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Background: This study employs network pharmacology and molecular docking
methods in conjunction with animal experimentation to elucidate the underlying
mechanism bywhich the combination of salvianolic phenolic acids and hawthorn
triterpenic acids (SHC) exerts its therapeutic effect on carotid atherosclerosis (AS)
in ApoE−/− mice.

Methods: A network pharmacology research approach was used to predict
potential core targets for SHC intervention in atherosclerosis. The predictions
were subsequently validated through the implementation of animal in vivo
experiments. ApoE−/− mice were randomly assigned to three experimental
groups, namely, a model group, an atorvastatin group, and an SHC
group. After the administration period, the plaque area in the carotid artery
and aortic arch, blood lipid levels, malondialdehyde (MDA), superoxide
dismutase (SOD), glutathione (GSH), and nitric oxide (NO) content were
measured. Additionally, the expression of PI3K, Akt, NF-κB, JNK1, ERK1/2, and
p38-MAPK in the aortic arteries was analyzed. Based on the protein expression
results, molecular docking was used to predict the binding activity between the
core compounds and core targets.

Results: A total of 23 core compounds were identified in SHC, and 55 core targets
of SHCwere screened as potential targets for intervention in AS. The results of the
enrichment analysis indicated that the principal mechanisms through which SHC
exerts its effects in AS are associated with lipid metabolism and the PI3K-Akt and
MAPK pathways. The results from animal experiments demonstrated that
atorvastatin and SHC markedly reduced the area of carotid plaque and
downregulated the levels of TC and LDL-C in ApoE−/− mice. The
administration of SHC was associated with an increase in SOD activity and a
reduction in NO levels in the livers of mice. Furthermore, SHC was observed to
downregulate the expression of NF-κB and p38-MAPK in the carotid region. The
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results of molecular docking demonstrated that the core compounds of SHC,
including salvianolic acid A, B, and C,maslinic acid, ursolic acid, and oleic acid, were
capable of stably binding to the core targets NF-κB and MAPK14.

Conclusion: It is hypothesized that SHC may reduce lipid deposition and plaque
formation in AS by regulating blood lipids, a process that may be closely linked to
the inhibition of inflammatory regulator expression, including NF-κB and p38-
MAPK.

KEYWORDS

salvianolic phenolic acids, hawthorn triterpenic acids, atherosclerosis, network
pharmacology, molecular docking, inflammatory regulatory

1 Introduction

As indicated in the World Health Organization’s 2023 World
Health Statistics report, ischemic heart disease and stroke represent
the primary and secondary causes of mortality worldwide,
respectively. These conditions are identified as the underlying
causes of atherosclerotic cardiovascular disease (CVD) (World
Heart Federation, 2024). Atherosclerosis (AS) is a chronic
inflammatory disease with pathological mechanisms that include
abnormalities in lipid metabolism, endothelial dysfunction,
activation of immune cells, and cellular stress responses (Gusev
and Sarapultsev, 2023). It is notably linked to dyslipidemia.
Disturbances in lipid metabolism result in the progressive
accumulation of oxidized low-density lipoprotein (oxLDL) within
the sub-endothelial matrix, thereby triggering local vascular
inflammation and immune responses. This occurs through the
binding of oxLDL to scavenger receptors (SRs) expressed on
macrophages, endothelial cells, and smooth muscle cells (Borén
et al., 2020). Consequently, the objective of clinical interventions
aims to modulate lipid metabolism in order to delay the progression
of atherosclerotic plaques (Mosalmanzadeh and Pence, 2024).
Although research indicates that statin-mediated reduction of
LDL can effectively control plaque progression, discontinuation
or intermittent administration of statins is detrimental to plaque
control (Wu, X et al., 2021). Adverse reactions, characterized by
elevated transaminases indicating liver damage and elevated creatine
kinase indicating rhabdomyolysis, have been observed in patients
receiving statin therapy at doses reaching 40–80 mg (Shavadia et al.,
2021). As patients with AS typically require continuous medication,
ensuring the safety of the drugs they are taking is of utmost
importance. Therefore, the objective of this study is to identify a
safe alternative therapeutic option that can effectively improve lipid
profiles while potentially exerting potential anti-atherosclerotic
effects. Prior research has indicated that the Chinese herbs Salvia
miltiorrhiza and hawthorn fruit may offer therapeutic benefits in the
management of cardiovascular events. The combination of Salvia
miltiorrhiza and hawthorn fruit has demonstrated efficacy in the
treatment of inflammatory conditions, oxidative stress, lipid
regulation, and vascular protection. The potential for these herbs
to serve as a preventive and therapeutic measure for AS has been
demonstrated by several studies (Li ZM et al., 2018; Li H et al., 2022;
Wu Y et al., 2020; Li D et al., 2021; Sureda et al., 2021). Phenolic
acids, the primary water-soluble constituents of Salvia miltiorrhiza,
have been demonstrated to possess antioxidant and cardiovascular
protective effects (Shen et al., 2018). Triterpene acids, a significant

fat-soluble component of hawthorn fruit, have been demonstrated to
possess anti-hyperlipidemic and anti-inflammatory properties, as
well as the capacity to enhance coronary blood flow (Cui et al., 2024).
The anti-atherosclerotic effect of the water-soluble crude extract of
the combination of Salvia miltiorrhiza and hawthorn fruit has been
previously reported (Zhang et al., 2019). However, it is challenging
to enrich the lipid-soluble constituents, such as triterpene acids, in
hawthorn through aqueous extraction. Network pharmacology is an
essential component of systems biology. Its comprehensive and
holistic approach to drug–drug interactions is consistent with the
fundamental principles of traditional Chinese medicine (Zhao Y
et al., 2023). This field of study illuminates the function of traditional
Chinese medicines in regulating the organism’s systemic network.
To further investigate whether the combination of active ingredients
of Salvia miltiorrhiza and hawthorn fruit could have an anti-
atherosclerotic effect and to clarify their mechanism, the present
study was conducted using SHC through a combination of network
pharmacology and animal experiments. Figure 1 illustrates the
research flowchart.

2 Material and methods

2.1 Network pharmacology

Screening and target prediction of SHC core compounds were
performed by integrating the PubMed database (https://pubmed.
ncbi.) with the Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP, http://
tcmspw.com/tcmsp.php); the core compounds of SHC were
identified using this approach. The TCMSP database, BATMAN
database (http://bionet.ncpsb.org.cn/batman-tcm/), and
SwissTargetPrediction database (http://www.swisstargetprediction.
ch/) were employed to identify the gene targets of the compounds.
Subsequently, the aforementioned targets were validated using the
UniProt database (https://www.uniprot.org/).

The collection of SHC-AS intersection targets was obtained by
querying the GeneCards (https://www.genecards.org/) and OMIM
(https://www.omim.org/) databases with the keyword
“atherosclerosis,” and the results were refined using the UniProt
database (https://www.uniprot.org/) to identify disease targets. To
ensure the accuracy of the disease target identification, the “retrieve/
ID mapping” function was employed. The intersection of SHC-AS
targets was identified using Venny 2.1 (https://bioinfogp.cnb.csic.es/
tools/venny/).
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Network construction and core target analysis: The core targets
were subjected to screening, and protein–protein interaction (PPI)
network diagrams were constructed using the STRING database
(https://cn.string-db.org/) and Cytoscape 3.7.1 software.

Enrichment analysis: Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
were conducted on the core targets using the DAVID database
(https://david.ncifcrf.gov/). The results were presented in the form
of bubble diagrams, providing a visual representation of the data.
The threshold for statistical significance was set at P < 0.05, and the
species selected was Homo sapiens. The GO analysis included three
domains, namely, biological process (BP), cellular component (CC),
and molecular function (MF).

2.2 Extraction of SHC components

Extraction of total phenolic acids from Salvia miltiorrhiza: The
dried root and rhizome of Salvia miltiorrhiza Bge. were obtained.
Subsequently, a 4% gelatin solution was added and allowed to stand
for 12 h, after which it was filtered. Subsequently, the solution was
diluted with ethanol to a concentration of 70% alcohol and allowed
to stand for 12 h prior to filtration. An equal volume of 60% ethanol
was then added to the precipitate, which was allowed to stand for
12 h and then filtered. The combined filtrate was concentrated to a
relative density of 1.23 (50°C) with dilute hydrochloric acid at
pH 2–3. Thereafter, an equal volume of water-saturated ethyl
acetate was employed for three rounds of shake extraction.
Subsequently, the remaining extract was adjusted to a pH value
of 5 with sodium hydroxide in order to facilitate the recovery of the
ethyl acetate. Subsequently, the resulting extract was subjected to
spray drying (Jiang et al., 2022).

Extraction of total triterpenic acid from hawthorn: Hawthorn
(Rosaceae, Crataegus pinnatifida Bge.) was harvested, ground into a
coarse powder, and extracted with 80% ethanol by reflux for two
cycles. In the initial stage, the specified amount was increased by a
factor of 8, while in the subsequent stage, the specified amount was
increased by a factor of 4. Each stage was conducted for a duration of

30 min. The combined filtrate was filtered, and the ethanol was
recovered under reduced pressure and concentrated. Subsequently,
water was added and stirred to wash the clear paste three times until
the pH of the wash solution reached 6. Static filtration was then
performed, water was discarded, and the precipitate was spray-dried
to yield a dry powder. The resulting dry powder was mixed with four
times the amount of ethyl acetate and immersed at 60°C for 30 min.
Subsequently, the mixture was filtered, and the retained residue was
refluxed three times with ethyl acetate, with each refluxing step
involving the addition of 10 times the amount of ethyl acetate. Each
of the first, second, and third refluxes was conducted for a period of
0.5 h. Subsequently, the filtrate was filtered, and the resulting
solution was collected for further processing with ethyl acetate
and vacuum drying. Subsequently, the product was then obtained
through vacuum drying (Zhang L et al., 2020).

SHC mixture preparation: A solution was prepared by mixing
the total phenolic acid extract of Salvia miltiorrhiza, hawthorn total
triterpenic acid extract, and microcrystalline cellulose in a ratio of 2:
1:2. This solution was then sprayed into ethanol with stirring,
forming particles, and subjected to drying and storage.

The comprehensive extraction methodologies for salvianolic
phenolic acids, hawthorn triterpenic acids, and SHC are outlined
in the supplementary document (Supplementary Material 1,
Extraction of SHC Components).

The chemical composition of SHC for each component was
confirmed through UHPLC-MS analysis (Supplementary Material
2, Chemical Composition Analysis of SHC).

2.3 Animal experiments

2.3.1 Experimental animals
SPF-grade male ApoE−/− mice and C57BL/6Cnc mice, aged

7 weeks, were obtained from Beijing Vital River Laboratory
Animal Technology Co. Ltd., a facility licensed by the Beijing
Administration for Industry and Commerce (license number
SCXK (Beijing) 2016-0006) and has been granted animal
qualification certificates (numbers 11400700379466 and

FIGURE 1
Graphical abstract.

Frontiers in Pharmacology frontiersin.org03

Zhai et al. 10.3389/fphar.2025.1501846

https://cn.string-db.org/
https://david.ncifcrf.gov/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1501846


11400700379467). The animals were housed in the Medical
Experimental Center of the Chinese Academy of Sciences under
the following conditions: temperature 20–22°C, relative humidity
65%–70%, light cycle 12 h/12 h, and ad libitum access to food.

The normal diet was purchased from Beijing Vital River
Laboratory Animal Technology Co. The high-fat diet (Batch No.
MD12015A) was purchased from Jiangsu Medison Biomedical Co.
High-fat diet formula: casein (19. 47%), corn starch (4.99%),
maltodextrin 9.98%, sucrose (33.76%), cellulose (4.99%), corn oil
(0.99%), anhydrous milk fat (19.97%), cholesterol (0.50%), and total
minor ingredients (5.35%).

The C57BL/6Cnc mice were acclimatized for a period of 1 week,
and the C57BL/6Cnc mice constituted the sham group and were fed
a normal chow diet. The ApoE−/− mice were randomly divided into
three groups, namely, a model group, an atorvastatin group, and an
SHC group. The mice were fed a continuous high-fat chow diet after
being sorted by body mass.

2.3.2 Drug administration
The mice in each group were started on the drug. Atorvastatin

was supplied in the form of 10 mg tablets, with the batch number
T80151. In addition, the active ingredient SHC was extracted and
mixed by Guiyang Xintian Pharmaceutical Co, Guiyang, China.

The drug was prepared as a suspension and administered via
gavage. Atorvastatin was administered at a concentration of
1.3 mg kg−1, and SHC was administered at a concentration of
300 mg kg−1. The volume of the administered drug was 0.1 mL/
10 g. The corresponding volume of the microcrystalline cellulose
solution was administered to the sham and model groups
(200 mg kg−1) over a 12-week period.

2.3.3 Pathomorphology
The excess adipose tissue of the carotid arteries of mice in each

group was excluded, fixed with OCT fixative gel, and then placed in a
refrigerator at −80°C for freezing. Thereafter, the tissue was sliced.
The slices were fixed in the vertical direction, with the distal end of
the heart serving as the point of origin and the point where the
double-branched blood vessels merged into a single-branched blood
vessel as the point of termination. The thickness of the slices was
8 μm, and the slices were subjected to VG and oil red staining and
histopathological observation. The analysis of the plaque area was
conducted using ImageJ software.

2.3.4 Western blot
The total protein was extracted from the thoracic aorta and

abdominal aortas of each group of mice; the protein concentration
was determined by the BCA (bicinchoninic acid) method, and each
protein sample was diluted to a uniform concentration. The
following proteins were used to detect protein expression: JNK1,
PI3K, ERK1/2, Akt phospho-t308, NF-kβ, and p38-MAPK (detailed
information on the reagents can be found in Supplementary
Material 3, Reagents).

2.3.5 Serum lipid, inflammation, and oxidative
stress markers assay

The objective is to ascertain the serum triglyceride (TG), total
cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and
high-density lipoprotein cholesterol (HDL-C) levels of mice in each

group. The levels of malondialdehyde (MDA), nitric oxide (NO),
superoxide dismutase (SOD), and glutathione (GSH) in the livers of
mice in each group were determined. Standard curves for the
working solutions were constructed separately, and absorbance
was measured using an enzyme marker after homogenizing the
liver tissue and calculating the concentration. Total GSH assay kit,
total SOD activity assay kit, lipid oxidation (MDA) assay kit, and
total nitric oxide assay kit were used for detection (detailed
information on the reagents can be found in Supplementary
Material 3, Reagents).

2.4 Molecular docking

By integrating the core targets identified by network pharmacology
with the Western blot results, the target with the highest degree of
relevance was selected, and the target protein underwent pre-processing
using PyMOL software. Molecular docking was performed between the
target protein and SHC active compounds based on AutoDock Tools
1.5.6 software, and the minimum binding energy required for docking
between the target protein and SHC active compounds was obtained
and visualized using PyMOL software. PyMOL software was used for
visualization. Intermolecular interactions with binding
energies ≤−5.0 kJ/mol were considered to represent relatively
strong binding.

2.5 Statistical methods

Data were analyzed and processed using SPSS 20.0 statistical
software. Experimental data were expressed as (�x ± s ), and data
between multiple groups were analyzed using the one-way analysis
of variance (ANOVA) test. The difference was considered
statistically significant at P < 0.05.

3 Results

3.1 Network pharmacology results of SHC

3.1.1 SHC core compounds
Previous literature has identified Salvia miltiorrhiza as

containing 190 polyphenolic acids and 7 potential new
polyphenolic acids (Wu Y. et al., 2020) and hawthorn fruit as
containing 6 triterpene acids (Li D. et al., 2021; Sureda et al.,
2021). These 203 compounds were entered into the TCMSP
database, and 23 SHC core compounds (19 salvianolic phenolic
acids and 4 hawthorn triterpenoids) were obtained on the basis of
drug-likeness (DL) ≥ 0.18 and oral bioavailability (OB) ≥ 30%, as
shown in Supplementary Table 1.

3.1.2 SHC gene targets
The names, Canonical SMILES, and InChI of the

abovementioned 23 compounds were entered into the TCMSP
database, BATMAN database (score cutoff ≥ 20 and P-value <
0.05), and SwissTargetPrediction database to obtain gene targets
(probability > 0), respectively. After correcting the results with the
UniProt database, there were 680 gene targets corresponding to
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Salvia miltiorrhiza phenolic acid compounds and 151 gene targets
corresponding to hawthorn triterpenic acid compounds. After
removing the duplicate gene targets, a total of 747 unique gene
targets were obtained. The abovementioned results were imported
into Cytoscape 3.7.1 to construct the SHC–compound–target
network diagram (Figure 2A).

3.1.3 Collection of SHC-AS intersecting targets
The GeneCards and OMIM databases were queried using the term

“atherosclerosis,” resulting in the identification of 5,304 disease-related
targets after the application of a de-emphasis filter. The intersection of
SHC-AS gene targets was performed using Venny 2.1, and
472 intersected targets were obtained (Figure 2B).

FIGURE 2
“SHC–Salvia miltiorrhiza phenolic acids & hawthorn triterpenic acids–Gene targets” network diagram and Venn diagram. [Note: (A) There are 680
gene targets of Salvia miltiorrhiza phenolic acids and 151 gene targets of hawthorn triterpenic acids; after removing the duplicate gene targets, 747 gene
targets of SHCwere obtained. (B) There are 5,304 gene targets of AS, 747 gene targets of SHC, after removing the duplicate gene targets, 472 gene targets
were obtained.]

FIGURE 3
PPI network diagram.
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3.1.4 Protein–protein interaction network
construction and core target analysis

The 472 SHC-AS intersection targets were imported into the
STRING database and subsequently imported into Cytoscape 3.7.1,
following the download of the tsv file. The topological parameters in
the network were then analyzed using the NetworkAnalyzer
function in Cytoscape to construct the protein–protein
interaction (PPI) network diagram (Figure 3). The application of
the criterion degree ≥ 59 for screening yielded a total of 117 effective
targets. Subsequently, utilizing a cutoff value of closeness ≥ 0.67 and
betweenness ≥ 0.0018 for further screening, a total of 55 core targets
were ultimately identified (Figure 4). The color intensity of each
node represents the potential role it may play in SHC intervention in
the context of atherosclerosis.

3.1.5 Enrichment analysis
The 55 core targets were imported into the DAVID platform for

GO analysis and KEGG analysis, and the final GO analysis yielded
580 BP-related entries, 57 CC-related entries, 73 MF-related entries,
and 170 KEGG-related pathways.

The BP category was primarily engaged in the negative
regulation of the apoptotic process, the positive and negative
regulation of gene expression, and the positive regulation of
smooth muscle cell proliferation and vascular-associated smooth
muscle cell proliferation, among other biological processes

(Supplementary Table 2; Figure 5A). CC category was primarily
associated with components such as the nucleus, cytoplasm, cytosol,
and caveolae (Supplementary Table 3; Figure 5B). The MF category
was predominantly comprised of protein binding, DNA-binding
transcription factor binding, MAP kinase activity, and protein
serine/threonine kinase activity (Supplementary Table 4;
Figure 5C). The KEGG analysis was primarily associated with
pathways such as lipid metabolism and atherosclerosis, the PI3K-
Akt signaling pathway, the MAPK signaling pathway, and the VEGF
signaling pathway, which plays a key role in angiogenesis and the
regulation of vascular permeability (Supplementary Table 5;
Figure 5D). The enrichment analysis revealed that core targets,
including MAPK1, MAPK3, MAPK8, MAPK14, PIK3CA, AKT1,
and NFKB1, frequently appeared in BP, CC, MF, and KEGG
pathways. In light of the findings of previous research results
(Reustle and Torzewski, 2018; Giulino-Roth et al., 2017; Monaco
et al., 2004), the corresponding proteins of the aforementioned gene
targets, including ERK1/2, JNK1, p-38 MAPK, PI3K, Akt, and NF-
κB, were selected for validation.

3.2 Results of physiological characterization

The results of the physiological characterization are divided into
two categories, namely, serum lipid results and pathological results.

FIGURE 4
Key target diagram.
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Serum TC and LDL-C levels were markedly elevated in the model
group (P < 0.00001), while atorvastatin and SHC demonstrated
efficacy in markedly reducing TC and LDL-C levels (P < 0.00001),
(Figure 6). Oil red staining, which causes lipid droplets to appear red
and cell nuclei to appear blue, is a commonly used method for
detecting vascular lipid deposition and plaque hyperplasia. The
finding revealed the absence of lipid droplet deposition in the
carotid arteries of the sham group, whereas the carotid arteries of
the model group exhibited pronounced obstruction accompanied by
a considerable accumulation of lipid droplets and foam cell
hyperplasia. The deposition was significantly reduced in the
atorvastatin and SHC groups (P < 0.00001). Oil red staining of
the aorta demonstrated minimal lipid deposition in the model,
atorvastatin, and SHC groups (Figure 7). VG staining enabled the
differentiation of hyperplastic plaque formation through the
visualization of collagen fibers in red and other tissue
components in yellow. The findings revealed that the carotid
arteries of the sham group exhibited no evidence of stenosis or
plaque formation, whereas the arteries of the model group displayed
more pronounced stenosis and plaque tissue formation.
Additionally, the atorvastatin and SHC groups exhibited evidence
of stenosis, although the degree of narrowing was less pronounced
than that observed in the model group (P < 0.00001). A minimal

amount of hyperplastic tissue was present in the aortas of the model,
atorvastatin, and SHC groups, with no evidence of plaque
formation (Figure 7).

3.3 Results of molecular biological
characterization

Molecular biological characterization reveals differences in
levels of oxidative stress biomarkers, including SOD, NO, MDA,
and GSH, as well as Western blot results. SOD activity was markedly
suppressed (P < 0.001) and NO levels were significantly elevated
(P < 0.001) in the model group. Conversely, SOD activity was
enhanced (P < 0.01, P < 0.05) and NO level was significantly
diminished (P < 0.05, P < 0.05) in the atorvastatin and SHC
groups. No significant difference was observed in the levels of
MDA and GSH among the different groups (Figure 8). The
expression of NF-κB and p38-MAPK was significantly higher in
the model group (P < 0.01 and P < 0.01), whereas atorvastatin and
SHC significantly reduced the expression of NF-κB (P < 0.05 and P <
0.05) and p38-MAPK (P < 0.05 and P < 0.01). In contrast, the
expression of PI3K, Akt, ERK1/2, and JNK1 did not exhibit a
significant difference between groups (Figure 9).

FIGURE 5
. Enrichment analysis bubble chart (note (A) BP enrichment analysis bubble chart, (B) CC enrichment analysis bubble chart, (C) MF enrichment
analysis bubble chart, and (D) KEGG enrichment analysis bubble chart).
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3.4 Molecular docking

In conjunction with the network pharmacology and Western
blot findings, the proteins corresponding to the core target NFKBIA
(also known as NF-kappa-B inhibitor alpha or NF-κB) and
MAPK14 (also known as mitogen-activated protein kinase or
p38-MAPK) were identified as the research targets. The results
were then visualized using PyMOL software (Figure 10). With
regard to NF-κB, salvianolic acid C and oleanolic acid
demonstrated superior binding affinity, with values of −8.71 kJ/
mol and −9.94 kJ/mol, respectively. With regard to p38-MAPK,
salvianolic acid C and ursolic acid demonstrated superior binding,
with values of −7.38 kJ/mol and −8.12 kJ/mol, respectively.
Nevertheless, salvianolic acid B demonstrated relatively weak
binding affinity for NF-κB and p38-MAPK with a dissociation
constant > −5 kJ/mol.

4 Discussion

4.1 AS and dyslipidemia

AS plaque formation was closely related to the accumulation of
lipids, inflammatory cells, and smooth muscle cells within the
arterial wall. LDL-C in blood could be deposited within the
vessel wall and oxidized to ox-LDL. ox-LDL was highly cytotoxic
and could activate endothelial cells, causing monocytes to cross the

endothelial layer and transform into macrophages (Yu et al., 2013),
forming foam cells. Foam cells released inflammatory factors that
induced vascular smooth muscle cells (SMCs) to convert from a
contractile to a synthetic phenotype, migrate to the endothelial layer,
and proliferate. Collagen and elastin produced by SMC formed an
extracellular matrix that provided structural support for plaque
formation (Gui et al., 2022). Over time, plaques gradually
increased in size, leading to the narrowing of the vessel lumen,
which impeded the blood flow. This could ultimately lead to
ischemia or vascular events in vital organs such as the heart and
brain, such as myocardial infarction or stroke. Previous studies have
shown that inflammatory responses are closely associated with the
occurrence of AS (Bäck et al., 2019), NLRP3 inflammasome, toll-like
receptor, interleukin-1β, preprotein convertase bacillus subtilis
protease/kexin type 9 (Kong P. et al., 2022), NF-κB (Gan et al.,
2023), and MAPK (Reustle and Torzewski, 2018; Wang Y et al.,
2023). These inflammatory factors and their associated pathways
were crucial for the development and regression of AS. In this study,
the plaque area in ApoE-deficient mice was significantly increased;
the levels of TC and LDL-C were both significantly elevated, and the
expression of inflammation-related proteins such as NF-κB and
p38-MAPK was significantly increased in the carotid artery.

In the inflammatory response, a large number of superoxide
anion radicals (O2-) and reactive oxygen species (ROS) were
produced due to the activation of immune cells. SOD, as an
antioxidant enzyme, was able to catalyze the splitting of O2- into
oxygen O2 and hydrogen peroxide (H2O2) (Wu Q. et al., 2016).

FIGURE 6
Levels of the four serum lipid profiles in mice from each group (*****P < 0.00001).
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GSH, as a reducing agent, neutralized ROS through its oxidized
form, glutathione disulfide (GSSG) neutralization of ROS (Perricone
et al., 2009). Both SOD and GSH worked together to protect cells
from oxidative damage and reduce oxidative stress during
inflammation. NO had both anti-inflammatory and pro-
inflammatory effects, and its overproduction may have led to
tissue damage (Coleman J, 2001). MDA was the end product of
lipid peroxidation, and it could be used as an important indicator for
determining whether inflammatory responses were intense or not.
In inflammatory responses, an increase in ROS led to an increase in
lipid peroxidation and the subsequent elevation of MDA levels. The
present study also showed that SOD levels were significantly
decreased and NO levels were significantly increased
in ApoE−/− mice.

4.2 SHC and AS

Salvianolic acids are water-soluble extracts derived from the
traditional Chinese medicinal herb Danshen (Salvia miltiorrhiza).
To date, 197 polyphenolic acids have been identified in these extracts
(Wu Y. et al., 2020). The majority of these acids are structured
around the units of danshensu and caffeic acid, forming various
dimers, trimers, and tetramers. Salvianolic acid A (Huang Q et al.,
2022) and salvianolic acid C (Tang et al., 2016) have been
demonstrated to possess potent anti-inflammatory and
antioxidant activities, respectively. For example, salvianolic acids
have been demonstrated to inhibit malignant hematopoiesis (Huang
W et al., 2021), treat uterine fibroids (Tiwari et al., 2023), and

combat breast cancer (Dalil et al., 2022). Given the established link
between inflammation, oxidative stress, and AS, this study aims to
investigate whether salvianolic acids can contribute to the treatment
of AS through their anti-inflammatory and antioxidant properties.

In addition to its edible value, hawthorn fruit has medicinal
properties. The lipophilic extract of hawthorn, which contains
triterpenic acids, represents an important class of pentacyclic
triterpenoid compounds. Major active constituents include
maslinic acid, ursolic acid, and oleanolic acid (Zhang et al.,
2022). Research indicates that hawthorn triterpenic acids may
reduce triglyceride and cholesterol levels (Feng Y. et al., 2022)
and have the potential to prevent non-alcoholic fatty liver disease
(Liou et al., 2019). This may be related to their ability to improve
myocardial energy metabolism and inhibit apoptosis (Zou et al.,
2022). In addition, research has shown that maslinic acid can
regulate postprandial hyperglycemia and prevent the
development of diabetes (Mwakalukwa et al., 2020).

In this study, we used a variety of bioinformatics approaches,
including network pharmacology and molecular docking methods,
to enhance our research. Network pharmacology uses high-
throughput technologies to rapidly screen and analyze large
amounts of data, while molecular docking techniques predict the
interactions between small and large molecules. These methods
significantly improve the accuracy and reliability of our research,
reduce experimental costs and time, and enable more
comprehensive and efficient progress in drug discovery and
disease research. In addition, an in vivo drug validation study
was conducted to investigate the regulatory effects of the SHC on
atherosclerosis.

FIGURE 7
Oil red and VG staining plaque areas of the carotid artery and aorta in each group of mice (***P < 0.0001).
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4.3Mechanism of action of SHC intervention
in AS

To elucidate the mechanism of SHC in regulating dyslipidemia
and anti-inflammation, this study identified that SHC’s mechanism
of action in intervening with AS primarily involves the lipid and AS
signaling pathway, the PI3K-Akt signaling pathway, and the MAPK
signaling pathway, among others, through network pharmacology.
The Kyoto Encyclopedia of Genes and Genomes (https://www.kegg.
jp/) indicates that the PI3K-Akt pathway and the MAPK
inflammatory factor play a significant role in the “lipid and AS
pathway.” Prior research has demonstrated that the inhibition of
PI3K-Akt (Giulino-Roth et al., 2017) and mitogen-activated protein
kinase (MAPK) activity in carotid arteries and vascular endothelial
cells can impede the progression of plaques (Wang Y et al., 2023).
Moreover, the generation of pro-inflammatory cytokines in AS
plaques was found to be closely associated with NF-κB (Monaco
et al., 2004). Both the ROS and PI3K/Akt signaling pathways
activated NF-κB, which was produced by the cells. In the absence
of stimulation, NF-κB is bound to inhibitory proteins, such as IKKβ
and IKKα, and is located in the cytoplasm. The presence of moderate
amounts of ROS in the cytoplasm, along with pro-inflammatory
cytokines (TNF-α and IL-1β) and lipopolysaccharide (LPS),
stimulates the cell. This stimulation (Gloire et al., 2006) results in
the phosphorylation of the inhibitory protein IKKβ, leading to the
release of NF-κB and its subsequent translocation into the nucleus,
where it regulates the expression of multiple target genes.

Consequently, Akt may also phosphorylate IKKα in response to
PI3K, resulting in its rapid degradation and the release of NF-κB
(Poma, 2020). This, in turn, continues to promote the production of
multiple inflammatory mediators, including cytokines, chemokines,
and coagulation factors. These further exacerbate inflammatory
responses, induce the expression of adhesion molecules, promote
leukocyte binding and transport, and promote plaque formation
(Mussbacher et al., 2019). MAPK is a serine/threonine protein
kinase that includes extracellular signal-regulated kinase (ERK),
c-Jun amino-terminal kinase (JNK), and p38-MAPK. Upon the
stimulation of the cell by a drug or cytokine, the MAPKs are
activated, resulting in the generation of an inflammatory
response throughout the regulation of downstream signals (Qi R.
et al., 2017). The results of network pharmacological studies and
research indicated a strong association between MAPKs and the
development of AS inflammatory responses (Huang et al., 2021).
Additionally, evidence has demonstrated that p38-MAPK/NF-κB
activation increases inflammatory responses in AS (Lima et al.
, 2020).

To elucidate the potential targets of SHC intervention in AS, in
this study, we combined the results of network pharmacological
prediction with those of previous literature studies. The selected
target proteins for validation were MAPKs (JNK1, ERK1/2, p38-
MAPK), PI3K/Akt (PI3K, Akt), and NFKBIA (NF-κB). Their
expression was then detected using Western blotting in mice,
with the expression in arteries serving as the expression site. The
results demonstrated a significant increase in NF-κB expression in

FIGURE 8
SOD, NO, MDA, and GSH levels in mice of each group (*P < 0.05, **P < 0.01, *****P < 0.00001).
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the model group, which was significantly decreased in the
atorvastatin and SHC groups. Similarly, p38-MAPK expression
was significantly elevated in the model group, whereas
atorvastatin and SHC were able to significantly downregulate
p38-MAPK expression. No significant differences were observed
in the expression of PI3K, Akt, ERK, and JNK between the groups.
This suggests that NF-κB and p38-MAPK are closely associated with
AS plaque formation and that SHC may reduce the inflammatory
response in AS and halt the progression of the plaque.

4.4 Discussion of molecular docking

To further elucidate the pharmacological basis of SHC
intervention in AS, this study employed molecular docking
techniques to investigate the binding conformation between
targets and compounds. The results of network pharmacology
and Western blot validation indicated that NF-κB and p38-
MAPK should be considered core targets for further
investigation. A literature search conducted on PubMed and a
network pharmacology analysis identified the following
compounds as potential core compounds: salvianolic acid A
(Dawuti et al., 2023), B (Zhao L et al., 2023), and C (Song
et al., 2018); maslinic acid (Lee et al., 2020); ursolic acid
(Chen et al., 2018); and oleanolic acid (Feng et al., 2011). The
intermolecular binding energies of ≤ −5.0 kJ/mol represent a
relatively strong interaction, which may contribute to
maintaining a stable binding state within organisms (Wang R
et al., 2003). The results of the molecular docking analysis

demonstrated that, in addition to salvianolic acid B, the
remaining five components of SHC exhibited lower binding
energies with NF-κB and p38-MAPK, indicating a higher
probability of interaction.

4.4.1 NF-κB molecular docking
Duan et al. demonstrated that salvianolic acid C can inhibit

the nuclear translocation of the NF-κB p65 subunit induced by
LPS. This action inhibits the transcription and expression of
downstream genes, reduces the levels of inflammatory cytokines
and oxidative stress in cells, and consequently suppresses the
occurrence of inflammatory responses (Duan et al., 2019).
Furthermore, Song et al. demonstrated through in vivo and
in vitro experiments that salvianolic acid C can significantly
activate the nuclear factor erythroid 2-related factor (Nrf2)
signaling pathway. As a pivotal antioxidant and anti-
inflammatory transcription factor, Nrf2, when activated,
induces the expression of a range of antioxidant enzymes and
anti-inflammatory proteins, thereby indirectly inhibiting NF-κB
activity and reducing the production of inflammatory mediators
(Song et al., 2018). These studies confirm that salvianolic acid C
can bind to NF-κB and inhibit NF-κB-mediated inflammatory
responses through both direct and indirect mechanisms.

Fontana et al. employed molecular docking techniques to simulate
the binding of oleanolic acid and its derivatives with NF-κB
(p65 subunit), thereby predicting their potential interaction patterns.
The experimental results indicated that some oleanolic acid derivatives
exhibit a high binding affinity with NF-κB (p65 subunit) and can
significantly inhibit the DNA binding ability of HL60 and HL60R cells

FIGURE 9
Expression of proteins levels in mice of each group (*P < 0.05, **P < 0.01).
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and NF-κB (p65 subunit), thereby suppressing the activation of the NF-
κB signaling pathway, which, in turn, inhibits tumor cell proliferation or
induces apoptosis (Fontana et al., 2022). Iskender et al. also
corroborated this finding, demonstrating that oleanolic acid
administration resulted in a notable reduction in blood glucose and
lipid levels in diabetic rats. It was observed that oleanolic acid could
directly decrease the levels of NF-κB and MDA in diabetic rats and
improve inflammation and oxidative damage in pancreatic tissue
(Iskender et al., 2022). Moreover, the findings of this study indicate
that salvianolic acid A, salvianolic acid C,maslinic acid, ursolic acid, and
oleanolic acid can interact with NF-κB, which may represent one of the

mechanisms by which they exert their protective effects against
atherosclerosis.

4.4.2 p38-MAPK molecular docking
In their study, Liu et al. employed cancer cell lines A549, BXPC-3,

PANC-1, andU2OS to elucidate themolecular mechanisms underlying
the anti-tumor effects of oleanolic acid. The experiments demonstrated
that oleanolic acid activates p38 MAPK in a dose- and time-dependent
manner, promotes themitochondrial translocation of Bax and Bim, and
inhibits the function of Bcl-2 by enhancing their phosphorylation. In
vivo experiments demonstrated that A549 tumors with p38-MAPK

FIGURE 10
Molecular docking mode diagram. The intermolecular binding energies ≤ −5.0 kJ/mol as a threshold criterion was considered to be relatively strong
interaction. [Note: (A) The binding of Salvianolic acid A to NF-κB, (B) the binding of Salvianolic acid B to NF-κB, (C) the binding of Salvianolic acid C to NF-
κB, (D) the binding of Maslinic acid to NF-κB, (E) the binding of Ursolic acid to NF-κB, (F) the binding of Oleanolic acid to NF-κB, (G) the binding of
Salvianolic acid A to P38-MAPK, (H) the binding of Salvianolic acid B to P38-MAPK, (I) the binding of Salvianolic acid C to P38-MAPK, (J) the binding
of Maslinic acid to P38-MAPK, (K) the binding of Ursolic acid to P38-MAPK, (L) the binding of Oleanolic acid to P38-MAPK].
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knockdown exhibited resistance to the inhibitory effects of oleanolic
acid (Liu J. et al., 2014). Wang et al. observed that mice with spinal cord
injury exhibited elevated expression of MAPKs, and treatment with
oleanolic acid resulted in a notable reduction in the phosphorylation
levels of p38-MAPK. In lipopolysaccharide (LPS)-stimulated mouse
neurons, oleanolic acid has been demonstrated to inhibit apoptosis and
inflammatory responses by blocking p38 MAPK (Wang J. L et al.,
2020). The precise sites of action of oleanolic acid on p38-MAPK
remain undetermined. However, the aforementioned studies have
confirmed that oleanolic acid can interact with p38-MAPK.

Lin et al. demonstrated that isosalvianolic acid C is involved in
pseudo-allergic reactions through the activation of the p38-MAPK
signaling pathway (Lin et al., 2019). This finding suggests that
salvianolic acid C may target p38-MAPK. Further investigation
will be conducted in subsequent studies. The present study has
identified salvianolic acid A, salvianolic acid C, maslinic acid, ursolic
acid, and oleanolic acid as potential interactants with p38-MAPK,
with the possibility of regulating downstream signaling molecules.

5 Conclusion

It is hypothesized that SHC may reduce lipid deposition and
plaque formation in AS by regulating blood lipids, a process that
may be closely linked to the inhibition of inflammatory regulator
expression, including NF-κβ and p38-MAPK.
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