
tumor cells and their inherent heterogeneity often complicate
treatment responses. However, a deeper understanding of these
resistance mechanisms has led to the development of

TABLE 7 Pharmacological activities of ecdysterone, 20-HE, and inokosterone.

Compound
/Extract

Cell line/Animal
model

Dose/
Duration

Efficacy Mechanism References

Ecdysterone MCF7, MDA-MB-231,
MDA-MB-468, DF2, WI-38,
Osteoporotic rats

50 μM Anti-Cancer effect ↓LC3B, p62, basic OCR
stressed OCR
stressed ECAR

Shuvalov et al. (2020)

20-HE A549, H1299, H460 (0.1–100 µM) for
1.5 h
10 µM of 20E for
24 h, 48 h

Anti-Cancer effect ↑Gpx3, Gpx4, Gpx6, Gsr, Gss,
Prdx1, Prdx5, Prdx6, Sod1, Sod2, Sod3, G0/
G1 arrest
↓ROS, Notch3, HSF1, mTOR, SOX12, KLF16,
ABCB6, ABCC1, TGF-β, MAPK, HK2, LDHA,
SHMT2, MTHFD2, c-Myc, ATF4. ALDH, CD44,
Oct4, c-Kit, Nestin

Shuvalov et al. (2023)

20-HE MCF7, T-47D, MDA-
MB-231

200 μM Proapoptotic, Pro
Autophagic effect

↑ mTOR, Bax, LC3, p62, G2/M
↓Bcl-2, PARP, caspase-3

Romaniuk-Drapała
et al. (2021)

20-HE J82, 5637, T24, SW780,
UMUC3
SV-HUC-1
Xenograft mouse

2.5, 5, 10 μM Anti-Cancer effect ↓caspase-3, USP21
NF-κB/p65, N-cadherin, IKBKB, PARP1, RAB21,
FBXL14, RNF168
ZEB-1, Vimentin, MMP13

Ma et al. (2024)

20-HE A-549, SW-620 1.79 µM,
1.83,1.85 µM

Anti-Cancer effect ↑ROS, Bax
↓BCL-2, Caspase-3, MMP

Lone et al. (2023)

20-HE HeLa-IL-6 3.5–6.2 μg/mL Anti-Inflammatory
effects

↓NF-κB, TNFα Peschel et al. (2011)

Inokosterone BMSCs
Female SD rats (250 ± 5 g
body weight)

50, 100
200 mg/L, 2,
4 mg/kg

Osteogenic effect ↑BMP2, Smad1, RUNX2, collagen I, ALP, OCN. Chen Y et al. (2023)

Inokosterone 22.6 cGy chronic gamma-
irradiation of mice

50 mg/kg Anabolic effect ↑peroxidase (brain, liver), LPO Shevchenko et al.
(2007)

Abbreviation: ↑upregulation; ↓downregulation; Glutathione peroxidase (GPX); Glutathione reductase (GSR); Glutathione synthetase (GSS); Superoxide dismutase (SOD); Reactive oxygen

species (ROS); Heat shock factor 1 (Hsf1); mammalian target of rapamycin (mTOR); SRY-box, transcription factors (SOX); Kruppel like factor 16 (KLF16); ATP-binding cassette super-family B

member 6 (ABCB6); ATP, binding cassette subfamily C member 1 (ABCC1); Transforming growth factor-beta, (TGF-β); Mitogen Activated Protein Kinase (MAPK); Hexokinase 2 (HK2);

Lactate dehydrogenase A (LDHA); Serine hydroxy methyltransferase 2 (SHMT2); Methylenetetrahydrofolate dehydrogenase/cyclo hydrolase (MTHFD2); Activating Transcription Factor 4

(ATF4); Aldehyde Dehydrogenase 2 (ALDH2); BCL2 Associated X, Apoptosis Regulator (BAX); Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); runt-related
transcription factor 2 (RUNX2); Bone Morphogenetic Protein 2 (BMP-2); Alkaline phosphatase, (ALP); Osteocalcin (OCN); specific protease 21 (USP21), matrix metalloproteinase-13

(MMP13).
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TABLE 8 Structural and functional similarity between ecdysteroids and human steroid hormones.

Compound and structure Binding mode Target
enzyme

Binding amino
acids

ΔG value
(kcal/mol)

Ecdysterone Steroid Core Binding 5α-Reductase Tyr91, Met106, Ala220 −7.2

Inokosterone Steroid Core Binding 5α-Reductase Arg88, His231, Leu253 −6.8

20-Hydroxyecdysone (20-HE) Hydroxyl Group
Interaction

5α-Reductase Ser102, Val169,
Glu215

−7.4

Ecdysterone Hydroxyl Group
Interaction

CYP17 Phe114, Thr306,
Asn202

−7.1

(Continued on following page)
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combination therapies, which are showing promise in improving
therapeutic outcomes by overcoming resistance and enhancing
treatment efficacy (Ramos and Bentires-Alj, 2015).

Innovative therapeutic strategies continue to emerge, including
the exploration of tyrosine kinase inhibitors, vaccination therapies,
immune checkpoint inhibitors (such as PD-1/PD-L1 and CTLA-4
inhibitors), PARP inhibitors, and PSMA-targeted treatments
(Mitsogiannis et al., 2022). The heterogeneity of prostate cancer,
particularly the plasticity induced by ADT, highlights the need for
early multi-modal therapy that targets diverse mechanisms to

prevent resistance and improve patient outcomes (Fizazi et al.,
2017; James et al., 2017; Gravis et al., 2018; Kyriakopoulos et al.,
2018). Prostate cancer patient data and overall disease progression
indicate the significance of focusing on the network that comprises
the main drivers. Thus, it is becoming clear that a more logical
approach based on a more holistic strategy is to target the larger
cancer-causing networks rather than to depend on single-target
therapy. This approach attempts to interfere with the several
processes that lead to tumor growth and resistance,
acknowledging the complex nature of prostate cancer.

TABLE 8 (Continued) Structural and functional similarity between ecdysteroids and human steroid hormones.

Compound and structure Binding mode Target
enzyme

Binding amino
acids

ΔG value
(kcal/mol)

Inokosterone Steroid Core Binding CYP17 Asp298, Tyr60, Val136 −6.7

20-Hydroxyecdysone (20-HE) Hydroxyl Group
Interaction

CYP17 Gly216, Thr210, Lys91 −7.3
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2 Challenges for targeting multiple
pathways in prostate cancer
therapeutics

2.1 The role of DNMT1 in prostate cancer
progression

The rapid demethylation of 5-methylcytosine (5 mC) during
epigenetic reprogramming, particularly during cancer progression,
cannot be entirely explained by passive methyl loss during
replication. Active enzymatic processes also play a crucial role in
this demethylation, contributing to significant alterations in gene
expression that fuel tumorigenesis (Wu and Zhang, 2010).
Intratumoral heterogeneity (ITH) is increasingly recognized as a
product of aberrant CpG methylation, which disrupts alternative
splicing mechanisms and contributes to cancer’s adaptive and
aggressive behavior (Lin et al., 2023). The interplay between
genetic mutations and epigenetic modifications, such as DNA
methylation and histone modifications, is a fundamental driver of
oncogenesis (Network et al., 2013; Bullinger et al., 2017; Eisfeld et al.,
2020), impacting key oncogenes and tumor suppressor genes to
foster tumor progression and metastasis (Aguilera et al., 2010).

This detailed discussion brings to light how DNA
methyltransferases (DNMTs), particularly DNMT1, are integral
to this process (Elenbaas et al., 2001; Taube et al., 2013). For
instance, DNMT1’s role in the epithelial-mesenchymal transition
(EMT) and cancer stem cell (CSC) phenotypes highlights its
significant impact on tumor initiation and progression (Lee et al.,
2016). The co-expression of DNMT1 and the Enhancer of zeste
homolog 2 (EZH2), alongside their correlation with poor prognostic
markers in prostate cancer, underscores the importance of

DNMT1 in maintaining tumor-promoting epigenetic landscapes
(Li et al., 2022). Additionally, mechanisms involving other key
proteins, such as calcium/calmodulin-dependent protein kinase II
inhibitor I (CAMK2N1), which appears to be downregulated via
promoter hypermethylation, further emphasize the role of
DNMT1 in cancer (Peng W et al., 2023). This has therapeutic
implications, as targeting DNMT1-mediated methylation could
reactivate tumor suppressor genes like FAM107A, which is
silenced in PCa through CpG island hypermethylation.
FAM107A acts as a molecular brake on the FAK/PI3K/AKT
pathway, and its reactivation could inhibit tumor growth and
metastasis, offering a potential therapeutic target (Ke et al.,
2022). Moreover, miRNAs, such as miRNA-148a and miRNA-
125b, regulate DNMT1 and p53, influencing gene silencing
and TP53-related pathways.

The therapeutic manipulation of these miRNAs in PCa could
modulate DNMT1 activity and reverse oncogenic methylation
patterns (Melnik, 2017). For example, mahanine, a plant-derived
alkaloid, restores tumor suppressor gene expression by inhibiting
DNMT1 degradation, revealing the therapeutic potential of natural
compounds in targeting epigenetic machinery (Agarwal et al., 2013).
Thus, the role of DNMT1 in the modulation of enhancer RNA
(eRNA) linked to the androgen receptor (AR) suggests that targeting
DNMT1 in these non-coding RNA interactions could provide new
avenues for diagnostics and therapy. This complexity highlights the
profound influence of epigenetic regulation in cancer biology, with
DNMT1 as a central figure in the maintenance of oncogenic states
(Pan et al., 2021). Nucleoside analogs cause DNA double-strand
breaks and cell death, in addition to depleting DNMTs and lowering
DNA methylation levels [12]. By reactivating endogenous retroviral
elements, they also promote immunological responses via the viral

TABLE 9 Amino acid residue interaction on selected ligands against DNMT1, Dicer, PD-1, and PD-L.

Ligand DNMT1 residues Binding
energy

(kcal/mol)

Dicer
residues

Binding
energy

(kcal/mol)

PD-1
Residues

Binding
energy

(kcal/mol)

PD-L1
Residues

Binding
energy

(kcal/mol)

Ecdysterone Ala180, Lys182, Tyr185 −10.5 Phe91, Gly93
Ser95

−9.8 Ile26, Lys28,
Val30

−9.4 Thr31, Asn33,
Pro35

−9.1

Inokosterone Ser170, Asp172, Ala174 −10.0 Thr83, Glu85
Asp87

−9.6 Ser34, Gly36,
Thr38

−9.2 Val39, Ser41,
Leu43

−9.0

20-Hydroxy
ecdysone
(20-HE)

Ala180, Lys182, Tyr185 −10.2 Phe91, Gly93
Ser95

−9.7 Ile26, Lys28,
Val30

−9.5 Thr31, Asn33,
Pro35

−9.2

Finasteride Ser155, Thr157, Gly159 −9.4 Ala85
Thr87
Glu89

−9.3 Val63, Thr65,
Asn67

−8.5 Ser42, Gly44,
Phe46

−8.4

Abiraterone
Acetate

Leu130, Ile135, Phe138 −8.9 Val42
Pro44
Ala46

−9.0 Gly12, Lys14,
Val18

−8.2 Tyr29, Arg31,
Met33

−8.1

Enzalutamide Gly120, Ser122, Phe124 −9.8 Thr72, Lys74
Asp76

−9.4 Glu22, Asp24,
Ser26

−8.9 Leu32, Arg34,
Phe36

−8.7

Apalutamide Leu130, Ile132, Val134 −9.6 Val52
Pro54
Gly56

−9.2 Phe62, Thr64,
Asn66

−8.6 Met25, Val27,
Ser29

−8.3

Darolutamide Thr145, Ala147, Lys149 −9.7 Asp65, Ala67
Gly69

−9.5 Ser33, Gly35,
Lys37

−8.8 Glu21, Asp23,
Lys25

−8.5
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TABLE 10 Selected ligands against DNMT1, Dicer, PD-1, and PD-L1with binding affinities.

Protein/
Ligand

Docking
score

Amino acid interaction Visualization

Docking Binding site

DNMT-1/
Ecdysterone

−10.5 Chain B:
ILE1042 ASN1043 TYR1078
SER1079 GLN1080 GLY1081
GLY1082 PRO1083
ASP1084 ARG1085
PHE1086 GLU1156
GLN1160 TYR1307
GLY1308 VAL1309
LEU1329 PHE1330
PRO1331 GLU1332
LEU1334 HIS1335
ASN1356 ARG1359
PHE1365 TRP1398
PHE1399 GLN1402
LEU1403 ARG1404
GLY1405 GLY1560
PHE1561 PRO1562
PRO1584 PRO1585
LYS1588 ALA1589
ILE1590 LEU1592
GLU1593 LYS1595 LEU1596

Dicer/
Ecdysterone

−9.8 Chain C: GLU336 LEU337 ASP340
GLU369 ARG372
GLU374 ALA375 TYR378
SER399 ASP404
GLU407 GLU435
HIS436 SER437
LYS438 SER478
PHE480 CYS481
SER482 SER483
ARG484 SER486
Chain D: GLN333 GLU336 LEU337
ASP340 GLU369 ARG372
GLU374 ALA375 TYR378 SER399
ASP404 GLU407 LYS657
GLU673 THR677 ARG678
ARG680 GLN681

PD-1/
Ecdysterone

−9.4 Chain A: VAL3 GLU5 ALA6
TRP1 VAL3 GLU5
ALA6 TRP1 VAL3
GLU5 ALA6 TRP1
VAL3 GLU5 ALA6
TRP1 VAL3 GLU5
ALA6 TRP1 VAL3
GLU5 ALA6 TRP1
VAL3 GLU5 ALA6
TRP1 VAL3 GLU5
ALA6 VAL3 GLU5
ALA6 ASP8 TRP1
VAL3 GLU5 ALA6

PD-L1/
Ecdysterone

−9.4 Chain A: GLN139 ILE141 THR203
ASN204 GLU223 LEU224
VAL225 ILE226 PRO227
GLU228 LEU229 PRO230
Chain B: TYR32 GLY33 SER34
ASP103 LYS136 ASN138
GLN156 ALA157 GLU158
THR182 SER184 LYS185
ARG186 GLU187 LEU190
ASN192 THR194

DNMT-1/
Inokosterone

10.0 Chain B: MET651 ARG654 CYS656
GLY657 VAL658 VAL699

(Continued on following page)
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TABLE 10 (Continued) Selected ligands against DNMT1, Dicer, PD-1, and PD-L1with binding affinities.

Protein/
Ligand

Docking
score

Amino acid interaction Visualization

Docking Binding site

LYS700 GLU701 ALA702
ASP703 ASP704 ASP705
GLU706 GLU707 TYR983
ILE984 LYS985 GLY986
SER987 PHE1148 SER1149
GLY1150 GLU1171 MET1172
TRP1173 ALA1176 GLY1226
PRO1227 PRO1228
CYS1229 GLN1230 GLY1231
PHE1232 SER1249 LEU1250
VAL1251 GLU1269 ASN1270
VAL1271 ARG1272 THR1312
ARG1313 ARG1314 ARG1315
ARG1340 ALA1341 PHE1524
PHE1525 SER1526 THR1527
THR1528 VAL1529 THR1530
ASN1531 GLU1533 GLY1536
LYS1537 GLN1538 ARG1540
ARG1576 GLY1579 ASN1580
ALA1581 VAL1582

Dicer/
Inokosterone

−9.6 Chain A: ASP340 GLU365 GLU369
ARG372 GLU374 ALA375
TYR378 SER399 LYS400
THR401 ASP404 GLU407
GLU435 HIS436 SER478
VAL479 PHE480 CYS481
SER482 SER483 ARG484 SER486
Chain B: GLN333 GLU336 LEU337
LEU338 ASP340 ALA341
MET368 GLU369 ARG372
ASN373 GLU374
ALA375 ASN377 TYR378
LYS398 SER399 LYS400
ASP404 GLU407 CYS481
SER482 SER483 SER486
LYS657 GLU673 THR677
ARG680 GLN681

PD-1/
Inokosterone

−9.2 Chain A: TRP1 VAL3 GLU5
ALA6 ASP8 TRP1
VAL3 GLU5 ALA6
TRP1 VAL3 GLU5
ALA6 TRP1 VAL3
GLU5 ALA6 TRP1
VAL3 GLU5 ALA6
TRP1 VAL3 GLU5
ALA6 TRP1 VAL3
GLU5 ALA6 ASP8
TRP1 VAL3 GLU5
ALA6 VAL3 GLU5
ALA6 ASP8 TRP1

VAL3 GLU5 ALA6 ASP8

PD-L1/
Inokosterone

−9.0 Chain A: GLN139 ILE141 THR203
ASN204 GLU223 LEU224
VAL225 ILE226 PRO227

GLU228 LEU229
Chain B: GLU31 TYR32 GLY33

SER34 ASP103 LYS105
ALA132 PRO133
ASN135 LYS136
ASN138 GLN156
ALA157 GLU158
GLY159 THR182
ASN183 SER184
LYS185 ARG186

GLU187 LEU190 ASN192 THR194
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defense pathway [21]. In prostate cancer, intratumoral heterogeneity
(ITH) plays a critical role in driving local recurrence following
radiation therapy. Emerging research highlights that the ecological
interactions among distinct tumor cell subpopulations may
significantly contribute to treatment resistance. This study aims
to evaluate the impact of these intercellular dynamics on prostate
cancer progression and their influence on the therapeutic response
to radiation, providing new insights into the complexity of treatment
resistance mechanisms (Paczkowski et al., 2021). Prostate cancer
may exhibit reduced aggressiveness upon termination of
DNMT1 expression, as this leads to a corresponding decrease in
Enhancer of Zeste Homologue (EZH2) expression.
DNMT1 promotes prostate cancer progression and metastasis by
enhancing TRAF6 transcription and facilitating TNF receptor-
associated factor 6 (TRAF6)-mediated ubiquitination of EZH2,
underscoring its pivotal role in tumorigenesis and potential as a
therapeutic target (Li et al., 2022). The development of epithelial-to-
mesenchymal transition (EMT) and cancer stem cell (CSC)
phenotypes within tumors is closely tied to the epigenetic
regulation of genetic programs by DNA methyltransferases
(DNMTs). In prostate cancer, EMT-driven bone metastasis is
further facilitated by cancer-associated fibroblasts (CAFs), which
enhance stromal CXC motif chemokine 12 (CXCL12) levels,
creating a microenvironment that supports metastatic
progression (Lee et al., 2016). The tumor suppressor gene
calcium/calmodulin-dependent protein kinase II inhibitor I
(CAMK2N1) is significantly downregulated in prostate cancer.
This downregulation is driven by DNMT1-mediated DNA
methylation, which not only suppresses CAMK2N1 expression
but also triggers activation of the AKT and ERK signaling
pathways. This activation establishes a feedback loop that
promotes further DNMT1 production, amplifying oncogenic
signaling and tumor progression (Peng Y et al., 2023). The
FAM107A gene, located on the short arm of chromosome 3, is
frequently downregulated in prostate cancer and is associated with
poor prognosis. This downregulation is primarily driven by
hypermethylation of CpG islands in its promoter region. Notably,
overexpression of FAM107A has been shown to inhibit tumor cell
motility, invasion, and proliferation while promoting apoptosis,
primarily through modulation of the focal adhesion kinase
(FAK)/PI3K/AKT signaling pathway (Ke et al., 2022). Milk-
derived miRNAs, particularly miRNA-125b and miRNA-148a,
influence the p53-DNMT1 regulatory axis, which governs key
genes like BIRC5 (Baculoviral IAP Repeat Containing 5)
(surviving) involved in cell survival and tumor progression.
miRNA-125b targets TP53, altering p53-dependent gene
networks, while miRNA-148a directly downregulates DNMT1,
affecting chromatin regulation via Histone Deacetylase 1
(HDAC1). This milk-mediated miRNA-p53-DNMT1 pathway
may explain the epidemiological link between milk consumption,
acne vulgaris, and prostate cancer (Melnik, 2017).
DNMT1 knockdown reduces repressive histone marks,
particularly H3K9me3 and H3K27me3, on the promoters of Zinc
Finger E-Box Binding Homeobox 2 (ZEB2) and Kruppel-like
transcription factor 4 (KLF4) genes crucial for maintaining the
EMT and CSC phenotype. This epigenetic alteration facilitates
the transcriptional activation of these genes, driving aggressive
tumor behavior and underscoring DNMT1’s pivotal role in

modulating epigenetic landscapes within PCa cells (Lee et al.,
2016). The multifaceted impact of DNMT1 across various
signaling pathways and cellular mechanisms underlines its
potential as a critical target in future prostate cancer treatments,
particularly in strategies aimed at overcoming metastasis and
resistance to conventional therapies. Table 1 summarizes the key
points related to DNMT1’s role in prostate cancer.

2.2 The role of dicer in prostate cancer
progression

Dicer, an essential enzyme in the biogenesis of microRNAs
(miRNAs), plays a crucial role in prostate cancer progression by
regulating various cellular processes, including cell division,
apoptosis, and tumor invasion. In prostate cancer, Dicer
expression is notably elevated in cancerous tissues compared to
benign counterparts, particularly in early-stage disease, with higher
levels correlating to more aggressive phenotypes. Elevated Dicer and
Ago2 expression in prostate cancer tissues compared to adjacent
benign tissues have been linked to lower Gleason scores, suggesting a
role in moderating tumor aggression. When Dicer or
Ago2 expression is silenced in vitro, prostate cancer cell lines
such as LNCaP, PC-3, and DU145 exhibit significant reductions
in cell proliferation and increased cell death, indicating Dicer’s role
in promoting tumor cell survival. Moreover, Dicer inhibition leads
to cell cycle arrest in the G2/M phase in androgen-dependent
LNCaP cells and in the S phase in androgen-independent PC-3
and DU145 cells, demonstrating its influence on cell cycle regulation
across different prostate cancer subtypes (Bian et al., 2014).

Dicer dysfunction is observed across various cancer types,
including prostate cancer, where altered miRNA processing
contributes to disease progression. Dicer’s role in miRNA
maturation enables miRNAs like miR-200a and miR-31, which
are downregulated in prostate cancer tissues, to serve as potential
diagnostic and prognostic markers. Interestingly, metastatic prostate
cancer exhibits elevated expression levels of miR-200a, miR-370,
and miR-31 compared to localized prostate cancer, suggesting
Dicer’s differential regulation in advanced disease stages (Bian
et al., 2015). Transforming growth factor-β1 (TGF-β1) plays a
central role in regulating EMT through its influence on nc886, a
non-coding RNA transcribed by RNA polymerase III (Pol III).
nc886 affects EMT indirectly by modulating the processing of
microRNAs via Dicer, an essential enzyme in RNA silencing.
Additionally, TGF-β1 regulates MYC-associated zinc finger
protein (MAZ), a transcription factor that suppresses TGFBI, a
gene involved in cell adhesion and migration. This regulatory
framework reveals a novel EMT unit comprising nc886 and its
neighboring genes, driven by TGF-β1-mediated differential
transcription of Pol II and Pol III genes. Understanding this
network provides new insights into EMT regulation in PCa and
highlights potential therapeutic targets for mitigating metastasis
(Yang et al., 2022).

Disruption of Dicer function has been shown to increase
apoptosis and senescence in prostate cancer cell models, driven
by upregulation of tumor suppressors such as P16/INK4a and P27/
Kip1. This suggests that Dicer acts as a survival factor in prostate
cancer cells, contributing to the maintenance of tumor growth and
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resistance to apoptosis in PrEC cells, PNT1a and PNT2, LNCaP, PC-
3, DU145, and CWR22Rv1 cells (Zhang et al., 2014).
Immunohistochemical studies on prostate cancer tissues have
demonstrated Dicer overexpression in prostatic intraepithelial
neoplasia (PIN) and in over 80% of prostate adenocarcinomas,
indicating its potential role as a biomarker for early detection
and progression monitoring (Chiosea et al., 2006). Furthermore,
hypoxic conditions, often present in the tumor microenvironment,
exacerbate Dicer dysfunction, leading to the downregulation of
critical miRNAs like miR-124 and miR-144, which are associated
with autophagy and treatment resistance. Overexpression of these
miRNAs in hypoxic conditions has been shown to enhance
radiosensitivity by downregulating PIM1, a key factor in prostate
cancer progression (Gu et al., 2016).

In addition to its role in miRNA biogenesis, Dicer is involved in
androgen receptor (AR) reprogramming, particularly in the
transition to CRPC. Overexpression of MIR222HGs promotes
androgen-independent growth in HSPC LNCaP cells by
suppressing androgen receptor activity and reducing the
expression of key AR-regulated genes (KLK3, TMPRSS2, FKBP5),
driving the transition toward a CRPC phenotype. This suggests that
targeting Dicer and its associated miRNAs could provide novel
therapeutic avenues for combating CRPC (Sun et al., 2018).

Here, Dicer is a pivotal regulator of prostate cancer progression,
influencing key processes such as cell proliferation, apoptosis,
miRNA biogenesis, and androgen receptor signaling. Its role in
regulating miRNAs and involvement in epigenetic modifications
highlights its potential as a therapeutic target and biomarker in
prostate cancer. Further investigation into Dicer’s mechanisms
could uncover new strategies for targeted therapies, particularly
in advanced and treatment-resistant forms of prostate cancer.
Table 2 concisely summarizes the intricate role of Dicer in
prostate cancer, highlighting its potential therapeutic and
diagnostic applications.

2.3 PD-1/PD-L1 pathway in prostate cancer

The PD-1/PD-L1 pathway plays a critical role in immune
evasion mechanisms employed by prostate cancer cells, making it
a pivotal target in the development of immunotherapeutic strategies
(Gerger et al., 2011). PD-L1, a transmembrane protein encoded by
the CD274 gene, interacts with its receptor PD-1 on T cells, leading
to the inhibition of T-cell activation and induction of T-cell anergy.
This immune suppression enables tumor cells to evade immune
detection and destruction. While targeting the PD-1/PD-
L1 checkpoint has shown promise in a variety of cancers,
including renal cell carcinoma, melanoma, and non-small cell
lung cancer, prostate cancer, presents unique challenges due to
its immunologically “cold” tumor microenvironment (Cha
et al., 2019).

Collagen triple helix repeat containing 1 (CTHRC1) is
associated with tumor progression and reduced disease-free
survival in prostate cancer. High CTHRC1 expression correlates
with increased levels of immune checkpoints PD-1 and PD-L1,
enhanced infiltration of immune cells such as B cells, CD4⁺ T cells,
macrophages, neutrophils, and dendritic cells, and is associated with
genes like MMP9, MUC1, and SLC2B1 that drive PC progression.

These findings suggest that CTHRC1 upregulation adversely affects
PC prognosis and immune function, suggesting that targeting
CTHRC1 could modulate the tumor microenvironment and
improve therapeutic outcomes (Zhou et al., 2019).

Additionally, inhibition of heterogeneous nuclear protein L
(HnRNP L) in castration-resistant prostate cancer (CRPC)
reduces PD-L1 expression and destabilizes YY1 mRNA, thereby
enhancing T-cell-mediated ferroptosis and improving antitumor
immunity. This effect involves key molecules such as SLC7A11,
Glutathione peroxidase 4 (GPX4), Signal transducer and activator of
transcription 1(STAT1), Interferon gamma (IFN-γ), and
Interleukin-1 (IL-2) (Zhou et al., 2022). Furthermore, PD-L1
protein levels in prostate cancer are regulated by proteasome-
mediated degradation via Cyclin D-CDK4 and the Cullin 3SPOP

E3 ligase pathway. Blocking CDK4/6 with inhibitors increases
PD-L1 levels, enhancing immune suppression, which suggest that
combining CDK4/6 inhibitors with PD-1/PD-L1 immunotherapies
could disrupt tumor immune evasion and improve patient outcomes
(Zhang et al., 2018).

Prostate cancer’s low presence of tumor-infiltrating
lymphocytes (TILs) contributes to immunotherapies targeting
immune checkpoints, such as anti-PD-1 or anti-PD-L1 antibodies
(Sharma and Allison, 2015; Gao et al., 2017; Subudhi et al., 2020).
EP4 (PTGER4), expressed in epithelial and immune cells, modulates
the prostate cancer immune microenvironment. YY001, a novel
EP4 antagonist, inhibits the differentiation and immunosuppressive
function of myeloid-derived suppressor cells (MDSCs) while
enhancing T-cell proliferation and anticancer activity. This agent
reverses MDSC and T-cell infiltration by altering tumor chemokine
profiles, leading to increased CD8+ T-cell activation and reduced
immunosuppressive functions (Peng et al., 2022).

Clinical studies have shown that docetaxel-based
chemohormonal therapy increases tumor-infiltrating T cells by
activating the cGAS/STING pathway and inducing IFN signaling.
In xenograft mouse models, this therapy enhances T-cell infiltration
and upregulates PD1/PD-L1 expression, sensitizing tumors to anti-
PD1 blockade. A retrospective analysis of metastatic castration-
resistant prostate cancer (mCRPC) patients demonstrated improved
PSA progression-free survival with combined docetaxel and anti-
PD1 therapy compared to anti-PD1 alone (Ma et al., 2022).

In metastatic castration-resistant prostate cancer (mCRPC),
single-agent PD-1/PD-L1 inhibitors have shown limited efficacy,
underscoring the need to “heat up” these tumors by enhancing
immune cell infiltration (Huang and He, 2020). Strategies to convert
“cold” tumors into “hot” tumors (those with increased T-cell
infiltration and immune activity) are being actively investigated.
One promising approach is the combination of PD-1/PD-
L1 inhibition with therapies that target other immune-
modulatory pathways, such as CXCR4, poly (ADP-ribose)
polymerase (PARP), or transforming growth factor (TGF)-β
inhibitors. Combining these therapies with immune checkpoint
inhibitors has shown potential in enhancing antitumor responses
and overcoming immune resistance (Majidpoor and
Mortezaee, 2021).

Additionally, integrating PD-1/PD-L1 inhibitors with
chemotherapy, radiation therapy, or other targeted therapies offer
new opportunities for prostate cancer treatment. For instance,
docetaxel (DTX) induce ATM-NF-κB signaling, upregulating
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PD-L1 expression and contributing to immune suppression.
Combining DTX with PD-1/PD-L1 inhibitors may counteract
this effect and restore immune system activity for more effective
tumor control (Wang et al., 2021).

Using the Myc-CaP:PSMA (+) murine prostate cancer model
and second-generation anti-hPSMA CAR T cells with a Click Beetle
Red luciferase reporter, researchers evaluated CAR T cell trafficking
and antitumor efficacy both alone and in combination with anti-PD-
1 antibodies. They found that combining CAR T cell therapy with
PD-1 blockade reversed the exclusion of CD3+ T cells from tumor
centers and enhanced tumor treatment response, although the effect
was short-lived. Additionally, an inverse pattern of CAR T cell
bioluminescence was observed in treated tumors, linked to
decreased mitochondrial function following T cell activation,
highlighting metabolic challenges in solid tumor therapies
(Serganova et al., 2017).

Clinical trials continue to explore the benefits of combining PD-
1/PD-L1 inhibition with other therapeutic agents, such as tyrosine
kinase inhibitors, PARP inhibitors, or radiotherapy, to enhance
immune responses and improve clinical outcomes.
Understanding the intricate regulation of PD-L1 expression and
the immune microenvironment in prostate cancer is crucial to
developing more effective and personalized treatment strategies
(Rekoske et al., 2016). Although the “cold” immune environment
of prostate cancer limits the effectiveness of PD-1/PD-L1 inhibitors
as monotherapy, combination therapies hold significant potential.
Ongoing research aims to uncover the mechanisms driving immune
evasion in prostate cancer and develop novel therapeutic strategies
that enhance immune cell infiltration and activity, ultimately
improving patient outcomes in this challenging disease (Sharma
et al., 2020).

To consolidate advances in immunotherapy, it is crucial to
identify candidate agents that not only enhance our immune
system but also maintain an overall balance. Such agents could
transform the immune environment, potentially converting
immunologically “cold” tumors into “hot” ones, thereby
increasing the effectiveness of immune responses against cancer.
Table 3 highlights the major points discussed in the text, providing
an overview of the challenges, mechanisms, and potential strategies
related to PD-1/PD-L1 immunotherapy in prostate cancer.

3 A promising herbal medicine

3.1 BK002 bioinformatics and network
pharmacology analysis targeting DNMT1,
dicer, PD-L1, and PD-1 in prostate cancer

Figure 2A shows the KEGG pathway alignment for BK002 (a
combination of AJN and MFR), specifically targeting DNMT1,
Dicer, PD-L1, and PD-1. KEGG (Kyoto Encyclopedia of Genes
and Genomes) was used to map gene interactions and pathways,
highlighting which genes involved in these pathways are influenced
by the bioactive compounds in AJN and MFR. The gene sets
corresponding to DNMT1, Dicer, PD-L1, and PD-1 were
obtained from publicly available gene databases (e.g., NCBI,
KEGG). Figure 2B illustrates the interconnected network of
KEGG pathways influenced by the compounds in AJN and MFR,

showing how they interact with multiple prostate cancer-related
pathways. Genes involved in the targeted pathways (DNMT1, Dicer,
PD-L1, PD-1) were mapped with their interaction partners. The
network shows direct and indirect connections between these
pathways and other cancer-related genes regulated by AJN and
MFR compounds. Figure 2C displays a comparative analysis of how
AJN and MFR compounds affect multiple pathways on average,
demonstrating the overall balance in their pharmacological action
on prostate cancer pathways. KEGG pathways affected by AJN and
MFR compounds were averaged based on the number of
overlapping genes. This approach helps in identifying whether
the two compounds target pathways with similar intensities or
whether one has a stronger influence. Figure 2D highlights the
average interaction network based on the aligned pathways of AJN
and MFR. It aggregates the interaction data, presenting a more
generalized view of how the two herbal medicines interact with the
prostate cancer gene pathways. Using network pharmacology tools,
the average alignment of the networks for AJN and MFR was
computed. Nodes represent genes or proteins, while edges
represent interactions or relationships between them.

Figure 2E presents the comprehensive interaction network of
AJN and MFR compounds across all the targeted pathways in
prostate cancer, including DNMT1, Dicer, PD-L1, and PD-1. It
reflects the complete bioinformatics data from pathway analysis.
Network pharmacology platforms (such as STITCH, STRING, or
Cytoscape) were used to generate a global interaction map. This
figure provides an integrative view, demonstrating the full
therapeutic potential of these herbal extracts. Figure 2F focuses
on the specific transcription factors regulated by AJN and MFR
compounds, which are crucial in modulating the expression of
DNMT1, Dicer, PD-L1, and PD-1 in prostate cancer.
Transcription factors known to regulate the expression of
DNMT1, Dicer, PD-L1, and PD-1 were identified using databases
like TRANSFAC or JASPAR. AJN and MFR compounds were then
analyzed to determine their influence on these transcription factors
through docking simulations or network modeling.

3.2 Ethnopharmacological background of
herbal medicine in prostate cancer

Traditional cancer treatments like surgical resection,
radiotherapy, and chemotherapy have been fundamental in
oncology. However, the advent of immunotherapy and targeted
therapies has significantly enhanced cure rates. Alongside these
advancements, increasing clinical and laboratory evidence
supports the efficacy of herbal medicines in cancer treatment
(McCubrey et al., 2017). Phytochemicals from herbal sources
exhibit notable anticancer properties, complementing
conventional therapies (Xiang et al., 2019). Traditional herbal
medicine, with its millennia-long history, is experiencing renewed
scientific interest, with modern methods validating its efficacy,
safety, and mechanisms of action (Chen L et al., 2024). For
instance, during the COVID-19 pandemic, around 90% of
patients in China used traditional herbal medicine, achieving an
80% effectiveness rate with minimal side effects (An et al., 2021). In
Asia, herbal medicine is widely used alongside conventional cancer
treatments (Li et al., 2013; Xu et al., 2020). Benefits include enhanced
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immunity, symptom relief, and improved quality of life. Herbal
extracts and formulations target multiple pathways to combat drug
resistance, induce tumor apoptosis, and inhibit tumor growth (Jin
et al., 2021; Lee et al., 2021; Lu et al., 2021; Wang et al., 2024).

Notably, plant-derived phytochemicals and extracts exhibit
different mechanisms of effectiveness against prostate cancer
(Huang et al., 2019; Livingstone et al., 2019; Wang et al., 2019;
Bai et al., 2021; Ghosh et al., 2021; Singla et al., 2021; Ruksiriwanich
et al., 2022; Kong et al., 2023; Peng W et al., 2023; Chen M et al.,
2024; Huang et al., 2024; Ji et al., 2024). Research in systems biology
will undoubtedly help modernize herbal medicine and establish the
multicomponent, multitargeting approach as a new paradigm in
medicine. Once identified, metabolic engineering and/or chemical
synthesis can be used to produce the active constituents of a herbal
medicine more efficiently (Kim et al., 2015). These treatments
leverage a variety of bioactive compounds like saponins,
triterpenes, phenolics, and flavonoids, known for their
antimicrobial, anti-inflammatory, immunomodulatory,
antioxidant, and anticancer effects (Batiha et al., 2023). The
growing acceptance and integration of herbal medicines in cancer
care reflect their potential to enrich and enhance therapeutic
outcomes, offering a holistic approach to oncology.

3.3 Achyranthes japonica (Miq.) Nakai (AJN)

AJN, a perennial herb in the Amaranthaceae family, is prevalent
in East Asia, including Korea, China and Japan (Jung et al., 2007).
Traditionally used to treat edema, arthritis, mastitis, and delayed
menstruation (Marcone et al., 2003). Recent studies have revealed that
the phenol content of AJN reached its peak at a sowing amount of
0.5 g, while the flavonoid content is maximized at both 0.5 and 1.0 g,
underscoring the ideal conditions for bioactive compound production
(Kim et al., 2024). Notably, AJN is rich in phytochemicals such as
saponins, inokosterone, ecdysterone, and oleanolic acid bisdemoside
(Hahn and Lee, 1991; Ida et al., 1994). These compounds contribute to
its diverse biological and pharmaceutical activities, including anti-
inflammatory, antioxidant, antimicrobial, osteoprotective (Jung et al.,
2007; Bang et al., 2012; Park et al., 2013), anti-diabetic, and anticancer
(Shim et al., 2016). Dietary supplementation with AJN extract in
animal models has improved growth performance, nutrient
utilization, intestinal microbiota balance, and reduced excreta
ammonia levels (Sun H. Y et al., 2020). Recent studies highlight
the potential of AJN in various therapeutic applications. AJN,
particularly in its fermented form, has shown significant effects in
animal models of osteoarthritis, reducing inflammation and catabolic
factors while preserving joint architecture (Kim D et al., 2020).

AJN extract demonstrated anti-allergic effects by suppressing
histamine release and intracellular calcium [Ca2+]i elevation in
FcεRI-mediated KU812F cells in a dose-dependent manner. Flow
cytometry revealed reduced FcεRI surface expression and decreased
binding of IgE to FcεRI. Additionally, AJN extract downregulated
FcεRI α chain mRNA levels, suggesting its mechanism involves
FcεRI expression inhibition, calcium influx suppression, and
histamine release reduction (Shim et al., 2016).

In a monosodium iodoacetate (MIA)-induced osteoarthritis
animal model, dietary supplementation with fermented AJN
(FAJN) reduced serum prostaglandin E2 (PGE2),

proinflammatory cytokines, and cartilage catabolic factors such as
MMP-3 and MMP-7. These findings suggest that FAJN may have
therapeutic potential for managing osteoarthritis (Kim H. Y
et al., 2020).

AJN root (AJNR) demonstrated specific effects on IL-6-
mediated catabolic and anabolic alterations, reducing catabolic
factors and recovering anabolic factors in vitro. In a
destabilization of the medial meniscus (DMM) model, AJNR
decreased cartilage erosion, subchondral plate thickness, and
osteophyte size and maturity. In a CIA model, AJNR effectively
inhibited cartilage degeneration, synovium inflammation, and
pannus formation in the ankle and knee. Immunohistochemical
analysis revealed its primary action involved suppressing IL-6-
mediated matrix metalloproteinase-3 and -13 in arthritis models
(Zhao et al., 2021). AJN has shown promising results in reducing
NO and PGE2 production in LPS-induced cells and in decreasing
MMP-3 release in TNF-α-treated cells. Fermented AJN exhibits
enhanced anti-inflammatory activity and greater concentrations of
active components (Lee et al., 2012). Notably, combined extracts of
AJN with other herbs have shown significant anti-inflammatory
effects, reducing the production of pro-inflammatory cytokines and
showing potential in managing osteoarthritis and other
inflammatory conditions. AJN’s inhibitory effects on NF-κB
activation and ERK, JNK, and p38 phosphorylation further
underscore its therapeutic potential (Bang et al., 2012).

In prostate cancer models, BK002 (AJN combined with MFR)
increased DNA damage and activated p-γH2A.X, promoting
ubiquitination of pro-PARP, caspase9, and caspase3, leading to
apoptosis in PC3 and DU145 cells. Confocal imaging showed
enhanced DNA-binding activity, while BK002 also induced
CHOP activation and suppressed PI3K/AKT expression. ROS
generation was critical for apoptosis, as co-treatment with NAC
reduced ROS and cytotoxicity. Furthermore, BK002 significantly
upregulated miR-192-5p, and its inhibition decreased apoptosis,
highlighting miR-192-5p′s role in BK002-mediated anti-cancer
effects. (Park et al., 2022).

Additionally, GCSB-5, another combination of AJN and other
herbs, has been recommended for managing musculoskeletal
conditions, including intervertebral disc disorders (Lee et al.,
2017). Given the established link between inflammation and
tumor progression (Ma et al., 2013), numerous clinical studies
have highlighted the chemopreventive efficacy of non-steroidal
anti-inflammatory drugs (NSAIDs) such as aspirin (Cuzick et al.,
2009; Cuzick et al., 2015). Furthermore, the evidence supporting the
potential of AJN as an anticancer agent is strong, particularly given it
demonstrated anti-inflammatory properties (Table 4), which are
similar to those of aspirin. Leveraging AJN in cancer therapy could
offer a dual approach by targeting both inflammation and tumor
growth, enhancing overall treatment effectiveness.

3.4 Melandrium firmum (Siebold and Zucc.)
Rohrb. (MFR)

MFR, a biennial herbaceous plant belonging to the
Caryophyllaceae family, has been used in Korean folk medicine
to treat a variety of ailments, including gonorrhea, anuria, and breast
cancer (Evans Schultes, 1980). MFR has been found to contain a rich
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array of bioactive compounds, including multiple sapogenins
(Chang et al., 1989), a distinctive saponin (Woo et al., 1992),
flavonoids, and triterpenoids (Zheng et al., 2008). These
compounds have undergone comprehensive pharmacological
evaluation, revealing diverse therapeutic potentials. Sapogenins
and saponins are noted for their anti-inflammatory and
anticancer properties, while flavonoids exhibit potent antioxidant
and vascular protective effects. Triterpenoids, on the other hand, are
recognized for their immunomodulatory and anticancer activities.

Recent studies have highlighted its remarkable potential in
mitigating bone loss and inhibiting osteoclast development,
particularly in postmenopausal osteoporotic models. It achieves
these effects by effectively suppressing RANKL-induced
osteoclastogenesis, a critical driver of bone resorption.
Furthermore, it downregulates pivotal signaling pathways,
including NFATc1/c-Fos and TRAF6, which are essential for
osteoclast differentiation and activity. This dual action not only
impedes the formation of osteoclasts but also preserves bone
integrity, underscoring its therapeutic promise for managing
osteoporosis and related bone diseases (Kim et al., 2021). MFR
demonstrated significant inhibitory effects on the expression of key
genes involved in adipogenesis, including PPAR-γ, C/EBP-α, and
aP2, as well as genes regulating lipogenesis, such as SREBP-1c, FAS,
SCD-1, and CD36, within epididymal adipose tissue and liver
tissues. These findings highlight MFR’s ability to modulate
critical pathways that drive fat accumulation and lipid synthesis.

By suppressing these gene expressions, MFR effectively mitigates
the molecular drivers of adipogenesis and lipogenesis, offering a
promising approach to counteract high-fat diet-induced obesity.
These results position MFR as a potential functional food ingredient
with applications in preventing obesity and promoting metabolic
health (Kim D et al., 2020). Furthermore, MFR demonstrates
significant anti-inflammatory activity by targeting the 5-
lipoxygenase (5-LOX) pathway, a critical enzyme in the
biosynthesis of pro-inflammatory leukotrienes. Notably, several
bioactive compounds isolated from MFR exhibit strong 5-LOX
inhibitory effects, effectively reducing the production of
leukotrienes that contribute to inflammation and related
pathologies. This mechanism highlights MFR’s therapeutic
potential in managing inflammatory disorders, particularly those
driven by leukotriene-mediated pathways, such as asthma, arthritis,
and inflammatory bowel diseases (Zheng et al., 2008).

MFR selectively induced apoptosis and cytotoxicity in human
neuroblastoma cells without significantly affecting normal fibroblast
cells. To our knowledge, this is the first study to demonstrate that
MFR dose-dependently activates caspase signaling, mediated by the
regulation of Bcl-2 family proteins. This process ultimately leads to
the accumulation of fragmented DNA, highlighting its potential as a
targeted therapeutic agent against neuroblastoma (Rahman
et al., 2013).

MFR exhibits a wide range of beneficial effects across various
experimental models, demonstrating anti-osteoclast, anti-
adipogenic, anti-cancer, and anti-inflammatory properties, as
shown Table 5. The subsequent sections will introduce specific
flavonoids, exploring their unique roles and mechanisms as
transformative agents in cancer treatment. Figure 3 illustrates the
key phytochemicals and extracts derived from AJN and MFR,
highlighting their structural diversity and therapeutic potential.

3.5 Phytochemistry: biochemical scaffolds
with multifaceted therapeutic potential

Several categories of bioactive compounds have been identified,
including flavonoids, terpenes, alkaloids, phenolic acids, and
steroids, each contributing to a diverse range of pharmacological
activities (Wei et al., 2023).

It has been identified ecdysone and cyasterone as the primary
steroids in the methanolic extract of the whole plant. Further
investigations were conducted Sabri et al. (1981) demonstrated
the presence of three major steroids cyasterone, ecdysterone
(C27), and ajugasterone C across the roots, stems, and leaves,
underscoring the plant’s significant pharmacological potential
(Bouyahya et al., 2020). Detailed information on steroids,
particularly ecdysterone (C27), will be elaborated in the
subsequent section, 3.6 Phytochemical Composition of AJN and
MFR, providing deeper insights into their significance and potential
applications.

Flavonoids, a diverse group of phytonutrients found in many
fruits and vegetables, are well-recognized for their therapeutic
properties, including anti-inflammatory, antioxidant, and
anticancer activities. These compounds have a biochemical
structure characterized by a benzo-γ-pyrone framework that
allows them to scavenge free radicals (Heijnen C et al., 2001),
chelate metal ions, and modulate key cellular enzymes involved
in growth and apoptosis. The structural characteristics of flavonoids,
particularly the catechol moiety present in many highly active
flavonoids such as luteolin, morin, apigenin, chrysin, and
galangin, play a crucial role in their biological activity.

The catechol structure, typical on the aromatic B-ring of
flavonoids, comprises two adjacent hydroxyl groups and provides
substantial antioxidative potential (Tse et al., 1976; Haenen et al.,
1991). This structure enables the formation of intramolecular
hydrogen bonds and stabilizes the radical form of the flavonoid,
facilitating the donation of a hydrogen atom, a critical step in free
radical scavenging (Heijnen C. G et al., 2001; van Acker et al., 2001).
The effectiveness of the catechol structure is further evidenced by its
impact on the π-conjugation system of flavonoids. These compounds
are characterized by their unique benzo-γ-pyrone structure, which
facilitates a range of biological activities, including their ability to act as
effective scavengers of free radicals (Marković et al., 2017; Masek et al.,
2017; Amić et al., 2018). The conjugation extends from the B-ring
across the C2-C3 double bond into the carbonyl group on the C-ring,
enhancing the overall stability and radical-scavenging capacity of
these molecules compared to their saturated counterparts, such as
flavanones (Zheng et al., 2019; Bors et al., 1990; Van Acker et al., 1996;
Heijnen C et al., 2001; Spiegel et al., 2020).

Integrating the principles of systems biology and multitargeting
therapies, including those derived from herbal medicines, holds
promise for enhancing treatment efficacy and addressing
therapeutic resistance through synergistic interactions at multiple
biological levels (Li et al., 2011). This approach could modernize
herbal medicine and establish a new paradigm in medicine, enabling
more systematic investigations and large-scale production of pure
active compounds for various therapeutic applications (Kim et al.,
2015). Saponins, triterpenes, phenolic compounds, isoflavones, and
flavonoids are notable for their diverse bioactivities, particularly in
cancer therapy.
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Saponins, found in many plants, exhibit immunostimulatory,
anti-inflammatory, and anticancer properties by inducing apoptosis
and inhibiting tumor proliferation through signaling pathway
modulation (Mieres-Castro and Mora-Poblete, 2023). Certain
triterpenes, characterized by their 30-carbon structure, can
suppress cancer growth, induce apoptosis, and inhibit angiogenesis
(Xu et al., 2018).With a novel mechanism involving the interaction of
the triterpene glycoside’s carbonyl oxygen with the Fe/S center of the
mitochondrial respiratory chain, hydrogen peroxide is produced,
which leads to the opening of the mitochondrial transition pore
(Salvi et al., 2003; Fiore et al., 2004). This action highlights their
unique potential in cancer therapy.

Phenolic compounds, identified by hydroxyl groups attached to
an aromatic ring, offer strong antioxidant properties, protecting cells
from oxidative stress, a critical factor in cancer development. They
also demonstrate anti-inflammatory and anticancer activities by
modulating signaling pathways and inducing apoptosis in cancer
cells (Sadhu et al., 2022).

Isoflavones, a type of flavonoid primarily found in legumes, act
as phytoestrogens with estrogen-like effects. They have a unique 3-
phenylchromen-4-one structure, which enables them to modulate
estrogen receptors and inhibit key enzymes such as tyrosine kinase
and topoisomerase-II, providing significant therapeutic benefits
(Russo et al., 2016; Mukund et al., 2017).

Flavonoids, with a distinct benzo-γ-pyrone structure, exhibit
therapeutic properties including anti-inflammatory, antioxidant,
and anticancer effects. Their ability to scavenge free radicals,
chelate metal ions, and modulate essential cellular enzymes
involved in growth and apoptosis underlines their efficacy. These
compounds interact with multiple molecular targets, making them
versatile agents in cancer therapy (Kumar et al., 2023).

Incorporating herbal medicine not only capitalizes on its vast
arsenal of bioactive compounds but also enhances the precision of
cancer treatments by harnessing natural synergies. This approach
proactively counters the emergence of drug resistance, shifting from
a reactive to a preventative treatment model. Ultimately, integrating
the traditional wisdom of herbal medicine with advanced systems
biology and innovative drug development is poised to revolutionize
our approach to cancer therapy, leading to more effective,
sustainable, and holistic treatment outcomes. As we delve into
their specific roles and mechanisms, we will explore how these
candidates could disrupt cancer progression, opening new avenues
in the fight against this complex disease.

Table 6 highlights the potential binding interactions and
energies between various bioactive compounds and key proteins
involved in cancer, offering insights into their therapeutic potential.

3.6 Key steroidal components of AJN
and MFR

Phytosterols have shown promising potential in combating
various cancers, including breast, prostate, lung, liver, stomach,
and ovarian cancers. Research has demonstrated their ability to
inhibit the growth and proliferation of cancer cells, particularly in
liver, prostate, and breast cancers, highlighting their therapeutic
potential in cancer prevention and treatment (Ramprasath and
Awad, 2015). AJN and MFR are two traditional herbs with

promising pharmacological properties. Recent research has
illuminated the phytochemical compositions of these plants,
underscoring their potential in enhancing health and treating
diseases, including cancer.

AJN is renowned for its diverse bioactive compounds, which
contribute to its many therapeutic applications. One standout
compound is ecdysterone, a naturally occurring steroid hormone
that has garnered attention for its ability to bind to estrogen
receptors, a mechanism that may underpin its anabolic effects. In
animal studies, ecdysterone has outperformed even banned anabolic
agents like metandienone, although human studies remain limited
(Isenmann et al., 2019).

Steroids, characterized by their four-ring core structure, are
ubiquitous in the biological world, serving crucial roles from
maintaining cell membrane integrity to signaling. Ecdysteroids
are synthesized by about 6% of plant species as a defense
mechanism against insect herbivores. These compounds have a
distinctive biochemical configuration that grants them significant
biological activity, including the regulation of gene expression and
various metabolic effects (Shuvalov et al., 2020). Among these
substances, 20-hydroxyecdysone and ecdysteroids are the most
prevalent, and control arthropod reproduction, development,
diapause, and molting (Bortolozzi et al., 2020). Ecdysteroids are
polyhydroxylated steroids with a four-ring core structure like
cholesterol and steroid hormones. Ecdysterone has a distinctive
14α-hydroxy group and a seven-ene function (Miyata et al., 2007).
Despite their promise, the exploration of ecdysteroids in cancer
therapy is still in its infancy and warrants further research (Dinan,
2001; Lafont and Dinan, 2003; Mostrom and Evans, 2011; Martins
et al., 2013; Ling et al., 2019; Ju et al., 2021).

MFR also exhibits a rich phytochemical profile with significant
therapeutic potential. The aerial parts of MFR have yielded novel
anthraquinone dimers, such as melrubiellins A−D that have
demonstrated substantial cytotoxic effects in specific cancer cells,
suggesting MFR’s potential as an anticancer agent (Zhang et al.,
2015a; Zhang et al., 2015b). Another standout compound isolated
from MFR is α-spinasterol, which has shown efficacy in preventing
benign prostatic hyperplasia (BPH) in animal models. This
compound, also isolated from the aerial parts of Doellingeria
scabra (Thunb.) Nees (Asteraceae), exhibits several
pharmacological actions, including anticancer and anti-
inflammatory effects. Furthermore, the anti-inflammatory
properties of MFR are supported by the presence of potent
flavonoids like schaftoside, homoorientin, cytisoside, vitexin, and
isovitexin. These compounds were identified and quantified using
advanced HPLC-PDA techniques, highlighting MFR’s robust anti-
inflammatory and antioxidant potential (Lee et al., 2014).

Both AJN and MFR stand out due to their rich phytochemical
compositions and diverse therapeutic properties. From ecdysteroids
in AJN that exhibit anabolic and anticancer activities to the novel
anthraquinones and flavonoids in MFR that show significant
cytotoxic and anti-inflammatory effects, these herbs hold
immense promise. Their bioactive compounds offer a natural,
multifaceted approach to enhancing health, potentially
transforming modern therapeutic practices, especially in
oncology. Further research into these plants’ molecular
mechanisms will undoubtedly pave the way for their integration
into contemporary medicine.
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The moderate toxicity profiles of 20-hydroxyecdysone (20-HE)
and inokosterone, combined with the absence of severe adverse
effects, underscore their potential as safe therapeutic agents. Their
application in medicine, particularly in contexts requiring reduced
toxicity, presents a promising avenue for future research and drug
development. In contrast, traditional chemotherapeutic agents,
while effective, carry significant risks that necessitate careful
consideration and management in clinical settings. Clinical
experiments involving AJN and MFR have not yet concluded,
but it is anticipated that clinical trial results will reflect
clinical efficacy.

Ecdysteroids have been applied in rat models for the osteogenic
differentiation of mesenchymal stem cells (BMSCs) and ovariectomy
(OVX)-induced osteoporosis (OP). Also examined was the potential
promotion of IS on the osteogenic differentiation of BMSCs in vitro by
assessing the cell viability, mineralization capacity, and collagen I,
ALP, and OCN expression levels. Furthermore, IS treatment led to an
upregulation of the BMP2/smad1/RUNX2 pathway expression in
BMSCs (Chen Y et al., 2023).

Ecdysteroid-containing preparation Serpisten and inokosterone
have been investigated, both prior to and following chronic low
intensity gamma-irradiation in a mouse model. Results indicate the
dose-dependent antiradiation characteristics of these materials.
Serpisten prevented the reduction gain in body mass caused by
radiation. Following radiation exposure, treatment with this
preparation at a dose of 50 mg/kg resulted in normalization of
the phospholipid composition of the mouse liver and blood
erythrocytes for most of the parameters under investigation.
Furthermore, the ability of Serpisten to break down peroxides
was demonstrated in vitro. Due its specific anabolic
characteristics, inokosterone also led to the normalization of liver
phospholipid composition (Shevchenko et al., 2007).

Four insect pests (L. cuprina, Myzus persicae, Bemisia tabaci,
and H. armigera) have their ligand binding domains (LBDs) from
the EcR and USP proteins isolated as recombinant heterodimers.
The hinge sections of LBD heterodimers, or DE/F heterodimers,
were included in a binding that ranged from 0.7 to 2.5 nM. The K(i)
values for the ligands of ecdysteroid and dibenzoylhydrazine varied
from 0.1 nM to >448 μM. A recombinantHelicoverpa armigera LBD
heterodimer lacking D-regions (an E/F heterodimer) had K(d) and
K(i) values that were around four times greater than those of its DE/
F counterpart. Rate constants for the LBD heterodimer of Lucilia
cuprina were estimated. (Graham et al., 2007).

Table 7 provides insights into the therapeutic potential of
important proteins implicated in BK002 activity, as well as the
possible effects of ecdysterone, 20-HE, and inokosterone.

3.7 Molecular docking and ΔG values of
ligands against proteins

To understand the interactions between ecdysterone,
inokosterone, 20-HE, and prostate cancer-related enzymes such as
5α-reductase and CYP17, molecular docking studies were carried out.
These studies calculate the binding affinities (ΔG values), which
indicate how strongly a compound can bind to a specific target
protein, as shown in Table 8. Lower ΔG values represent stronger
binding, suggesting higher inhibitory or agonistic potential. These ΔG

values suggest that while ecdysterone, inokosterone, and 20-HE are
not as potent as classical inhibitors of 5α-reductase or CYP17, they still
exhibit moderate affinity, individually. As shown in Table 8, the
synergistic effect of BK002, which contains all these compounds, may
contribute to the reduction of the androgen effect, which is beneficial
for prostate cancer treatment by reducing the availability of potent
androgens like DHT.

3.8 Docking study overview

This study focuses on three critical proteins, DNMT1, Dicer, and
PD-1, which play pivotal roles in various signaling pathways and
biological processes, making them significant targets for cancer
therapeutics. DNMT1 is crucial for maintaining DNA methylation
patterns during cell division. It plays a significant role in cancer
development by suppressing tumor suppressor genes through
epigenetic modifications (Liu et al., 2024). Understanding these
modifications can provide new avenues for cancer treatment beyond
known geneticmutations (Park, 2023). Dicer, an endonuclease from the
RNase III family, converts precursor microRNAs into mature miRNAs
(Zhang et al., 2004). Low levels of miRNAs in various cancers are often
linked to poor expression or malfunction of Dicer, implicating it in
cancer progression (Kumar et al., 2009; Martello et al., 2010; Faggad
et al., 2012; Khoshnaw et al., 2012). Additionally, Dicer is involved in the
nucleus in processes such as chromatin remodeling, epigenetic
modification, and DNA damage repair (Castel and Martienssen,
2013; Doyle et al., 2013; White et al., 2014; Burger and Gullerova,
2015; Bronisz et al., 2020). PD-1 and its ligand PD-L1 are integral to the
cancer-immunity cycle. The development of anti-PD-1/PD-
L1 antibodies has shown therapeutic success, emphasizing the
importance of these interactions in cancer treatment (Zhao et al., 2023).

This study aims to elucidate the molecular mechanisms
underlying the therapeutic effects of AJN and MFR on cancer. By
identifying differential expression genes associated with cancer and
validating the active ingredients and their targets through
bioinformatics and molecular docking analyses, this research
seeks to uncover the potential of AJN and MFR as effective
herbal treatments for cancer. Additionally, in vitro experiments
will further validate these findings, emphasizing the multi-
component, multi-target, and multi-pathway strategies employed
by these herbal medicines. The docking study was conducted using
the CB-Dock2 method, an enhancement of the original CB-Dock
server, for the blind docking process guided by binding cavity
detection. This method integrates cavity identification, docking,
and alignment with homologous templates. CB-Dock2 automates
the identification of potential binding sites on proteins, determining
their central points and dimensions, adjusting the docking box
dimensions to fit specific ligands, and executing molecular
docking via AutoDock Vina. The process includes.

3.9 Amino acid residue interaction on
selected ligands against DNMT1, dicer, and
PD-1 with binding affinities and entropy data

Table 9 presents the binding affinities and entropy
contributions of various ligands when docked against the four
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key proteins DNMT1, Dicer, PD-1, and PD-L1. The binding
affinity values (ΔG) indicate the strength of the interaction
between the ligand and the protein, with more negative values
suggesting stronger binding. The binding affinity (kcal/mol) values
reflect the predicted strength of interaction between the ligand and
the target protein. Lower (more negative) values indicate stronger
binding affinity. Entropy (kcal/mol) contribution reflects the
changes in the system’s disorder upon ligand binding. The
values typically range from negative, indicating a stabilizing
contribution of binding. Protein residues represent the amino
acids in each target protein that are interacting with the
ligands. The specific residues involved in the interaction are
listed for each protein.

This table compares various known prostate cancer
therapeutics, such as finasteride, abiraterone acetate,
enzalutamide, apalutamide, and darolutamide, alongside natural
compounds like ecdysterone, inokosterone, and 20-
hydroxyecdysone (20-HE), with binding information against
DNMT1, Dicer, PD-1, and PD-L1.

3.10 Visualization of amino acid residue
interaction with ecdysterone and
inokosterone

Table 10 details the amino acid residue interactions for selected
ligands against DNMT1, Dicer, PD-1, and PD-L1, along with their
corresponding binding affinities, a powerful tool to understand how
these compounds interact with their target proteins. Helping to
elucidate the precise molecular interactions, the data provides
insights into the potential efficacy and mechanisms of action for
these compounds in therapeutic contexts, particularly in
cancer therapy.

4 Expanding prostate cancer
therapeutics with herbal medicine

4.1 Current landscape of present prostate
cancer therapy

Prostate cancer remains one of the most prevalent cancers
affecting men worldwide. Despite advances in androgen-
targeting therapies, resistance mechanisms like CRPC
continue to challenge treatment outcomes. Androgen-
targeting therapies often create a counterproductive cycle by
promoting adaptive mechanisms within cancer cells, making
them more resilient over time. Given the variability in patient
responses to hormone-targeting therapies, exploring alternative
therapeutic strategies is essential. Targeting multiple pathways,
beyond just the androgen receptor, could provide more
sustainable and effective outcomes tailored to individual
patient profiles. Elderly cancer patients, in particular, face
limitations due to the significant risks associated with
conventional therapies (Kantarjian et al., 2012). Thus, it is
crucial to explore alternative compounds, particularly those
under investigation for prostate cancer and CRPC, to develop
promising options for future anticancer therapies.

4.2 Challenges and limitations in targeting
DNMT1 in prostate cancer

While DNMT1 remains a promising therapeutic strategy in
prostate cancer, its clinical application faces a significant challenges
and limitations. Currently two DNMT inhibitors (DNMTi), 5-
azacytidine (azacitidine) and 5-aza-2′-deoxycytidine (decitabine)
have been approved by Food and Drug Administration (FDA)
and European Medicines Agency (EMA) for the treatment of
myelodysplastic syndromes (MDS), acute myeloid leukemia
(AML), and chronic myelomonocytic leukemia (CMML)
(Constantinides et al., 1978; Jones et al., 2019). Despite their
therapeutic potential, these inhibitors pose several critical
challenges. DNMT inhibitors cause widespread DNA
hypomethylation, which, while reactivating tumor suppressor
genes, can inadvertently activate oncogenes, potentially
promoting tumorigenesis rather than suppressing it (Storebjerg
et al., 2018). Intertumoral heterogeneity (ITH), characterized by
diverse CpG methylation patterns, disrupts key cellular processes,
including epigenetic modification (Portela and Esteller, 2010). Both
5-azacytidine and decitabine can induce DNA double-strand breaks,
which may lead to genomic instability and increased toxicity in non-
cancerous tissues, raising concerns about long-term safety
(Paczkowski et al., 2021). DNMT inhibitors can lead to DNA
double-strand breaks, potentially causing toxicity in non-
cancerous tissues and resulting in adverse side effects lead to off-
target effects and toxicity (Santi et al., 1984; Chen et al., 1991).

4.3 Limitations and challenges in
targeting dicer

Dicer’s function in prostate cancer is context-dependent, where
its expression may either promote or suppress tumor progression
based on the disease stage and microenvironment. For example,
elevated Dicer expression is linked to tumor aggression in early
stages, while its dysfunction in advanced stages exacerbates
treatment resistance (Bian et al., 2014). This dual role
complicates therapeutic targeting strategies.

Hypoxic conditions in the tumor microenvironment exacerbate
Dicer dysfunction, leading to downregulation of critical miRNAs
like miR-124 andmiR-144, which are associated with autophagy and
treatment resistance. Addressing these hypoxia-driven effects is
essential for successful therapeutic targeting (Gu et al., 2016).
While effective delivery of Dicer-targeting agents to prostate
cancer tissues remains a challenge. Current approaches often
result in non-specific delivery, potentially affecting normal tissues
and causing toxicity.

4.4 The promise and challenges of
immunotherapy

The lymphatic system, a key player in maintaining fluid balance,
lipid absorption, and immune regulation, has emerged as an
important target in cancer therapy. Disruptions in
lymphangiogenesis are linked to poor prognosis in cancer
patients, including those with prostate cancer (Hu et al., 2024).
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While immunotherapy, particularly PD-1/PD-L1 inhibitors, has
revolutionized cancer treatment, it is not without limitations.
Immune-related adverse events (irAEs) pose significant
challenges, as overstimulation of the immune system can lead to
damage to healthy tissues, affecting the skin, liver, lungs, endocrine
glands, and gastrointestinal tract (Baxi et al., 2018). These adverse
effects can range from mild to life-threatening conditions,
underscoring the need for precise biomarkers to predict immune
responses and minimize risks.

While immunotherapy offers transformative potential in
prostate cancer treatment, it is accompanied by significant
challenges, including immune-related adverse events, tumor
heterogeneity, and the complexity of PD-L1 regulation. The need
for validated biomarkers, context-specific protein validation, and
more refined therapeutic strategies is clear. Addressing these
limitations through interdisciplinary research and precision
medicine approaches will be pivotal in maximizing the clinical
benefits of immunotherapy for prostate cancer patients (Tang
et al., 2022). Further studies are needed to validate PD-L1
protein expression across different tumor microenvironments and
prostate cancer subtypes. Investigations should also focus on post-
transcriptional regulation mechanisms and protein stability factors
influencing PD-L1 activity. Notably, combining PD-1/PD-
L1 inhibitors with other therapeutic strategies (e.g.,
chemotherapy, targeted therapies, or natural compounds) may
enhance therapeutic efficacy while reducing adverse effects.

4.5 Integrating herbal medicine into prostate
cancer therapy: opportunities and
challenges

Herbal medicines have gained increasing recognition for their
potential to complement conventional prostate cancer therapies.
Clinical trials have demonstrated that natural agents such as
Modified Citrus Pectin (Keizman et al., 2023), pomegranate
extract (Paller et al., 2013; Jarrard et al., 2021), and
sulforaphane-rich broccoli sprouts (Alumkal et al., 2015) can
stabilize PSA levels and exert anti-tumor effects. Additionally,
compounds like muscadine grape skin extract (Paller et al., 2018)
and saw palmetto (Wyatt et al., 2016) have shown promise in
managing symptoms associated with prostate cancer. Despite these
promising outcomes, significant challenges remain. Many herbal
compounds have poor bioavailability, limiting their therapeutic
efficacy in clinical settings (Patel et al., 2022). Inconsistent
standardization of herbal formulations and variability in active
compound concentrations pose challenges for reproducibility and
dose optimization (Jenča et al., 2024). The molecular mechanisms
by which herbal compounds exert their effects on prostate cancer
pathways remain partially understood(Sharma et al., 2023). Herbal
medicines often face regulatory hurdles due to insufficient clinical
trial data supporting their safety and efficacy (Youn et al., 2023).
Limited studies exist on the synergistic effects of herbal
compounds with standard therapies, and their interactions with
conventional drugs remain underexplored. To address these
challenges, future research should focus on improving
formulation strategies, employing nanotechnology-based
delivery systems, and conducting well-designed clinical trials to

validate the safety and efficacy of herbal compounds in prostate
cancer therapy.

4.6 A holistic and multi-targeted approach
to prostate cancer treatment

Integrating herbal medicines into standard oncology practices
offers a holistic approach to prostate cancer care, focusing on both
therapeutic efficacy and patient wellbeing. Conventional therapies,
while effective, are often associated with high toxicity profiles and
financial burdens exceeding $30,000 per month (Raudenska et al.,
2019). In contrast, herbal medicines, with their long history of safe
use in traditional practices, provide a cost-effective and
complementary strategy for prostate cancer management (Tayeb
et al., 2024). Theirs efficacy and safety have been demonstrated over
centuries, successfully complementing modern medical practices
(Chen Q et al., 2023). However, this approach is not without
challenges. Different patient populations may exhibit
heterogeneous responses to herbal interventions. Many studies
remain preclinical, and robust Phase III trials are scarce. Notably,
herbal therapies often require long-term administration, posing
adherence challenges. To fully harness the potential of herbal
medicines, it is essential to standardize formulations, optimize
delivery mechanisms, and integrate them into personalized
treatment regimens based on individual patient profiles.

4.7 A new avenue in prostate cancer therapy
with BK002

BK002, an innovative herbal formulation, has emerged as a
potential game-changer in prostate cancer therapy due to its multi-
targeted mechanisms of action. Enriched with a diverse array of
bioactive compounds, including flavonoids, terpenoids, and
steroids, BK002 demonstrates anti-cancer, immune-modulating,
and anti-inflammatory properties, positioning it as a compelling
candidate for integrative cancer treatment strategies. Our studies
have highlighted BK002s synergistic potential when combined with
conventional chemotherapeutics and herbal decoctions, particularly
in addressing critical biomarkers such as DNMT1, Dicer, PD-1, and
PD-L1. These biomarkers are pivotal in regulating key pathways
associated with epigenetic modifications, immune evasion, and
cellular proliferation in prostate cancer, including CRPC. The
integration of natural compounds such as ecdysterone,
inokosterone, and 20-hydroxyecdysone within BK002 adds
further therapeutic value. These compounds have shown promise
in modulating prostate cancer pathways, potentially enhancing
therapeutic efficacy while simultaneously reducing adverse effects
commonly associated with standard therapies. However, significant
challenges remain. The precise biochemical pathways through
which BK002 exerts its anticancer effects require further
elucidation. The potential interactions with existing
chemotherapeutic agents need to be thoroughly examined to
avoid unforeseen complications. While preclinical data are
encouraging, the absence of large-scale clinical trials hampers the
transition of BK002 from bench to bedside. Thus, future research
directions should prioritize. Large-scale, well-designed trials to
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validate BK002s safety, efficacy, and optimal dosing protocols. In-
depth exploration of BK002s molecular interactions with prostate
cancer pathways to uncover novel therapeutic targets. Evaluation of
BK002 in combination therapies to enhance therapeutic outcomes
and reduce side effects. By bridging these knowledge gaps,
BK002 has the potential to refine existing treatment paradigms,
offering a holistic and personalized therapeutic approach to prostate
cancer management. Continued interdisciplinary research will be
essential to fully unlock the therapeutic promise of BK002 and
establish its role as a standard adjunct therapy in prostate
cancer care.

5 Conclusion

This study highlights the significant therapeutic potential of
BK002, which contains ecdysterone, inokosterone, and 20-
hydroxyecdysone, in the treatment of prostate cancer. These
phytochemicals represent a promising complementary
approach to conventional therapies, especially in the context of
CRPC, where therapeutic resistance poses a substantial challenge.
By targeting key biomarkers such as DNMT1, Dicer, PD-1, and
PD-L1, these compounds have the potential to enhance the
efficacy of existing treatment regimens while minimizing
adverse effects. Moving forward, interdisciplinary research is
crucial to further elucidate the molecular interactions and
mechanisms of action of these compounds. A deeper
understanding of these interactions could lead to the
development of more effective combination therapies that
harness the synergistic potential of herbal medicine alongside
conventional cancer treatments. This integrative approach marks
a significant shift towards more sustainable, patient-centered
cancer care, with the potential for improved outcomes in
prostate cancer treatment and beyond. By advancing the
scientific foundation for incorporating herbal medicines into
oncology, this research aims to transform prostate cancer
treatment. Moving away from the traditional one-size-fits-all
approach, these personalized, holistic strategies emphasize both
treatment efficacy and patient wellbeing. Further exploration of
these natural compounds could lead to the creation of novel
therapeutic protocols that enhance the overall quality of cancer
care, offering a more comprehensive and sustainable path forward
in the fight against prostate cancer.
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