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Objective: Lung squamous cell carcinoma (LUSC) is a common subtype of non-
small cell lung cancer (NSCLC) characterized by high invasiveness, high
metastatic potential, and drug resistance, resulting in poor patient prognosis.
Anoikis, a specific form of apoptosis triggered by cell detachment from the
extracellular matrix (ECM), plays a crucial role in tumor metastasis. Resistance to
anoikis is a key mechanism by which cancer cells acquire metastatic potential.
Although several studies have identified biomarkers related to LUSC, the role of
anoikis-related genes (ARGs) remains largely unexplored.

Methods: Anoikis-related genes were obtained from the Harmonizome and
GeneCards databases, and 222 differentially expressed genes (DEGs) in LUSC
were identified via differential expression analysis. Univariate Cox regression
analysis identified 74 ARGs significantly associated with survival, and a
prognostic model comprising 8 ARGs was developed using LASSO and
multivariate Cox regression analyses. The model was internally validated using
receiver operating characteristic (ROC) curves and Kaplan-Meier (K-M) survival
curves. Differences in immune cell infiltration and gene expression between
high- and low-risk groups were analyzed. Virtual drug screening and molecular
dynamics simulations were performed to evaluate the therapeutic potential of
CSNK2A1, a key gene in the model. Finally, in vitro experiments were conducted
to validate the therapeutic effects of the identified drug on LUSC.

Results: The 8-gene prognostic model demonstrated excellent predictive
performance and stability. Significant differences in immune cell infiltration
and immune microenvironment characteristics were observed between the
high- and low-risk groups, suggesting the critical role of ARGs in shaping the
immune landscape of LUSC. Virtual drug screening identified Dihydroergotamine
as having the highest binding affinity for CSNK2A1. Molecular dynamics
simulations confirmed that the CSNK2A1-Dihydroergotamine complex
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exhibited strong binding stability. Further in vitro experiments demonstrated that
Dihydroergotamine significantly inhibited LUSC cell viability, migration, and
invasion, and downregulated CSNK2A1 expression.

Conclusion: This study is the first to construct an anoikis-related prognostic model
for LUSC, highlighting its role in the tumor immune microenvironment and
providing insights into personalized therapy. Dihydroergotamine exhibited
significant anti-LUSC activity and holds promise as a potential therapeutic
agent. CSNK2A1 emerged as a robust candidate for early diagnosis and a
therapeutic target in LUSC.
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1 Introduction

Lung cancer is one of the most prevalent malignancies
worldwide. According to the 2022 Global Cancer Statistics, it
remains a leading cause of cancer-related deaths, with a 5-year
survival rate of less than 15% (Xia et al., 2022). Lung squamous
cell carcinoma (LUSC) a subtype of non-small cell lung cancer
(NSCLC). Accounts for approximately 30% of NSCLC cases and
is characterized by high recurrence and metastasis rates (Qian
et al., 2016). Currently, the standard treatment for LUSC in
involves the use of immune checkpoint inhibitors in
combination with carboplatin and paclitaxel (Fan et al., 2019).
While these methods can extend progression-free survival,
overall outcomes remain suboptimal (Pan et al., 2021; Gao
et al., 2020). Consequently, there is an urgent need to further
investigate the pathophysiology of LUSC and identify reliable
biomarkers for improved diagnosis and treatment. Although
numerous studies have explored genes related to LUSC
prognosis, the role of anoikis-related genes (ARGs) in LUSC
has not been adequately investigated. Therefore, we conducted a
preliminary investigation into the potential use of ARGs as novel
biomarkers for LUSC.

Anoikis is a specialized form of apoptosis that occurs when
cells lose proper attachment to the extracellular matrix (ECM) or
neighboring cells (Taddei et al., 2012). Under normal
physiological conditions, anoikis is triggered when cells
detach from the ECM. leading to cell apoptosis. However,
cancer cells that develop resistance to anoikis can survive
despite detachment, Thereby, evading isolation-induced
apoptosis. This anoikis resistance enhances the ability of
cancer cells to metastasize and is considered a critical step in
tumor progression (Zhang et al., 2023). Studies have
demonstrated that Anoikis resistance plays a key role in the
metastasis of lung adenocarcinoma (LUAD) (Chunhacha et al.,
2012; Prateep et al., 2018). However, its role in LUSC remains
unclear. This study was designed to explore the significance of
anoikis resistance in LUSC.

In this study, we first analyzed the distribution of ARGs in
LUSC and developed a risk model based on ARGs to predict the
prognosis of LUSC patients and the sensitivity of
immunotherapy. Additionally, we validated the reliability of
genes-drugs interactions through virtual screening and
molecular dynamics modeling. The flow of the study is shown
in Figure 1.

2 Methods

2.1 Data sources

Transcriptomic and clinical data for LUSC were obtained from the
Gene ExpressionOmnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/)
and The Cancer Genome Atlas (https://www.cancer.gov/ccg/research/
genome-sequencing/tcga) databases. The GSE30219 dataset contains
82 LUSC samples and 14 normal samples, while the TCGA dataset
includes 502 LUSC samples and 51 normal samples. Additionally, we
retrieved anoikis-related genes (ARGs) from the Harmonizome portals
(Rouillard et al., 2016) and GeneCards (https://www.genecards.org/)
portals (Rebhan et al., 1997).

2.2 Differential gene identification and
prognostic analysis

Differential expressed genes (DEGs) were identified by
comparing ARGs expression in normal and tumor tissues within
the TCGA-LUSC cohort. Prognostic relevance to LUSC was then
assessed using univariate Cox regression analysis. To create a more
robust dataset, The TCGA-LUSC cohort was combined with the
GSE30219 dataset, followed by batch effect correction, resulting in
the integrated to obtain the new TCGA-GSE30219 cohort.

2.3 Cluster analysis

Based on the prognostically relevant ARGs, each LUSC patient
in the TCGA-GSE30219 cohort was assigned an anoikis score using
the Gene Set Variation Analysis (GSVA) algorithm. Patients were
subsequently divided into high-and low-score groups by
determining cut-off values for the scores using the ‘survminer’
package. Uniform Manifold Approximation and Projection
(UMAP) and t-distributed stochastic neighbor embedding
(t-SNE) were employed to ensure clustering consistency. The
final clustering results were visualized with the ‘ggplot2′ package.

2.4 Functional enrichment analysis of ARGs

To investigate the potential functional mechanism of ARGs in
LUSC, we downloaded the “c2. cp.Kegg.symbols.gmt” file from the
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Molecular Signatures Database (MSigDB) (Liberzon et al., 2015).
The biological pathways and functions related to ARGs were then
analyzed using Gene Set Variation Analysis (GSVA) through with
the “GSVA” package.

2.5 Construction of an ARGs-Based
prognostic model for LUSC

The ARGs associated with LUSC prognosis from the integrated
TCGA-GSE30219 cohort were randomly split into a training set and

a validation set, each comprising 50% of the data. Survival-related
genes were identified using the Least Absolute Shrinkage (LASSO)
regression algorithm, with the regularization parameter λ
determined via 10-fold cross-validation (Ding et al., 2023). These
gene expression levels were then used to assess the survival
prognosis of LUSC patients in the training set. The optimal
model was selected through multivariate Cox regression analysis,
and coefficients for the model genes were calculated. The risk score
was derived using the formula: risk score = ∑(Exp (mRNA) × coef
(mRNA)), where Exp represents gene expression and coef denotes
the gene’s coefficient. The model’s predictive accuracy was validated

FIGURE 1
Flowchart of this study.
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using time-dependent ROC curves and Kaplan-Meier (KM)
survival curves.

2.6 Relationship between risk score and
immune infiltration

The relative proportion of immune cell infiltration was
estimated using single-sample gene set enrichment analysis
(ssGSEA) and “CIBERSORT” algorithm (Newman et al., 2015).
Immune cell proportions in the high-and low-risk groups were
analysed using the ‘CIBERSORT’ package. Where the sum of the
proportions of all immune cell types in each sample was normalized
to 1. The relationship between the risk score and immune cell
infiltration was subsequently evaluated through Spearman’s rank
correlation analysis.

2.7 Stratified analysis based on
clinicopathological features

To validate the risk model as an independent prognostic
indicator, we first assessed the correlation between overall
survival (OS) and clinicopathological characteristics-such as age,
gender, pathological stage, and risk score-using univariate Cox
regression analysis. Independent prognostic factors for LUSC
were then identified through multivariate Cox regression analysis.
A nomogram was constructed based on the risk score and
clinicopathological features. The accuracy of the nomogram was
evaluated using calibration plots and time-dependent concordance
index (Time-C index), Additionally, the clinical benefit of the
nomogram was assessed through decision curve analysis (DCA)
(Kerr et al., 2016).

3 LUSC model gene analysis and drug
sensitivity

3.1 LUSC drug sensitivity projections

Using data from the Cancer Treatment Response Portal (CTRP),
the ‘oncoPredict’ package was employed to predict the 50%
inhibitory concentration (IC50) of LUSC samples for various
antineoplastic drugs. Spearman’s correlation analysis was then
performed between the IC50 value and the risk score to identify
drug sensitivity resistance in LUSC (P < 0.05) (Maeser et al., 2021).

3.2 Virtual screening and molecular
dynamics simulation

To validate the potential of model genes as therapeutic targets for
LUSC, further analyses were conducted on the genes associated with
LUSC survival. Protein structure files were downloaded from the
Protein Data Bank (PDB) database (https://www.rcsb.org/), and
water molecules and ligands were removed using PyMOL 2.3.0. The
docking regions were identified using the getbox plugin, and the protein
files were hydrogenated in AutodockTools, and saved in pdbqt format

for virtual screening. Small molecule drugs approved by the US Food
and Drug Administration (FDA) were selected from the
ZINC15 database (https://zinc15.docking.org/). These drug files were
processed using Open Babel and screened virtually using Autodock
vina, set to semi-flexible docking docking with exhaustiveness = 25
(Trott andOlson, 2010; Eberhardt et al., 2021). Drugs with the strongest
affinity to the target gene were selected. Since semi-flexible docking does
not consider factors like protein flexibility, temperature, pressure, or
solvent effect, 100ns molecular dynamics simulations of the protein-
ligand complexes were conducted using Gromacs2022. Amber14sb was
used as the protein force field, Gaff2 as the ligand force field, and the
SPC/E water model was used to solvents the system with a periodic
boundary of 1.2 nm. The particle mesh Ewald (PME) method was used
for electrostatic interactions, and the Mont Carlo method for ion
placement, neutralizing the system’s charge with appropriate
amounts of sodium and chloride ions. Before running the
simulation, the system underwent three energy minimization and
equilibration steps: (1) Energy minimisation was performed using
the steppest descent algorithm for 50,000 steps. (2) A 50,000-step
pre-equilibration with a 2fs timestep was performed, maintaining
constant particle number, volume, pressure, temperature (310 K).
After energy minimization and equilibration, unconstrained
molecular dynamics simulations were conducted for 100 ns with a
2 fs timestep. The stability of the complexes was evaluated by analysis
the root-mean-square deviation (RMSD) of the molecular-dynamics
trajectories. A smaller RMSD indicates less structural deviation within
the complexes (Mukherjee et al., 2010); Root-mean-square fluctuation
(RMSF) was used to assess fluctuations in amino acid residue, with
lower RMSF values indicating greater stability. (Zhang and Zhang,
2024); The radius of gyration (Rg) was calculated to assess the
compactness of the structure (Lobanov et al., 2008); In addition, we
analyzed the number of hydrogen bonds between proteins and ligands,
the relative free energy distributions, and structural comparisons of the
complexes at 0, 25, 50, 75, and 100 ns Finally, the average binding free
energy between protein and ligand was calculated using theMM/GBSA
method (Liu L. et al., 2023).

3.3 Cell culture and drug treatment

In this study, the LUSC cell line (NCI-H2170) was obtained
from Zhejiang Noble Biological Products Company (www.noblebio.
cn). The cells were cultured in RPMI-1640 medium (Gibco, Life
Technologies, China) supplemented with 10% fetal bovine serum
(SERANA, Europe) and 1% penicillin-streptomycin (Beyotime,
China). They were seeded into culture flasks (Nest, China) and
incubated in a humidified atmosphere at 37°C with 5% CO₂. The
dihydroergotamine standard was sourced fromMCE China (https://
www.medchemexpress.cn), and its working solution (100 μM) was
prepared in sterile dimethyl sulfoxide (DMSO). Care was taken to
ensure that the final concentration of DMSO in the medium
remained below 0.1% of the total volume.

3.4 Cell viability assay

NCI-H2170 cells were seeded at a density of 4 × 103 cells/well in
96-well plates with 100 μL of complete medium per well and
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incubated in a humidified atmosphere at 37°C. The drug
concentrations were set at 0 μM (untreated control group), 5 μM,
10 μM, 20 μM, 40 μM, and 80 μM. The cells were incubated for 24,
48, and 72 h. A mixture of RPMI-1640 medium and CCK-8 reagent
(Biosharp, China) was prepared at a ratio of 1:10. After incubation,
100 μL of the mixture was added to each well, followed by further
incubation for 1 h. Finally, absorbance at 450 nm was measured
using an enzyme-linked immunosorbent assay (ELISA) reader.

3.5 Wound migration assay

NCI-H2170 cells were seeded at a density of 1 × 106 cells per well
in 12-well plates and incubated overnight. Once the cells reached
95% confluence, the culture medium was removed, and a scratch
was created using a 10 μL pipette tip. The cells were washed with
phosphate-buffered saline (PBS) to remove debris, and images were
captured at the same position under a microscope
(×100 magnification). The medium was then replaced with either
serum-free medium (control group) or serum-free medium
containing Dihydroergotamine (40 μM) (treatment group). The
cells were incubated at 37°C for 43 h in a humidified incubator.
After incubation, images of the wound area were captured again at
the same position. The wound area was quantified using ImageJ
software, and statistical analysis was performed using
Prism software.

3.6 Cell invasion assay

A 24-well transwell plate with 8 μm pore polycarbonate
membranes (Corning, United States) was used for the cell
invasion assay. Matrigel (Solarbio, Beijing, China) was diluted
with RPMI-1640 medium at a ratio of 1:8, and the polycarbonate
membrane was coated with 8.1 mg/mL of dilutedMatrigel. The plate
was incubated at 37°C for 1 h to solidify the Matrigel layer. A total of
2 × 104 cells were seeded into the upper chamber in 150 μL of serum-
free medium, while 500 μL of RPMI-1640 medium supplemented
with 10% fetal bovine serum (FBS) was added to the lower chamber
as a chemoattractant. The plate was incubated at 37°C for 48 h. After
incubation, the medium in the upper chamber was removed, and the
membranes were washed twice with phosphate-buffered saline
(PBS). Invaded cells on the lower side of the membrane were
fixed with 4% paraformaldehyde and stained with 0.1% crystal
violet. Two randomly selected fields were imaged under a
microscope (×100 magnification), and the number of invaded
cells was counted using ImageJ software. Statistical analysis was
performed with Prism software.

3.7 Western blot

Cell lysis buffer was prepared by mixing RIPA lysis buffer
(Biyotime, China) with PMSF protease inhibitor at a ratio of 1:
100. A total of 30 μg of protein was separated by 10% SDS-PAGE
electrophoresis and subsequently transferred onto a PVDF
membrane (Millipore, United States). The membrane was
blocked with 5% skimmed milk for 1 h at room temperature and

then incubated overnight at 4°C with rabbit anti-CSNK2A1 antibody
(10992-1-AP, Proteintech, China) and rabbit anti-GAPDH antibody
(60004-1-Ig, Proteintech, China). On the following day, the
membrane was incubated with horseradish peroxidase (HRP)-
conjugated secondary antibodies (goat anti-rabbit IgG/HRP and
goat anti-mouse IgG/HRP, Proteintech, China) for 1 h at room
temperature. Protein signals were detected using ECL detection
reagents (Beyotime, China). The band intensities were analyzed
using ImageJ software to quantify protein expression levels.

3.8 Cell invasion assay

A 24-well transwell plate with 8 μm pore polycarbonate
membranes (Corning, United States) was used for the cell
invasion assay. Matrigel (Solarbio, Beijing, China) was diluted
with RPMI-1640 medium at a ratio of 1:8, and the polycarbonate
membrane was coated with 8.1 mg/mL of dilutedMatrigel. The plate
was incubated at 37°C for 1 h to solidify the Matrigel layer. A total of
2 × 104 cells were seeded into the upper chamber in 150 μL of serum-
free medium, while 500 μL of RPMI-1640 medium supplemented
with 10% fetal bovine serum (FBS) was added to the lower chamber
as a chemoattractant. The plate was incubated at 37°C for 48 h. After
incubation, the medium in the upper chamber was removed, and the
membranes were washed twice with phosphate-buffered saline
(PBS). Invaded cells on the lower side of the membrane were
fixed with 4% paraformaldehyde and stained with 0.1% crystal
violet. Two randomly selected fields were imaged under a
microscope (×100 magnification), and the number of invaded
cells was counted using ImageJ software. Statistical analysis was
performed with Prism software.

3.9 Sensitivity analysis

The data were processed using the Perl programming language
(v 5.30.0) and all analyses were performed in the R software (v4.4.0).
P < 0.05 was considered statistically significant. (*, P < 0.05; **, P <
0.01; ***, P < 0.001; ****, P < 0.0001).

4 Results

4.1 Identification of prognosis-
associated ARGs

We obtained a total of 717 ARGs from the Genecards and
Harmonizome portal (Supplementary Table S1) and identified
222 DEGs differences expressed genes (DEGs) with significant
expression differences in the TCGA-LUSC cohort (LogFC|>1,
FDR<0.05, Supplementary Table S2)|, A heatmap was used to
display the top 30 genes with the most significant expression
changes (Figure 2A) Using univariate Cox regression analysis, we
found that 73 of these DEGs were significant were significantly
associated with LUSC survival (Supplementary Table S3, P < 0,05),
The top 45 significant ARGs are shown in a forest plot (P < 0.01).
Where all genes, except for MAOA,CLU, and SIK2, were associated
with poor tumour prognosis (Figure 2B). The gene expression
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network revealed strong association between these 45 genes,
suggesting their critical role in LUSC progression (Figure 2D).
Additionally, we analysed the copy number variation (CNV) of
these ARGs across chromosomes (Figures 2C, E; Supplementary

Table S4). The results showed that CDKN2A has the most
significant copy number loss on chromosome 9, while SCRIB has
exhibited the most significant copy number gain on chromosome 8.
Finally, we constructed protein-protein interaction (PPI) networks

FIGURE 2
Anoikis-related differentially expressed genes and their associated regulatory factors in LUSC. (A) A total of 222 ARGs were identified from TCGA-
LUSC cohort. (B) A forest plot showing the top 45 ARGs identified through univariate Cox regression analysis. (C) Copy number variations (CNVs) of the
top 45 ARGs in the TCGA-LUSC. (D) Correlation network diagram among the top 45 ARGs. (E) Chromosomal region alterations of the ARGs.

Frontiers in Pharmacology frontiersin.org06

Zhang et al. 10.3389/fphar.2025.1500968

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1500968


using the STRING (https://cn.string-db.org/) and GeneMANIA
(https://genemania.org/) databases to visualize interactions (PPI)
among the genes most closely related to anoikis
(Supplementary Figure S1).

4.2 ARGs-based clustering of LUSC
molecular subgroups

We used the ‘ConsensusClusterPlus’ package to consistently
cluster the 74 prognostically relevant ARGs (P < 0.05). Based on the
clustering results, the cohort could was clearly divided into two
subtypes (Figures 3A–D) when K = 2 (Supplementary Table S5).
UMAP and t-SNE analyses confirmed the high accuracy of the
clustering (Figures 3E, F). Kaplan-Meier analysis showed that the
Overall survival (OS) between the two subtypes was significant
different (P < 0.001) (Figure 4A).

A heatmap revealed that CDX2 was expressed at low levels in
most samples across both subtypes, potentially serving as a favorable
prognostic marker (Figure 4B). Additionally, KEGG pathway
enrichment analysis using the ‘GSVA’ package identified
differences between cluster A and cluster B (Figures 4C, D).
Cluster B exhibited a poorer prognosis, predominantly involving
pathways such as complement and coagulation cascade, peroxisome
proliferator-activated receptor activation, and primary bile acid
biosynthesis—pathways closely related to cancer development.
Finally, risk curve analysis supported the validity of the subtype

classification and demonstrated that the prognosis of LUSC patients
progressively worsened with an increasing score (Figure 5).

4.3 Analysis of differences in gene
expression and immune cell infiltration
between the two subtypes

We demonstrated significant difference in ARGs expression (P <
0,05) between groups A and B using box-and-line plots (Figure 6A).
Since group B had a poorer prognosis in earlier analysis, genes
significantly downregulated in this group may have a positive
effect on LUSC prognosis; Conversely, genes highly expressed in
group B could indicate a worse prognosis but may serve as potential
therapeutic targets. SsGSEA results showed that, except for activated
CD4 T-cells, all other immune cells had a significantly higher level of
infiltration in group B compared to group A (Figure 6B;
Supplementary Table S6). This suggests that the poor prognosis of
LUSC may be broadly linked to immune cell involvement,
highlighting the potential of immunotherapy in LUSC treatment.

4.4 ARGs-related prognostic model
construction and validation

Using univariate Cox regression analysis, we identified 11 survival-
related ARGs (Figures 7A, B), followed by LASSO regression, which

FIGURE 3
LUSC subtypes associatedwith ARGs. (A–D) A consensusmatrix for k = 2was generated through consensus clustering. (C,D) The two subtypes were
differentiated using UMAP and t-SNE based on the expression of ARGs.
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narrowed them down to 8 independent prognostic factors. A risk model
was then constructed based on multivariate Cox regression analysis
(Supplementary Table S7). The risk score was calculated as follow:
risk score=(0.175×SFN expression)+(0.238×CSNK2A1 expression)+(-
0.266×RHOB expression)+(0.436×TUBB3 expression +(0.165×SCRIB
expression)+ (0.290×SNAI1 expression)+(0.137×CDX2 expression)+(-
0.126×SLPI expression).We divided the data into training and validation
groups and classified patients into high-risk and low-risk categories based
on the median risk score. Kaplan-Meier (K-M) curves indicated that the
high-risk group had poorer prognosis in both the training and validation
groups (Figures 7C, D). Additionally, the time-dependent ROC curves at
1, 3 and 5 years for overall survival (OS) in the training and validation
groups confirmed the accuracy of the model, showing significantly
differences in risk scores between the two subtypes (P < 0.05)
(Figures 7E–G). Sankey plots illustrated the relationship between
LUSC sample clusters, risk scores, and survival status (Figure 7H).
Finally, we used a heatmap to analyze the expression of eight ARGs

in the high-risk and low-risk groups, demonstrating that sixARGs, except
RHOB and SLPI, were highly expressed in the high-risk
group (Figure 7I).

4.5 LUSC immunocorrelation analysis

The tumour immune microenvironment plays a crucial role in
cancer development and treatment. Using the ‘CIBERSORT’Rpackage,
We analyzed immune cell infiltration differences between high and low
risk groups. First, we visualized the distribution of immune cell counts
in relation to the risk score (Figure 8A). As the score increased, the
proportion of M0 macrophages also increased (Figure 8B). Monocytes
and resting mast cells were more prevalent in the low-risk group,
whereas activatedmast cells weremore abundant in the high-risk group
(Figure 8C). Suggesting that mast cell status may significantly affect
LUSC prognosis. Furthermore, by analysing immune cell correlations

FIGURE 4
LUSC subtypes associated with ARGs. (A) Overall survival analysis of the two subtypes (P < 0.001). (B) Differential expression of ARGs between the
two subtypes. (C, D) Different KEGG pathway enrichment levels between the two subtypes.
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in LUSC patients, we gained a deeper understanding of the tumor
microenvironment (TME) (Figure 8D), The correlation betweenmodel
genes and immune cells also provided new insights into potential
immunotherapeutic strategies for LUSC (Figure 8E). Lastly, we assessed
the immune score, stromal,and estimated scores in high-and low-risk
groups based on profiling, revealing significant differences in the
tumourmicroenvironment (TME) between the two groups (Figure 8F).

4.6 Prognostic analysis of LUSC patients

We developed a nomogram to predict 1-, 3-, and 5-year survival,
incorporating clinicopathological features and ARGs risk scores
(Figure 9A). The calibration plots demonstrated high predictive
accuracy (Figure 9B). DCA results indicated that the nomogram was
a strong predictor of survival outcomes in LUSC patients (Figures
9C–E). Additionally, cumulative risk curves showed that patients
survival risk increased over time, regardless of whether they were in
the high or low-risk group (Figure 9F). Forest plot analysis revealed
that risk score, age and stage were the primary factors influencing
LUSC prognosis (Figure 9G). These findings underscore the
robustness of the risk score-based nomogram for predicting
survival in LUSC patients.

4.7 Model gene survival analysis and drug
sensitivity

To evaluate differences in drug sensitivity among LUSC
patient subgroups,we conducted a drug sensitivity analysis,

we analysed tumour sensitivity to drugs. The results indicated
that most drugs was less effective in the high-risk group,
although some exhibited increased sensitivity (Supplementary
Table S8; Supplementary Figures S2–S12). Subsequently,
Survival analysis of the model genes in LUSC patients
revealed that CSNK2A1 (P = 0.035) and SNAI1 (P = 0.0002)
significant impacted prognosis. High expression of these genes
was strongly associated with elevated mortality in LUSC patients
(Figures 10A–G).

4.8 Virtual screening and molecular
dynamics simulation

Although SNAI1 and CSNK2A1 are both pivotal,
SNAI1 is unsuitable for virtual screening due to it’s small
peptide nature. Conversely, CSNK2A1, being an enzyme
protein, is an ideal target for virtual screening and molecular
docking. We chose CSNK2A1 as the receptor protein for
virtual screening, and the results indicated that
Dihydroergotamine exhibited the strongest affinity with
CSNK2A1. Molecular docking analysis revealed a binding
energy of 11.5 kcal/mol between CSNK2A1 and
Dihydroergotamine, signifying a very strong binding affinity.
The docking visualisation, generated using PyMOL 2.3.0
(Figure 11A), demonstrated that Dihydroergotamine was
tightly bound to multiple amino acid residues within
CSNK2A1 via various interactions, with binding energies
below −7.2 kcal/mol, suggesting a significant impact on
CSNK2A1 structure, function, and biological activity.

FIGURE 5
Feasibility analysis of the two subtypes models.
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Molecular dynamics analysis confirmed the stability of the
CSNK2A1-Dihydroergotamine complex, with RMSD, RMSF,
Rg, and hydrogen bonding analyses indicating that minimal
fluctuation for the complex (Figures 11B–H). Binding energy
analysis revealed strong free energy (−51.79 kcal/mol)
(Figure 11I). Finally, binding energy contribution analysis
showed that ILE-174 and VAL-66 were critical in the binding
of Dihydroergotamine to CSNK2A1, aligning with molecular
docking results and further verifying the complex’s high
stability (Figure 11J).

4.9 Effect of Dihydroergotamine on
LUSC cells

The effect of Dihydroergotamine on the viability of LUSC
cells was evaluated using the CCK-8 assay, and its dose-
dependent anti-proliferative activity was investigated. The
results indicated that Dihydroergotamine exhibited a
significant inhibitory effect on LUSC cell viability
(Figure 12A). Specifically, Dihydroergotamine demonstrated
pronounced inhibitory activity within the short-term

FIGURE 6
Differences in gene expression and immune infiltration between the two subtypes. (A) Differential expression of ARGs across the two subtypes. (B)
Immune infiltration profiles of the two subtypes.
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FIGURE 7
Identification of ARGs prognostic signature. (A) LASSO analysis with cross-validation identified 11 prognostically relevant ARGs. (B) Coefficients of
11 prognostically relevant ARGs. (C, D) Kaplan-Meier curves for two subtype risk groups. (E, F) Time-dependent ROC curves for 1-, 3- and 5-year OS. (G)
Risk score distribution of ARG clusters. (H) Alluvial diagram showing subtypes transitions and survival status.(I) Heatmap of the expression patterns of
the 11 ARGs.
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FIGURE 8
The immune microenvironment of LUSC. (A) Proportion of immune cell infiltration. (B) Correlation between risk scores with the proportion of
M0 macrophage in LUSC.(C) Differences in immune cell populations between high-risk and low-risk groups. (D) Correlation analysis among immune
cells.(E) Gene-immune cell correlation analysis. (F) Estimated scores for expression profiles of the two risk groups.
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incubation period (24 h). However, as the incubation time
increased (48–72 h), the inhibitory effect in the low-
concentration groups gradually diminished. Based on these
findings, the optimal inhibitory concentration of 40 μM was
selected for subsequent experiments.

4.10 Western blot analysis of
CSNK2A1 expression

Western blot analysis revealed that the expression level of
CSNK2A1 was significantly reduced following treatment with

FIGURE 9
Nomogram for LUSC patients. (A) Nomogram constructed based on ARGs scores and clinicopathologic features.(B) Calibrated Nomogram. (C–E)
DCA evaluation of LUSC patients prognosis.(F) Risk curves showing survival probability progression of over time.(G) Forest plot of multivariate Cox
regression analysis, Illustrating the association between clinical characteristics and risk scores for LUAD patients.
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Dihydroergotamine (Figure 12B). These results suggest that
CSNK2A1 has potential as a prognostic biomarker for LUSC, and
Dihydroergotamine shows promise as a potential therapeutic
agent for LUSC.

4.11 Migration and invasion assays

Wound healing and transwell assays were
conducted to evaluate the effects of Dihydroergotamine on

the migration and invasion abilities of LUSC cells.
Compared to the control group, treatment with
40 μM Dihydroergotamine significantly reduced the
wound healing rate of NCI-H2170 cells after 43 h (P <
0.01) (Figure 12C). Similarly, the transwell assay
results demonstrated that the number of NCI-H2170
cells penetrating through the Matrigel-coated
membrane was significantly decreased following
treatment with 40 μM Dihydroergotamine (P <
0.01) (Figure 12D).

FIGURE 10
Survival analysis of model genes.
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FIGURE 11
Molecular docking and molecular dynamics simulation. (A) The docking result of the CSNK2A1-Dihydroergotamine complex. (B–F) The curve of
CSNK2A1 protein and Dihydroergotamine complex: RMSD, RMSF, Rg, Hydrogen bond analysis, and SASA. Curves for the CSNK2A1 protein and the
Dihydroergotamine complex. (G) Comparison of conformation of the complex at five different molecular dynamics simulation time points. (H) Free
energy distribution. (I) Average binding free energy. (J) Contributions of amino acid residues involved in binding.
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5 Discussion

LUSC is one of the common subtypes of NSCLC and presents a
major public health challenge due to its treatment difficulties and
poor prognosis, leading to extremely high mortality rates (Lau et al.,
2022),Although several prognostic markers for LUSC have been
identified (Šutić et al., 2024; Wang et al., 2024), Pprognostic models
associated with anoikis have not been deeply explored.

Recent studies have highlighted the critical role of abnormal cell
death in tumor initiation and progression. For instance, Xie et al.
(2024) identified the disulfidptosis regulator, glycogen synthase 1
(GYS1), as an effective therapeutic target in triple-negative breast
cancer. Similarly, ferroptosis-related mRNAs and lncRNAs have
been identified as ideal prognostic biomarkers in gastric cancer (Liu
Y. et al., 2023). In this study, we developed an anoikis-related
prognostic model for LUSC to provide new insights into its

FIGURE 12
Effect of Dihydroergotamine on NCI-H2170 cells viability, CSNK2A1 expression, migration, invasion. (A) Inhibition of NCI-H2170 cells viability by
Dihydroergotamine. (B) Changes in CSNK2A1 expression in NCI-H2170 cells after Dihydroergotamine treatment. (C) Effect of 40 μMDihydroergotamine
on the migration of NCI-H2170 cells. (D) Effect of 40 μM Dihydroergotamine on the invasion of NCI-H2170 cells.
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diagnosis and treatment. Unlike previous studies based on a single
dataset, we integrated data from the TCGA and GSE30219 datasets
to enhance themodel’s accuracy and reliability. Using this model, we
identified eight anoikis-related genes (ARGs) closely associated with
LUSC and confirmed the significance of CSNK2A1 and SNAI1 in
LUSC prognosis through survival analyses. Therefore, this study
constructed a prognostic model for LUSC related to anoikis, offering
new insights into the diagnosis and treatment of LUSC. Unlike
previous studies that relay on a single database, we integrated the
TCGA and GSE30219 datasets to improve the model’s accuracy and
reliability. Based on this model, we identified eight ARGs closely
linked to LUSC prognosis and confirmed through survival analysis
the significance of CSNK2A1 and SNAI1 in LUSC patients survival.

Casein kinase 2α1 (CSNK2A1) encodes the protein kinase
CK2α, which phosphorylates various proteins and regulates
biological processes such as the cell cycle and apoptosis, also
affecting the Wnt/β-catenin signalling pathway, which plays an
important role in cancer (Chua et al., 2017; Gao and Wang,
2006). Studies have shown that knockdown CSNK2A1 expression
in KRAS-mutant lung cancer cells inhibits cancer cell proliferation
and Wnt/β-catenin signalling (Wang et al., 2019); Yu et al. used
machine learning algorithms to screen genes related to
mitochondrial autophagy in NSCLC and established a prediction
model that includes CSNK2A1 (Yu et al., 2023). While the role of
CSNK2A1 in lung cancer has been established, its specific function
in LUSC has yet to be fully investigated.

Snail family transcriptional inhibitory protein 1 (SNAI1) is a
zinc-finger transcription factor that downregulates E-calmodulin
expression through specific recognition of its promoter and is closely
associated with tumour development (Singh et al., 2021). Although
studies on SNAI1 in lung cancer are limited, it has been shown that
upregulation of miR-34a-5p and subsequent downregulation of
SNAI1 induce apoptosis in lung cancer cells (Aida et al., 2021).
Further analysis revealed that LUSC patients had higher survival
rates when SNAI1 expression was low, suggesting that SNAI1 may
be a key gene in LUSC (Chawhan and Dsouza, 2024). Despite
limited research, SNAI1’s critical role in other tumours has been
confirmed, highlighting the need for further exploration.

Studies have shown that CSNK2A1 and SNAI1 correlate
significantly with immune cells, particularly M0 macrophages
and activated mast cells. M0 macrophages are considered resting
macrophages that differentiate into M1 and M2 subtypes (Zhang
et al., 2022). Recent studies suggest that macrophages in gliomas
maintain a continuum between M1 and M2 phenotypes, which are
associated with M0 macrophages (Gabrusiewicz et al., 2016).
M0 macrophages have been significantly linked to poor prognosis
in high-grade gliomas (Huang et al., 2020). Although the
relationship with LUSC is unclear,their tumourigenic role in
gliomas suggests that further study is warranted, Mast cells,
traditionally associated with allergic and inflammatory responses
(Bischoff, 2007). Have recently been shown to play a key role in
shaping the tumour microenvironment (Aponte-López andMuñoz-
Cruz, 2020). Found in the microenvironment of solid tumours, they
influence cancers such as oesophageal and ovarian cancers (Wang
et al., 2013; Chan et al., 2005); while playing a negative role in lung
adenocarcinoma and breast cancer (Takanami et al., 2000; Reddy
et al., 2019). Mast cells release tumour necrosis factor-alpha (TNF-α)
and IL-1, which directly affect tumour pathogenesis (Déry et al.,

2000; Litmanovich et al., 2018). Given the crucial role of
M0 macrophages and mast cells in the tumour
microenvironment, the associations between
CSNK2A1,SNAI1,and these immune cells deserve further
investigation.

In small molecule drug screen based on CSNK2A1,
Dihydroergotamine demonstrated strong binding affinity to
CSNK2A1, and molecular dynamics simulations indicated good
stability of the CSNK2A1-Dihydroergotamine complex, This
suggests could serve as a potential therapeutic option for LUSC.
Dihydroergotamine is an by the FDA-approved ergot alkaloid
derivative primarily used for the treating migraine (Bigal and
Tepper, 2003; Hernández-Rodríguez et al., 2024). Given
challenges of development new anticancer drugs, repurposing
existing drugs for cancer treatment holds significant value.
Recent studies have found that Dihydroergotamine can target
colon cancer via JAK2 (Chandrasekhar et al., 2024). Therefore,
it’s potential therapeutic role in LUSC warrants further exploration.

Despite the development of a predictive model for LUSC
prognosis based on a risk score nomogram, several limitations
remain. First, although this is the first predictive model for LUSC
related to anoikis-associated genes, the model lacks validation
through novel methodologies. Second, while the interaction
between Dihydroergotamine and CSNK2A1 has been confirmed,
its clinical efficacy in LUSC requires further in vitro and in vivo
validation. Third, although we conducted a limited number of
cellular experiments to assess the impact of Dihydroergotamine
on LUSC cells and observed a significant reduction in
CSNK2A1 expression, there is a lack of clinical sample-based
immunohistochemical studies. Fourth, the absence of in vivo
experiments to evaluate the drug’s tumor-suppressive effects
further limits the findings.

6 Conclusion

Overall, our study is the first to establish a risk model for LUSC
treatment and prognosis based on anoikis-related genes. Further
analysis indicates that these genes offer reliable predictive accuracy
in LUSC and have a significant impact on its immune
microenvironment, demonstrating promising immunological
characteristics. Notably, virtual screening and molecular
dynamics studies suggest the potential of CSNK2A1 as a future
therapeutic target for LUSC, while Dihydroergotamine shows
promise as a potential drug for LUSC treatment. Cellular
experiments also validated the findings derived from
bioinformatic analysis. In conclusion, CSNK2A1 may serve as a
reliable prognostic indicator for the survival of LUSC patients, and
its immunological characteristics position it as a potential target for
immunotherapy. Moreover, the application of Dihydroergotamine
in LUSC warrants further exploration.
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