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One-class modeling is a supervised multivariate botanical identification method
based on principal component analysis (PCA) that constructs a model based only
on the characteristics of the reference samples and uses the Q statistic as a
combined metric. Test samples are judged to be similar (authentic) if their
combined metric falls within the model limits or different (adulterated or
contaminated) if the metric falls outside the model limits. This review initially
considers three major factors affecting identification: the number of variables
(univariate versus multivariate), the number of classes (one-class versus multi-
class), and the type of analysis (quantitative versus qualitative). Multivariate
analysis is commonly used for identification, providing a broader coverage of
the identity specifications of the samples. With a combined metric, multivariate
methods are analogous to univariate methods. One-class modeling and multi-
class modeling employ different approaches for identification with one-class
modeling being more flexible. While most methods to date have had a
quantitative basis, qualitative methods are possible. This review focuses on
multivariate, one-class modeling based on PCA. Examples are presented for
the application of one-class modeling to identification of American ginseng
(Panax quinquefolius), Echinacea purpurea, Black Cohosh (Actaea racemosa),
and Maca (Lepidium meyenii). These examples demonstrate the utility and
flexibility of one-class modeling.
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Introduction

The goal of botanical identification is conceptually simple as
shown by the graphical abstract; determine whether a test sample
has features that are similar to those for a set of reference samples.
This approach assumes that valid reference materials exist, and that
identification can be made through a direct comparison of the test
sample with a set of reference materials. The features used for a
comparison can be sensory, morphological, microscopic, genetic, or
chemical. The reference samples must be authenticated botanical
reference materials or vouchered materials obtained from reliable
sources. The authenticity of the reference materials is critical to the
validity of the comparison. Multiple reference samples are needed to
account for genetic, environmental, and processing variability. A
single reference material from a metrological source can indicate
similarity but fails to provide any information on biological
variability.

Classically, herbalists, botanists, and taxonomists have
authenticated plant materials based on monographs that describe
a series of observations and tests developed using vouchered
samples. In general, this approach requires access to the full
plant material and flower. At one time, all commercial botanical
materials were wild crafted by an expert and supplied directly to the
user or to a local distributor. Today, botanical supplements are a
multi-billion dollar industry and the link between the supplier and
the manufacturer is muchmore tenuous. Manufacturers of botanical
supplements are often faced with the problem of verifying that the
barrel of brown powder delivered on the back dock by their supplier
is really ginkgo biloba.

Commercial botanical supplements are classified as a food and
are only regulated by FDA’s current good manufacturing practices
(cGMPs) which require the manufacturer to describe the steps they
took to test the purity of their ingredients and products (Food and
Drug Administration and Health and Human Services, 2024). Since
the ingredients have often lost their morphological integrity (e.g.,
they may be sold as powders or extracts), chemical methods are most
frequently used for identification although genetic methods are
becoming more popular with recent advances in technology.
Chemical methods provide quantitative multivariate data in the
form of chromatograms or spectra that can be used for targeted or
non-targeted analysis (Nichani et al., 2023a; Nichani et al., 2023b).
However, these methods can only be used for identification by
comparison to appropriate reference materials.

The need for identification methods led AOAC International to
develop “Guidelines for Validation of Botanical Identification
Methods” in 2012 (Harnly, 2012). The Guidelines describe a
probability of identification (POI) method, establish a well
defined nomenclature (Table 1), and describe several basic
principals. First, the guidelines recognize the use of both
quantitative chemical methods and qualitative morphological
methods. Second, the guidelines assume a multivariate analysis
and specify that the chosen method must reduce multiple
observations or measurements to a combined metric. Next, the
metric is used to generate a binary response, “yes” the sample is
authentic or ‘no” it is adulterated. Finally, the POI method is a two-
class analysis method that requires comparison of an authentic and
an adulterated sample (Table 2) (Brereton, 2009). Since the
Guidelines are not method specific, 60 analyses of the authentic

and adulterated samples are required to guarantee 95% confidence
in discriminating between the two populations (Table 3). A
companion paper to the Guidelines presented an example of a
quantitative chemical analysis using mass spectrometric data
(LaBudde and Harnly, 2012). Unfortunately, an example based
on a qualitative morphological analysis was not given and has
not been forth coming.

It is recognized that the POI method is philosophically and
statistically defensible but not practical. There have been very few
applications of the POI method to identification problems (Harnly
et al., 2013). Major obstacles are the need to identify each potential
adulterant and to test each with 60 analyses. A daunting task. AOAC
International has recently charged an expert panel with the
development of new guidelines.

A new method has recently been proposed based on one-class
modeling using principal component analysis (PCA) (Harnly et al.,
2013; Harnly, 2023). This approach simplifies the identification
process. It builds a single model based on the reference samples
and treats every other sample as a potential adulterant. If an
unknown sample falls within the model, the sample is judged to
be authentic. If it falls outside the model it is deemed to be
adulterated. The method is compatible with any multivariate data
set and the Q statistic (Brereton, 2009) of PCA provides an inherent
combined metric that can be used to determine the confidence limit
of the model (Harnly et al., 2013). The validity of the model can be
established by the cross validation. Thus, one-class modeling
simplifies identification by eliminating the need to identify every
potential adulterant, provides an inherent combined metric for each
sample, provides confidence limits based on the number and quality
of the reference samples, and provides a binary authentic/non-
authentic output based on a statistical analysis.

This review will consider how chemical identification can be
based on one or more features (univariate or multivariate), one or
more classes of samples (one-class or two-class modeling), and
quantitative or qualitative data. Regardless the number of features,
classes, or nature of the data, the method generates a combined
metric that produces a binary result, “yes” or “no,” with regards to
authenticity (Harnly, 2012). This review will focus on the use of one-
class modeling of multivariate quantitative data using PCA (Harnly,
2023). One-class modeling offers an inherently different approach
from the POI model and two-class modeling and requires only the
identification of the reference samples. In the last 10 years, this
approach has been used to authenticate numerous raw botanicals
and botanical supplements (Harnly et al., 2013; Harnly et al., 2016;
Harnly and Upton, 2024; Harnly et al., 2017; Geng et al., 2020).
Several examples of the application of one-class modeling to
identification problems will be presented.

Univariate versus multivariate analyses

Identification methods, as stated, generally employ multivariate
analysis. Qualitative morphological methods are inherently
multivariate since all the features of a plant are involved in
identification. Quantitative chemical methods offer non-targeted
multivariate analyses based on many chromatographic and spectral
methods such as gas and liquid chromatography (GC and LC) and
infrared spectrometry (IR), near IR spectrometry (NIR), mass
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spectrometry, and nuclear magnetic resonance spectrometry (NMR)
(Nichani et al., 2023a; Nichani et al., 2023b). These methods may
offer hundreds, even thousands (depending on resolution), of
variables to characterize a sample. The many variables improve
the chances of including important components of chemical identity
or observing components that are not present (adulterants or
contaminants) in the reference samples. Multivariate methods are
less susceptible to fraud. Ideally, a botanical can be characterized
with respect to hundreds of components with known structural and
concentration variations that will allow the user to discriminate
between similar species, samples with intentionally altered
compositions, or material substitutes. However, incorporating a
large number of variables in a binary decision (authentic or not
authentic) is a challenge. Reduction of multiple variables into a
combined metric offers the advantage of using classic univariate
statistics to make this binary decision.

There are two excellent examples that illustrate the use of
univariate statistics for class analysis. First, the limit of detection

(LOD) is a classic one-class model (Figure 1A) aimed at determining
if a sample signal is a member of the blank signal population (Long
and Winefordner, 1983). In the univariate mode, multiple
measurements of the method blank establish the “baseline”
(blank mean) and the standard deviation (distribution).
Assuming a normal distribution, it is possible to statistically
determine whether a signal is not simply due to random
variation of the blank signal. For this purpose, a threshold is
usually set at 3 times the baseline standard deviation (3s). This
provides 99% confidence that any signal observed above this level is
due to the presence of the analyte. Inversely, this threshold confirms
that the test signal is not a member of the blank population. This is a
form of one-class modeling.

Second, the students t test is a well established univariate
approach to determining if the means of two populations are
similar (Figure 1B) (Moore and McCabe, 1999). Multiple
measurements of the value of interest are used to establish the
mean and standard deviation of each population. Assuming both

TABLE 2 Chemometric methods (Brereton, 2009).

Approach Methoda Supervision Classes

Exploratory PCA None None

One Class Modeling (soft modeling) PCA ID 1 class 1

SIMCA ID all classes 2 or more

Two Class Classification (hard modeling) LDA ID all classes 2 or more

QDA ID all classes 2 or more

PLS-DA ID all classes 2 or more

SVM ID all classes 2 or more

ANN ID all classes 2 or more

aANN, Artificial neural networks; LDA, Linear discriminate analysis; PLS-DA, Partial least squares-discrimination analysis; PCA, Principal component analysis; QDA, Quadratic discriminate

analysis; SIMCA, Soft independent modeling of class analogy; SVM, Support vector machines.

TABLE 1 Glossary (LaBudde and Harnly, 2012).

Botanical: Of, or relating to, plants or botany. May also include algae and fungi. May refer to the whole plant, a part of the plant (e.g., bark, woods, leaves, stems, roots, rhizomes,
flowers, fruits, seeds, etc.), or an extract of the parts.
Botanical identification method (BIM): A method that establishes identity specifications for a botanical material and determines YES, the test material is a true example of the
target botanical material or NO, it is not the target botanical.
Combined Metric: (analytical parameter in previous papers) A measured or computed analytical value used to determine whether the test material matches the target material.
The combined metric may be based on morphological features, genetic sequences, chromatographic patterns, spectral patterns, or any other metric appropriate for the target
material.
Exclusivity Panel: A list of practically obtainable botanical materials that that are expected to give a negative result when tested by the BIM.
Identity specification (IS): The morphological, genetic, chemical, or other characteristics that define a target botanical material. Specifications may include, but are not limited to,
data from macroscopic, microscopic, genetic (e.g., DNA sequencing), chromatographic fingerprinting (e.g., capillary electrophoresis, gas chromatography, liquid
chromatography, or thin-layer chromatography), and spectral fingerprinting (e.g., infrared, near-infrared, nuclear magnetic resonance, ultraviolet/visible absorbance, or mass
spectrometry) methods.
Inclusivity Panel: A list of practically obtainable botanical materials that are expected to give a positive result when tested by the BIM.
Non-target botanical material: Any botanical material that does not meet the identity specification.
Probability of identification (POI): The expected or observed fraction of test portions at a given concentration that give a positive result when tested by the BIM.
Sample: A small portion or quantity, taken from a population or lot that is ideally a representative selection of the whole.
Sensitivity: Ability of a BIM to correctly identify variants of the target material that meet the identity specification.
Specificity: Ability of a BIM to correctly reject nontarget botanical materials.
Standard inferior test material (SITM): A botanical material mixture that has the maximum concentration of target material that is considered unacceptable, as specified by the
SMPRs. The BIM must reject this material.
Standard method performance requirements (SMPRs): Performance requirements based on the fitness-for-purpose statement for each method. For BIMs, the SMPRs should
include the physical form of the sample, the ISF, the ESF, the SSTM, the SITM, the number of samples for the inclusivity/ exclusivity panels, and the desired probability and
confidence limits for the method.
Standard superior test material (SSTM): A botanical material mixture that has the minimum acceptable concentration of the target material, as specified by the SMPR. The BIM
must accept this material.
Target botanical material: The botanical material of interest as described in the identity specification.
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TABLE 3 Sample size required for proportion (Harnly, 2012).

Minimum Number Number 1-Sided 2-Sided 2-Sided Effective

Probability tests failures LCL LCL UCL AOQL

50% 10 2 54.1% 49.0% 94.3% 71.7%

50% 20 6 51.6% 48.1% 85.5% 66.8%

50% 40 14 52.0% 49.5% 77.9% 63.7%

50% 80 32 50.8% 49.0% 70.0% 59.5%

55% 10 1 65.2% 59.6% 100% 79.8%

55% 20 5 56.8% 53.1% 88.8% 71.0%

55% 40 12 57.1% 54.6% 85.8% 68.2%

55% 80 28 55.9% 54.1% 74.5% 64.3%

60% 10 1 65.2% 59.6% 100% 79.8%

60% 20 4 62.2% 58.4% 91.9% 75.2%

60% 40 10 62.4% 59.8% 85.8% 72.8%

60% 80 24 61.0% 59.2% 78.9% 69.1%

65% 10 1 65.2% 59.6% 100% 79.8%

65% 20 3 67.8% 64.0% 94.8% 79.4%

65% 40 9 65.1% 62.5% 87.7% 75.1%

65% 80 21 65.0% 63.2% 82.1% 72.7%

70% 10 0 78.7% 72.2% 100% 86.1%

70% 20 2 73.8% 69.9% 97.2% 83.6%

70% 40 7 70.7% 68.0% 91.3% 79.7%

70% 80 17 70.4% 68.6% 86.3% 77.4%

75% 10 0 78.7% 72.2% 100% 86.1%

75% 20 1 80.4% 76.4% 100% 88.2%

75% 40 5 76.5% 73.9% 94.5% 84.2%

75% 80 13 75.9% 74.2% 90.3% 82.2%

80% 20 1 80.4% 76.4% 100% 88.2%

80% 40 3 82.7% 80.1% 98.6% 88.8%

80% 80 10 80.2% 78.5% 93.1% 85.8%

85% 20 0 88.1% 83.9% 100% 91.9%

85% 40 2 86.0% 83.5% 98.6% 91.1%

85% 80 6 86.1% 84.6% 96.5% 90.6%

90% 40 0 93.7% 91.2% 100% 95.6%

90% 60 2 90.4% 88.6% 99.1% 93.9%

90% 80 3 91.0% 89.5% 98.7% 94.1%

95% 60 0 95.7% 94.0% 100% 97.0%

95% 80 0 96.7% 95.4% 100% 97.7%

95% 90 1 95.2% 94.0% 100% 97.0%

98% 130 0 98.0% 97.1% 100% 98.6%

(Continued on following page)
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populations are normally distributed, the difference between the
means of the populations is evaluated in terms of their standard
deviations to establish the statistical significance. Similarly, the F-test
can be used for establishing the difference for three or more
populations (Moore and McCabe, 1999). These are forms of two-
class or multi-class modeling. This approach is used as the basis of
the POI method. However, in that case, the standard deviation is not
known for either population, and the reference and adulterated
samples must each be run 30 times to establish their distribution.

The diagrams in Figure 1 are the same for univariate and
multivariate analyses, if the multivariate data is represented by a
combined metric (Nichani et al., 2023a; Harnly, 2012; LaBudde and
Harnly, 2012; Harnly et al., 2013). That is, all the variables from a
multivariate analysis are used to compute a single, combined value
or metric for each sample. This combinedmetric is then processed in
exactly the same manner as a univariate value. The baseline value in
Figure 1A corresponds to the combined metric mean of the
reference samples. In this case, a test sample is judged to be
authentic if it falls within the pre-determined level of uncertainty
(e.g., within ±2s). In Figure 1B, the means correspond to the
combined metrics for the reference population and the test
(potentially adulterated) population. Classic statistics can be used
to compute the confidence with which the two populations can be

distinguished. When analyzed, the combined metric for the test
sample will be judged to belong to either the authentic or test
population.

For both the LOD and t-test, the number of measurements, n,
for reference and test sample populations is critical to establishing
the confidence with which similarity can be determined (Long and
Winefordner, 1983; Moore and McCabe, 1999). The calculated
mean and standard deviation of a population are only estimates
of the true mean and standard deviation. As n increases, the level of
confidence in the two values increases as does the decision regarding
similarity.

One-class modeling versus multi-class
classification

There are numerous chemometric methods for processing
multivariate data sets (Table 2). Unsupervised analysis requires
no user input and reveals naturally occurring patterns. The most
widely used unsupervised methods are PCA and hierarchical
clustering analysis (HCA). Both serve to reveal sample patterns
that may not be obvious. Supervised methods require identification
of the classes of samples in the data set. Brereton has divided

FIGURE 1
One classmodeling and two class classification, (A)Detection limit and (B) Students’ t-test. Applied to univariate tests, the intensity is themeasure for
a single variable. For multivariate tests, the intensity is the combined metric computed from all variables.

TABLE 3 (Continued) Sample size required for proportion (Harnly, 2012).

Minimum Number Number 1-Sided 2-Sided 2-Sided Effective

Probability tests failures LCL LCL UCL AOQL

98% 240 1 98.2% 97.7% 100% 98.8%

99% 28/0 0 99.0% 98.6% 100% 99.3%

99% 400 1 99.1% 98.8% 100% 99.4%

Assume: 1. Binary outcome (occur/not occur).

2. Constant probability of event occurring

3. Independent trials

4. Fixed number of trials

Inference: 95% confidence interval lies entirely at or above the specified minimum.

Desired: Sample size N.

Notes: 1. Based on modified Wilson score 1-sided confidence limit.

2. AOQL = Average Outgoing Quality Level
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supervised multivariate analysis into the one-class classifiers and the
two- (or multi-) class classifiers and described their fundamental
differences (Brereton, 2009). Both approaches require a priori
identification of the sample classes making them
supervised methods.

One-class classifiers or one-class modeling constructs a model
for each class based only on the characteristics of that class
(Brereton, 2009). Comparison between sample classes requires
comparison of the models for each class through soft
independent modeling class analogy (SIMCA). SIMCA is
considered a soft modeling technique as samples can be assigned
to a single class, multiple classes, or no class. This is an excellent
approach for recognizing outliers. Two-class classifiers or
classification builds a single model for all the classes based on
the features of all the classes (Brereton, 2009). Two-class
classification is considered a hard modeling technique since
samples are forced into one of the pre-designated classes. For
example, partial least squares-discriminant analysis (PLS-DA) of
Gingko biloba and Echinacea purpurea will require a sample of
Actaea racemosa to be classified as either Gingko or Echinacea. Two-
class classification methods have difficulty dealing with outliers and
require re-calculation when additional classes are added.

One-class modeling has historically been used for process
control (Brereton, 2009). Samples from key locations/times in a
successful process are used to build models which can track the
fidelity of succeeding processes. The one-class models tell the
operator whether the process is within the limits established in
previous runs.

There are numerous ways to compute a combined metric from
multivariate analyses (Nichani et al., 2023a; Nichani et al., 2023b;
Harnly, 2012; Brereton, 2009). The two statistical measures for
evaluating a multivariate PCA model are shown in Figure 2
where a single principal component (PC1) is fit to a set of
bivariate data (Brereton, 2009; LaBudde and Harnly, 2012). In

this case PC1 is the model, it is a vector which intercepts the
greatest variance of the data set (black symbols). The Q statistic
is the variance outside themodel, the distance of the sample from the
model determined by a line from the sample perpendicular to the
model. The Hotelling T2 statistic characterizes the sample variance
within the model, the distance from the perpendicular intercept to
the model center. This latter distance is analogous to the distance of
a sample to the center of a normal distribution for univariate data.
Figure 2 shows that the Hotelling T2 statistic would place the test
samples (blue symbols) in the same class as the reference samples
while the Q statistic shows that they belong in different classes. In
general, the Q statistic is much more sensitive to compositional
differences and detection of outliers.

One-class modeling using PCA is ideally suited for
identification. A model can be built using reference samples,
the Q statistic provides an excellent combined metric, confidence
limits can be established, and a test sample can be determined to
lie within (authentic) or outside (adulterated) the model. One-
class modeling is flexible since only the reference data is
identified. In the case of two classes of samples, both can be
modeled and the models compared or either class can be modeled
and the other treated as unknowns (see the example for black
cohosh below).

Quantitative versus qualitative

The facility of computing a combined metric from quantitative
data using one-class modeling is readily seen in the preceding
section. Both the Hotelling T2 statistic and the Q statistic are
readily derived from chemometric analyses (Brereton, 2009) and
provide a combined metric for all variables for each sample.
Deriving such a metric for qualitative data is much more
challenging (Harnly, 2012; Sudberg, 2024). The AOAC

FIGURE 2
Illustration of the Hotelling T2 statistic andQ statistic for the first principal component (PC1) fit to a bivariate data set ( ) with test samples ( ). TheQ
statistic characterizes the variance outside the model, the distance from the sample perpendicular to the model, PC1. The Hotelling T2 statistic
characterizes the variance within themodel, the distance on PC1 from the sample intercept to the origin (mean centered data). The normal distribution of
the Q statistic and the Hotelling T2 statistic are shown in red. A plot of the Q statistic versus the Hotelling T2 statistic is known as an influence plot.

Frontiers in Pharmacology frontiersin.org06

Harnly 10.3389/fphar.2025.1504230

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1504230


Guidelines state that they are intended for all candidate botanical
identification methods and that identity specifications can be based
on morphological, genetic, chemical, and/or other defining features
of the botanical material. At that date it was envisioned that
morphological or microscopic methods could be reduced to an
algorithm or check list that would provide a suitable combined
metric for judging authenticity. The companion paper (LaBudde
andHarnly, 2012) illustrating the application of the POImethod was
based on quantitative analysis (mass spectral data) and,
unfortunately, no example of a qualitative method was included.

There have not been any reports of qualitative identification in
the literature. However, Sudberg (2024) at Alkemist Labs recently
described a qualitative method for discriminating between
spearmint (Menta spicata L.) and peppermint (Mentha x
piperita) at the International Conference on Natural Products
Research (Krakow, Poland, 2024) based on Bayes’ Theorem. This
report nicely incorporated the POI principles which are
discussed below.

Probability of identification (POI)

The AOAC International POI method is based on two-class
classification (Brereton, 2009). The glossary (Table 1) shows that the
key feature of the method is to identify an authentic sample
population that would always give a positive result (inclusivity
sampling frame) and a population that would always give a
negative result (exclusivity sampling frame). From their
respective populations, a standard superior test material (SSTM,
representing the minimum acceptable concentration of the target
material) and standard inferior test material (SITM, representing the
maximum unacceptable concentration of target material) are chosen
to be run 30 times each to establish the precision of the
method (Table 3).

In more general terms, an authentic (acceptable) and an
adulterated (not acceptable) sample are chosen to characterize
the resolution of the method, i.e., to determine if the method can
discriminate between the two levels of adulteration. The adulterated

FIGURE 3
Analysis of processed Maca (Lepidiummeyenii): (A) unsupervised PCA scores plot for all materials, (B) PCA scores plot based on one-class modeling
of processed Maca from Peru, (C) influence plot (Q residuals versus Hotelling T2 residuals) based on one-class modeling of processed Maca from Peru,
and (D) Q statistic versus sample based on one-class modeling of processed Maca from Peru. Symbols: ( ) processed Maca from Peru, ( ) Maca root
from Peru, and ( ) Maca root from China.
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sample is frequently an aliquot of the authentic sample spiked
with a known level of adulterant or a different species from the
same genus of the authentic sample (Nichani et al., 2023b;
Harnly et al., 2013; Harnly, 2023; Harnly et al., 2016; Harnly
and Upton, 2024; Harnly et al., 2017). Without specifying the
method, the 30 repeats of each are used to establish the mean
and distribution of the two populations (Harnly, 2012). The
ability to perform 60 analyses with no false positives or
negatives suggests a close to baseline separation of the two
populations as shown in Figure 1B. Table 3 shows that
2 failures out of 60 translates to identification at the 90%

confidence level 93.9% of the time, whereas no failures in
60 attempts corresponds to separation at the 95% confidence
level 97.0% of the time.

The requirement of identifying an SITM for each potential
adulterant and analyzing both the SSTM and SITM materials
30 times made the POI method unpopular. Today there is
considerable interest in reducing the number of required analyses
and expanding qualitative applications. However, it should be
recognized that the number of samples analyzed, and the
variance associated with the reference samples will always
determine the confidence level that can be achieved by the method.

FIGURE 5
Adulteration of American ginseng (Panax quinquefolius) with Asian ginseng (P. ginseng): (A) Unsupervised PCA and (B) influence plot (Q residuals
versus Hotelling T2 residuals) based on one-class modeling of 100% P. quinquefolius. Symbols: ( ) 100%, ( ) 95%, ( ) 90%, ( ) 80%, ( ) 60%, ( ) 40%.
( ) 20%, and ( ) 0% PQ.

FIGURE 4
Q statistics plot of American ginseng (PQ) adulterated with Asian ginseng (PG) based on one-class modeling of 100% PQ: (A)Q statistic plot for ( )
100% PQ, ( ) 100% PG, and ( ) 98% PQ; (B)Q statistic plot for ( ) 100% PQ, ( ) 100% PG, and ( ) 90% PQ. The black dashed line is the 95% confidence
limit for a one-class model of 100% PQ. The red dashed line is the 95% confidence limit for the one-class model of 98% PQ. Sensitivity for 100% and 98%
PQ is 95% and 98%, respectively. Specificity for 100% and 90% PG is 100% and 99%, respectively.
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One-class modeling

One-class modeling has been described in detail in a previous
paper (Harnly et al., 2013) and in the previous section on “One-class
modeling versus multi-class classification.” It makes use of the
original requirement of the POI method to acquire an inclusivity
panel (Table 2) of samples, requires establishing a PCA model, and
uses the Q statistic as a combined metric to determine whether any
test sample lies within or beyond the specified confidence limit of the
model. There is no exclusivity panel, and any combination of
unknown samples can be tested against the model. The false
positive and negative rate are determined by the confidence level
specified by the user. Validation of the model is established using
either cross validation or an external validation sets of samples.

Like all statistical evaluations, the degree of confidence is
dependent on n, the number of reference samples. In general, the
more reference samples used, the more confidence the user has in
the average Q value and the standard deviation. However, with
respect to botanical materials, the biggest source of variability is the

biological variability of the samples. Significant variability has been
observed between sources, growing location, growing year, harvests,
and from plant-to-plant. The more varied the plant meta-data, the
greater the population distribution. As will be shown for the example
of A. racemosa below, the variance covering three classes of identical
BRMs from different sources is greater than the variance for
each class.

Figure 3 presents an example of the application of one-class
modeling to a collection of Maca (Lepidium meyenii) samples
consisting of roots collected in Peru and China and Processed
Maca supplements from Peru (Geng et al., 2020). Processed root
supplements are heated, extruded, powdered, and sold
commercially. The question to be answered was could the
processed Maca be distinguished from the root samples.
Figure 3A shows an unsupervised PCA score plot for the Maca
samples. The three clusters suggest the classes can be distinguished
from each other but offer minimal statistics with respect to their
differences. Figure 3B shows the results for supervised one class
modeling of the processed Peruvian Maca samples. The variable

FIGURE 6
Influence plots (Q residuals versus Hotelling T^2 residuals) for (A) PQ:PG = 99:1, (B) PQ:PG = 98:2, (C) PQ:PG = 97:3, and (D) PQ:PG = 96:4 based on
one-class modeling of 100% PQ. Symbols: ( ) 100% PQ and ( ) 99%, 98%, 97%, and 96% PQ.
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loadings for the processed Maca samples were used to compute
scores for the other samples (Peruvian and Chinese roots). Figure 3B
shows ellipsoidal 95% confidence limits for each of the classes but it
is again obvious that the score plot is a poor display for statistical
differences of the classes.

Figure 3C presents a influence plot that displays the Q residuals
(vertically) versus the Hotelling T2 residuals (horizontally) for a one
class model of the processed Maca data, i.e., a influence plot for the
data in Figure 3B. The data in Figure 3C were acquired using only
one principal component, minimizing the possibility of over fitting.
The statistics for the model can be seen much more clearly in the
influence plot as can the difference between the Q and Hotelling T2

statistics. For the Hotelling T2 statistic, the sensitivity for the
processed Maca is 97% and the specificity for the Peruvian and
Chinese roots are 64% and 0%, respectively. For the Q statistic, the
sensitivity is 93% and the specificity for both roots is 100%. Thus, the
Q statistic is much more sensitive to differences in the sample

composition. Plotting only the Q value versus individual samples
(Figure 3D) presents a further simplified plot. This presentation can
also be rotated to view the sample data as a frequency plot as will be
shown below for one of the examples.

Choosing the processed Maca as the reference samples is
arbitrary. Selection of the reference samples is dependent on the
question being asked. The Peruvian or the Chinese root samples
could also be chosen as the reference samples. The number of non-
reference samples is also arbitrary. In Figure 3, two sets of non-
reference samples (Peruvian and Chinese Maca roots) were chosen.
Since the one-class model is based solely on the reference samples,
the average and distribution of the non-reference samples is not
a concern.

In essence, one-class modeling examines the difference
associated with every variable in the data set (8). Simplistically, a
model based on a mass spectrum of 205 ions requires that all
205 variables for the test material lie within the statistical limits

FIGURE 7
Unsupervised PCA scores plots (A, B) and influence plots (Q residuals versus Hotelling T2 residuals) (C, D) for one-class modeling of A. racemosa
analyzed by FIMS (A, C) and NMR (B, D). Symbols: ( ) A. racemosa, ( ) A. rubra, ( ) A. cimicifuga, ( ) A. pachypoda, and ( ) A. podocarpa.
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determined for each variable of the reference samples. Practically,
some deviation of variable(s) can be tolerated as determined by the
limits set by the user. If a test material is to be judged different or
adulterated, one (or more) of the variables in the data set must be
significantly different. As shown in a previous study (Harnly, 2023),
variables that are autoscaled will have a variance of 1.0. The 205 MS
variables will have a total variance of approximately 205. The signal
necessary for a variable to have a significantly different variance and
have a significant statistical impact on the combined metric can be
predicted from the average intensity of the variable (Harnly, 2023).

An added factor of considerable importance is that the plots in
Figure 3 can be constructed by anyone using any commercial
chemometric platform. Starting with the same data set and using

the same pre-processing steps, any commercial platform will
produce the same plots. Identification using one-class modeling
can be done in any lab without the need for a chemometrics expert.

Examples of one-class modeling

American Ginseng (Panax quinquefolius)
American Ginseng (PQ) adulterated with varying levels of Asian

Ginseng (Panax ginseng, or PG) was used to illustrate an application
of the POI (Harnly et al., 2013). For the study, 44 PQ samples were
obtained from theWisconsin Ginseng Board (harvested over 3 years
from 20 different farms in Wisconsin) and 8 PG samples grown in

FIGURE 9
Q residuals plot based on one-classmodeling of A. racemosa reference samples obtained from ( ) American Herbal Pharmacopoeia, ( ) Strategic
Sourcing, ( ) North Carolina Arboretum, and ( ) the National Institutes of Health. Non-modeled samples are: ( ) other Actaea species from AHP, ( )
commercial Actaea roots, and ( ) commercial Actaea supplements. The horizontal dashed line provides the 95% confidence limit, p = 0.05).

FIGURE 8
Comparison of A. racemosa reference samples from 4 sources (AHP, SS, NCA, and NIST). (A) Unsupervised PCA scores plot and (B) influence plot
based on one-class modeling of A. racemosa from AHP (vertically) and SS (horizontally). Symbols: ( ) AHP, ( ) SS, ( ) NIST, and ( ) NCA. AHP and SS
provided clusters below and to the left of the 95% confidence limits, respectively. NIST samples lay barely below the confidence limit with the AHP
samples and NCA samples were outliers (upper right quadrant) for both one-class models.
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China and acquired from American Herbal Pharmacopoeia and
commercial sources. Samples were analyzed by flow injection mass
spectrometry (FIMS) which yielded spectra with more
than 1,000 ions.

The SSTM and SITM (Table 1) for the POI analysis were chosen
as 98% and 90% PQ, respectively. Spectra for the test materials were
synthesized mathematically using appropriate ratios of the 100% PQ
and 100% PG spectra. In all, 344 (43 PQ × 8 PG) spectra were
generated for each test material. The unsupervised PCA score plot
(not shown) showed visual separation but the computed confidence
limits did not allow detailed statistical analysis. Ironically, one-class
modeling was used to provide detailed statistical analysis of the data
although it was not the focus of the paper. The Q statistic served as
the combined metric (Figure 4).

Figure 4A shows the Q statistic plot for 100% PQ, 100% PG, and
98% PQwith confidence limits based on one-class modeling for both
100% PQ and 98% PQ. The one-class model for 100% PQ has a
sensitivity of 95% (42/44) and a specificity of 100%. The one-class
model for 98% PQ, the SSTM, has a sensitivity of 98% (342/344) and
a specificity of 100%. Figure 4B shows a similar plot with 90% PQ,
the SITM. Based on the one-class model for 98% PQ, the 90% PG has
a specificity of 99% (341/344).

A follow up study verified the previous numerical dilutionmodel
with physical dilution of 100% PQ with 100% PG (Harnly et al.,
2013). The more labor intensive nature of the physical dilutions
restricted the number of samples. Five samples of 100% PQ
(arbitrarily selected from the samples in the previous study) were
diluted with two samples of PG at ratios of 95:5, 9:1, 8:2, 6:4, 4:6, and
2:8. Figure 5A shows that unsupervised PCA provided a near linear
progression from 100% PQ to 100% PG on the X-axis indicating that
PQ concentration was the primary source of variance. Figure 5B
shows the influence plot (Q statistic versus Hotelling T2) based on a
one-class model of 100% PQ.While the Hotelling T2 residuals failed
to discriminate between the different PQ purities, the Q statistic
provided excellent separation of the five PQ concentrations. A plot

of the square root of the Q statistic showed a linear relationship with
the PQ concentration (plot not shown).

An additional follow up study examined the ability of FIMS to
discriminate between PQ:PG ratios of 99:1, 98:2, 97:3, and 96:4
(unpublished data) to determine the level of adulteration of PQ that
could be detected. Figure 6 shows the influence plots (Q statistic
versus Hotelling T2) for the 4 purity levels of PQ. Once again, Q
statistic was more useful than Hotelling T2 for discriminating

FIGURE 11
A Q statistics plot based on one-class modeling of Echinacea
purpurea aerial samples (lower left). Labels for single ingredient
samples: EPA – E. purpurea aerial samples, EPAS – EPA solid
supplements, EPAL - EPA liquid supplements, EPR - E. purpurea
root samples, EPRS - E. purpurea root solid supplements, EAR – E.
angustifolia root samples, EARS - E. angustifolia root solid
supplements, and EARL - E. angustifolia root liquid supplements.
Mixed supplements (far right) are not individually labeled.

FIGURE 10
A side view of Figure 6 showing the frequency plot for (—) all 4 A. racemosa reference samples and (----) other Actaea species. The solid vertical line
presents the mean for the A. racemosa reference samples and the dashed vertical line presents the +2s limit.
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between populations. The sensitivity for 100% PQ was 95% and the
specificity was 57%, 90%, 99%, and 100% for PG contamination of
1%, 2%, 3%, and 4%, respectively.

This study demonstrates the utility of one-class modeling for
detecting adulteration. The Q values for physical and mathematical
dilution showed excellent agreement. The digital model, based on
the pure spectra (100%) of the authentic material and the adulterant,
provides a much simpler means of evaluating the ability of the
method to detect adulteration.

The POI studies used the term SIMCA (soft independent
modeling of class analogy) instead of the one-class modeling.
SIMCA, as explained earlier, consists of a series of one-class
models. In all the studies reported in this paper, only a single
class was used for modeling, a single PCA model. For the
ginseng studies and all those that follow, the 95% confidence
limit was chosen as the statistical limit. Other statistical limits
can be selected by researchers. The Q and Hotelling T2 statistics
were based on only one principal component, thus mitigating the
possibility of over fitting. In addition, pre-processing for all the PCA
calculations consisted of unit vector normalization of the samples
(i.e., the sum of the squares of the sample intensities are set to 1.0)
and autoscaling (normalization of each variable by its standard
deviation) with mean centering of each variable.

Black cohosh (Actaea racemosa)
One-class modeling was used to distinguish A. racemosa L.

(Ranunculaceae) from other Actaea species and commercially
available roots and supplements (Harnly et al., 2016). FIMS and
proton nuclear magnetic resonance spectrometry (NMR), two
metabolic fingerprinting methods, and DNA sequencing were
used to identify and authenticate the A. racemosa species. For
this study, authentic A. racemosa botanical reference materials
were acquired from four sources: American Herbal
Pharmacopoeia (AHP), Strategic Sourcing (SS), North Carolina
Arboretum (NCA), and the National Institutes of Standards and

Technology (NIST). The NCA samples were triplicate samples
collected from 22 sites across the eastern US.

Initial analyses of the Actaea species furnished by AHP using
FIMS and NMR gave similar result as shown in Figure 7. PCA score
plots (Figures 7A, B) for both methods showed a pattern
differentiating A. racemosa from the other Actaea species. This
differentiation was statistically verified by one-class modeling based
on A. racemosa (Figures 7C, D). DNA sequencing using two
independent gene regions (ITS and psbA-trnH) confirmed the
metabolic fingerprinting results. Although not the point of this

FIGURE 13
Influence plot of mixed supplements spectra cross correlated
with the average E. purpurea single ingredient spectra based on EPA,
EPAS, and EPAL (Figure 12). Labels: EPA – E. purpurea aerial, EPAS1-
EPAS4 – EPA solid supplements, EPAL - EPA liquid supplement.
Mixed labels have two factors. First factor abbreviations are NS -
species no specified, P – E. purpurea, A- E. angustifolia. Second factor
abbreviations are NS– plant part not specified, A– aerial, and R– root.

FIGURE 12
Spectra of E. purpurea aerial (EPA) cross-correlated with itself, E. purpurea aerial solid supplements 1–5 (EPAS1-EPAS5), and E. purpurea aerial liquid
supplement sample (EPAL1).
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review, DNA sequencing provided identification for root
materials but was inconsistent for the supplements. It was
assumed that processing of the supplements destroyed the DNA
in some cases.

The simplicity of categorization in Figure 7 was complicated
when A. racemosa reference samples from the four sources were
compared. A PCA score plot (Figure 8A) and a influence plot
(combined one-class model plots for AHP and SS reference
materials) (Figure 8B) demonstrated that the reference materials
were statistically different. The plots show three separate groups
with the NIST samples in the same quadrant as those from SS.
Sensitivity for the AHP and SS samples was 94% and 91%,
respectively, and 91% for the un-modeled NCA samples in the
upper right quadrant, exceeding the 95% confidence limits for AHP
and SS, i.e., outliers compared to the other reference materials.
Interestingly, the NCA samples collected from 22 sites across the US
showed a similar lack of uniformity. These data suggested that
sample handling and storage, local environmental conditions, and/
or genetic drift influenced the plant metabolic profiles. It was also

suggested that endophytic bacteria might have a significant influence
on the metabolic profile.

A follow-up study took a closer look at the differences between
the reference samples and the effect of pre-processing on PCA and
one-class modeling patterns (Harnly and Upton, 2024). In Figure 9,
samples from all four sources were combined to serve as reference
samples and used for one-class modeling. The variance of the
combined reference materials exceeded that of each modeled
individually, i.e., the model for AHP in Figure 7C. Sensitivity was
97% for the combined A. racemosa samples and the specificity was
56% for other Actaea species, 55% for commercial Actaea roots, and
100% for commercialActaea supplements. These data demonstrated
the difficulty of differentiating between the Actaea species and that
some of the commercial root samples are correctly identified as A.
racemosa. None of the commercial Actaea supplements exhibited
metabolic profiles similar to the reference samples, most likely due to
the influence of sample preparation.

Figure 10 shows an alternate perspective for one-class modeling
data. If the modeled data in Figure 9 are viewed from the side, they

FIGURE 14
One-class modeling of FIMS fingerprints acquired by negative ionization after processing by multivariate ANOVA showing (A) the score plot for
black, red, and yellow maca acquired from Peru and China surrounded by (B–F) single-class models for each of the 5 country-color combinations.
Sample icons: Peru black, Peru red, Peru yellow, China yellow, and China black.
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can be displayed as frequency plots. This is a more intuitive view,
providing the mean and distribution of the populations. Figure 10
shows only the frequency plots for A. racemosa and the other Actaea
species. Alternate pre-processing methods had little impact on the
separation of the two populations. Use of only variables with a low
variance provided improved overlap of the A. racemosa from the
different sources (data not shown) but reduced the ability to
discriminate between species (data not shown). Use of variables
that enhanced discrimination between species (based on an f-test)
also failed to enhance differentiation as the differences between the
reference samples from the 4 different sources were also increased,
i.e., the frequency plot for A. racemosa broadened (data not shown).

This study demonstrated that not all reference materials are
created equal, use of multiple sources for reference materials
increases the variance of the model, discriminating between
species is difficult because the same metabolites are present but
in a slightly different ratios, and finally, there is no simple pre-
processing for improving discrimination between species.

Echinacea (Echinacea purpurea)
Preparation of commercial supplements from botanical

ingredients results in changes in the chemical composition of the
supplement. This makes it difficult to authenticate supplements
based on the raw ingredients. One approach to comparing the
composition of different samples is cross-correlation of the two
spectra (Harnly et al., 2017). Ions found in both the reference
samples and supplements spectra will provide an enhanced
numerical product while those missing from either will yield a
product close to zero. Comparison of the cross-correlated spectra
can be achieved using PCA and eliminates the need for a
normalization factor. As usual, however, one-class modeling
provides a clearer analysis with statistical evaluation.

E. purpurea (L.) Moench aerial samples were chosen as the test
material and cross-correlation and one-class modeling were used to
distinguish E. purpurea (L.) aerial samples from E. purpurea and
Echinacea angustifolia roots and supplements. Authentic E.
purpurea aerial and root samples and E. angustifolia root samples
were obtained from Missouri Botanical Gardens, American Herbal
Pharmacopoeia, and commercial sources. Twenty-three liquid and
solid (tablets and capsules) supplements were purchased locally;
11 were single-ingredient supplements containing only E. purpurea
and E. angustifolia aerial or root material and 13 were mixed or
unknown Echinacea supplements labeled to contain mixtures of E.
purpurea with E. angustifolia and/or Echinacea pallida (Nutt.) and
consisting of either aerial or root material. Samples were
analyzed by FIMS.

One-class modeling based on E. purpurea aerial samples showed
that all other species and plant parts were significantly different from
E. purpurea aerial (Figure 11). Thus, the compositional profiles of E.
purpurea aerial could be differentiated from that of the E. purpurea
roots and E. angustifolia roots and from any of the single ingredient
or mixed supplements. The sensitivity for the model in Figure 11 was
99% and the specificity was 98%. These data reaffirm previous
observations that most raw materials are not suitable for
authenticating supplements. The preparation process for
commercial samples (e.g., extraction, back extraction, drying,
powdering, and possible addition of other materials) can result in
significant differences in the chemical composition and their levels.

It should be noted that his does not necessarily reflect on the
supplements efficacy.

Figure 12 shows the average EPA spectrum cross-correlated with
itself (auto-correlation), each of the EPA solid supplements (EPAS)
(EPAS1-EPAS5), and EPA liquid supplements (EPAL). Only
EPAS5 appears to be significantly different. One-class modeling
of the cross-correlated spectra of the average EPA with each of the
individual EPA samples (plot not shown) showed that the EPAS and
EPAL spectra, with the exception of EPAS5 were the same as the
cross-correlated EPA population. These results provide some
interesting conclusions. First, since the correlation spectra for
EPAS1-EPAS4, and EPAL were similar, the supplements
contained similar extracted components. This means that the
starting ingredients and the processes used by the manufacturers
were similar. Second, since the auto-correlation spectrum of EPA
was similar to the correlation spectra of EPA with EPAS1-EPAS4
and EPAL, the reference samples in this study were similar to the
raw ingredients used by the manufacturers. Finally, since the
extracted compounds were the same, the analytical extraction
process used in this study was similar to the preparation method
employed by the manufacturers. These data also indicate that
supplement EPAS5 was produced using either a different starting
ingredient or a different extraction process.

Figure 13 shows a one-class model for mixed supplements based
on the cross-correlated spectra for EPA, EPAS1-EPAS4, and EPAL.
All mixed supplements that were known to contain aerial plant
material fell within the 95% confidence level, even if the species were
not specified. All supplements with root material, even if the species
were not specified, fell outside the 95% confidence limit. The
exceptions falling outside the 95% confidence limit were
supplements composed of both species and both plant parts. This
suggests that perhaps the aerial portion was of insufficient
concentration to provide a clear cross-correlated spectrum.

The data in Figures 12, 13 indicate that cross correlation of
supplements with the raw ingredient accurately identifies ions found
in both spectra. Ions common to both spectra provide an enhanced
multiplicative product whereas ions found in only one spectrum
provide a product close to zero. Thus, cross-correlation and one-
class modeling can identify commonalities of the raw ingredients
and supplements.

Maca (Lepidium meyenii walpers)
Maca data were presented earlier for the general description of

one-class modeling. This study was a collaboration with the
American Botanical Council; Gaia Herbs; Hong Kong Baptist
University; Charles Sturt University & Therapeutic Research,
TTD International Pty Ltd; and NSF International Authenticity
Laboratory (Geng et al., 2020). There is some question as to whether
the plant material is accurately identified as L. meyenii Walpers or
Lepidium Peruvianum Chacon (Meissner et al., 2015). Samples
consisted of 39 commercial maca supplements from
11 manufacturers, 31 unprocessed maca roots grown in Peru and
China, and an historic non-tuber maca sample from Peru. Samples
were analyzed using FIMS and DNA next-generation
sequencing (NGS).

Initial, untargeted PCA placed all the maca samples in 3 classes:
commercial maca samples, roots grown in Peru, and roots grown in
China (Figure 3A). With one-class modeling the commercial Maca
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was readily differentiated from the raw root materials (Figures 3C,
D). A similar approach, selecting either the Chinese or Peruvian
samples for the model, showed that either could be differentiated
from the other two classes (data not shown).

One-class modeling was also combined with analysis of variance
(ANOVA) to differentiate roots based on country (China and Peru)
and color (black, red, and yellow) (Figure 14). ANOVA was used to
isolate the mean variance for each experimental factor (country,
processing, and color) and cross factor to provide residuals free of
the variance of the other factors (Harnly et al., 2014). One-class
modeling of the individual factor residuals provided plots in
Figures 14B–F. These data show, not surprisingly, that the
metabolite composition correlates with country and color.

Metabolite profiling using ultra-high performance liquid
chromatography-high resolution mass spectrometry (UHPLC-
HRMS) in combination with PCA loadings was used to annotate
the compounds responsible for differentiating between country and
color. Genetically, all samples were confirmed to be similar and to be
L. meyenii Walpers based on NGS at 3 gene regions (ITS2, psbA, and
trnL) and comparison to recorded sequences of vouchered standards.

The results of this study show that one-class modeling can be
used in combination with ANOVA to determine the statistical
significance of differences arising from experimental factors
associated with the samples. The metadata associated with
genetics, country of origin, year of origin, climate, and handling
can have a major impact on a plant’s metabolite profile and one-class
modeling provides a versatile in deconvoluting the interaction of
the factors.

Conclusion

One-class modeling is a versatile method that can be readily
applied to any set of multivariate data (targeted or non-targeted)
data. This is a supervised method (reference samples must be
identified) that develops a model based on the characteristics of a
single class of samples, the reference samples. Using PCA, the Q
statistic offers an inherent combined metric which can be used to
determine if the reference and test samples belong to the same class,
i.e., the test sample is authentic or adulterated. It can also be used as
an effective tool for determining the similarity of sample metabolites
for different species and, with cross-correlation, the similarity of raw
ingredients and supplements. Finally, in combination with ANOVA,
one-class modeling can be used to determine the significance of

experimental factors. The beauty of one-class modeling is that it can
be implemented on any commercial chemometrics platform and is
applicable to any data file, i.e., chromatograms, spectra, or database,
targeted or non-targeted.
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