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Introduction

Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder characterized by
cognitive decline and memory impairment. With increasing global prevalence, the need for
effective therapeutic interventions is critical. Among the currently approved treatments,
acetylcholinesterase inhibitors (AChEIs) like huperzine A and galantamine stand out due to
their neuroprotective roles. These plant-derived alkaloids have demonstrated significant
efficacy in alleviating symptoms by increasing acetylcholine levels in the brain.

While numerous other plant alkaloids exhibit varying degrees of neuroactive properties,
huperzine A and galantamine remain the only plant-derived alkaloids currently approved
and marketed as specific treatments for AD and other neurodegenerative diseases. For
example, alkaloids such as berberine (from Berberis species) and rhynchophylline (from
Uncaria rhynchophylla) have shown potential in targeting amyloid-beta (Aβ) aggregation,
oxidative stress, and tau hyperphosphorylation. Similarly, harmine has demonstrated the
ability to inhibit tau hyperphosphorylation through dual inhibition of glycogen synthase
kinase-3 beta (GSK-3β) and dual specificity tyrosine phosphorylation regulated kinase 1A
(DYRK1A). However, these metabolites have not yet advanced to clinical applications (Ng
et al., 2015; Rezaul Islam et al., 2024).

The elucidation of the biosynthetic pathways of huperzine A and galantamine marks a
significant advancement in understanding plant biochemistry and specialized metabolism.
It not only advances our understanding of plant-derived neuroactive metabolites but also
provides opportunities for sustainable and scalable production through synthetic biology
approaches. By leveraging this approach, researchers can reconstruct the biosynthetic
pathways of plant-derived natural products in microbial or plant systems, facilitating
efficient production and reducing the reliance on native plant sources for these valuable
compounds (Liu et al., 2023; Zhang et al., 2023; Bai et al., 2024; Teng et al., 2024). This
opinion highlights the implications of these discoveries for future research and application
in neurodegenerative disease treatment.

Huperzine A: a lycopodium alkaloid

Huperzine A, derived from Huperzia serrata (Lycopodiaceae), is a well-known AChEI
that has been widely used in traditional Chinese medicine (Ma and Gang, 2004; Yang et al.,
2017; Wang et al., 2020; Zhang et al., 2024). The elucidation of the biosynthetic pathway of
huperzine A has provided crucial insights into the formation of Lycopodium alkaloids and
uncovered numerous enzymes with novel functions (Li et al., 2022; Ushimaru and Abe,
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2023; Cheng et al., 2024). Recent studies have identified three novel
neofunctionalized α-carbonic anhydrase-like (CAL) enzymes
responsible for the key Mannich-like condensations that form
core carbon–carbon bonds in Lycopodium alkaloids, key steps in
the construction of their polycyclic skeletons. Through
transcriptome analysis and enzyme characterization, Nett et al.
identified key enzymes such as CAL-1 and CAL-2, which
promote crucial annulation reactions (Nett et al., 2023; Liu F.
et al., 2024; Zamar et al., 2024). The pathway proceeds through
stereospecific modifications and scaffold tailoring, involving
additional enzymes like Fe(II)-dependent dioxygenases, which
introduce oxidation steps crucial for the final bioactive form of
huperzine A (Figure 1) (Nett et al., 2021; Nett et al., 2023; Ushimaru
and Abe, 2023). These findings shed light on the complex evolution
of neuroactive alkaloids in Lycopodium species, suggesting that such
enzymes have evolved for specialized metabolite production as a
defense mechanism.

Moreover, transient expression of huperzine A biosynthetic
genes in Nicotiana benthamiana allowed for the successful
production of Lycopodium alkaloid congeners, underscoring the

potential for scalable biosynthesis through heterologous platforms.
This breakthrough not only deepens our understanding of plant-
derived alkaloids but also opens the door to bioengineering
huperzine A production in microbial or plant chassis, reducing
reliance on natural resources (Zhang et al., 2022; Gao et al., 2023; Liu
et al., 2023; Bai et al., 2024; Golubova et al., 2024).

Galantamine: an amaryllidaceae alkaloid

Galantamine, an alkaloid derived from plants in the
Amaryllidaceae family, particularly daffodils (Narcissus spp.), is
another crucial AChEI used in AD treatment (Prvulovic et al.,
2010). Similar to huperzine A, the biosynthetic pathway of
galantamine was recently elucidated, providing invaluable insights
into its production (Kilgore et al., 2014; Li et al., 2018; Li et al., 2019;
Hu et al., 2021; Mehta et al., 2024). The discovery began with
identifying the key precursor, 4′-O-methylnorbelladine (4OMN),
followed by oxidative coupling catalyzed by cytochrome
P450 enzymes such as NtCYP96T6. This enzyme facilitates the

FIGURE 1
Schematic illustration of the biosynthesis of lycopodium alkaloids. Biosynthetic pathway of huperzine A (HupA). PtLDC, lycine decarboxylase;
PtCAO, copper amine oxidase; PtPKS, piperidyl ketide synthase; PtSDR, short-chain dehydrogenase/reductase; PtCAT, acetyltransferase; PtCAL, alpha-
carbonic anhydrases-like; 2OGD-1, 2-oxoglutarate-dependent dioxygenase 1; 2OGD-2, 2-oxoglutarate-dependent dioxygenase 2; 2OGD-3, 2-
oxoglutarate-dependent dioxygenase 3; 2OGD-4, 2-oxoglutarate-dependent dioxygenase 4; 2OGD-5, 2-oxoglutarate-dependent dioxygenase 5.
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para-ortho (p-o’) oxidative coupling necessary to produce the
galantamine skeleton. Subsequent methylation and reduction
steps, catalyzed by NtNMT1 and NtAKR1 respectively, complete
the biosynthesis of galantamine (Figure 2) (Mehta et al., 2024).

This discovery has profound implications for synthetic biology
and metabolic engineering. With galantamine currently sourced
primarily from natural populations of daffodils, the ability to
biosynthesize it through engineered microbial systems holds
significant promise for sustainable and scalable production
(Zhang et al., 2022; Gao et al., 2023). Additionally, the
elucidation of galantamine’s pathway helps to understand how
plants generate chemical diversity from simple precursors,
providing a foundation for engineering other related alkaloids
with potential therapeutic value.

Challenges and future directions

The elucidation of huperzine A and galantamine biosynthetic
pathways underscores the complexity and elegance of plant
specialized metabolism. Both alkaloids share the common feature
of acting as acetylcholinesterase inhibitors, though their
evolutionary and biosynthetic origins differ significantly. The
Lycopodium and Amaryllidaceae families, through distinct
evolutionary pressures, have developed highly specialized
enzymes that allow these plants to synthesize neuroactive

metabolites with intricate polycyclic structures. While the
elucidation of these biosynthetic pathways represents a significant
advancement, several challenges remain.

First, the in vivo functional roles of these alkaloids in plants are
not fully understood. It is speculated that they serve as defense
metabolites against herbivores, but the regulatory mechanisms
governing their production remain elusive (Chavez et al., 2024).
Further research into the ecological roles of these alkaloids could
provide important insights into the evolution of medicinal plants,
the evolution of biosynthetic pathways, and their interactions with
the environment (Szypuła and Pietrosiuk, 2023; Zhang et al., 2024).

Second, the scalability of producing huperzine A and
galantamine through heterologous systems remains a key
challenge. While transient expression in N. benthamiana has
demonstrated proof-of-concept for biosynthesis, translating these
findings into industrial-scale production will require optimization of
gene expression, precursor supply, and enzymatic activity in
microbial or plant-based platforms (Liu J. C. et al., 2024; Yang
et al., 2024). Optimizing precursor supply, enhancing enzyme
activity, and achieving high-yield production in heterologous
systems are critical bottlenecks. Microbial synthetic biology
platforms, such as Saccharomyces cerevisiae and Pichia pastoris,
offer promising avenues for large-scale production due to their
scalability and ease of genetic manipulation (Zhang et al., 2022; Gao
et al., 2023; Yang et al., 2024). On the other hand, plant chassis like
N. benthamiana provide unique advantages, including natural

FIGURE 2
Schematic illustration of the biosynthesis of amaryllidaceae alkaloids. Biosynthetic pathway of galantamine. PAL, phenylalanine ammonia-lyase;
C4H, cinnamate 4-hydroxylase; TyDC, tyrosine decarboxylase; NBS, norbelladine synthase; ND, norcraugsodine reductase; NtSDR2, short-chain
dehydrogenase/reductase 2; NtCYP71DW1, cytochrome P450 71DW1; NtODD2, 2-oxoglutarate-dependent dioxygenase 2; NtOMT1,
O-Methyltransferase 1; NtCYP 96T1, cytochrome P450 96T1; NtCYP 96T5, cytochrome P450 96T5; NtCYP 96T6, cytochrome P450 96T6; NtSDR1,
short-chain dehydrogenase/reductase 1; NtNMT1, N-demethylnarwedine methyltransferase 1; NtAKR1, aldo-keto reductase 1. Dashed arrows represent
steps that are hypothesized to occur spontaneously or without enzymatic catalysis.
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metabolic environments and compartmentalized cells conducive to
complex biosynthesis (Liu et al., 2023; Zhang et al., 2023; Golubova
et al., 2024; Liu J. C. et al., 2024). Advances in CRISPR-based genome
editing, multi-gene pathway assembly, and metabolic flux
optimization are pivotal for overcoming current limitations (Liao
et al., 2023; Xie et al., 2023; Teng et al., 2024). By leveraging these
tools, researchers can create efficient production platforms not only
for huperzine A and galantamine but also for other plant-derived
neuroactive alkaloids, paving the way for accessible and sustainable
therapeutics for Alzheimer’s disease.

Finally, the potential for discovering new neuroactive alkaloids
in related plant species should not be overlooked. The pathways for
huperzine A and galantamine likely represent only a fraction of the
neuroactive metabolites that plants produce. Systematic exploration
of the metabolic pathways in related species could yield novel AChE
inhibitors or other metabolites targeting neurodegenerative diseases.

Conclusion

The elucidation of the biosynthetic pathways of huperzine A
and galantamine marks a pivotal moment in plant biochemistry
and neuropharmacology. These discoveries not only deepen our
understanding of plant metabolism but also offer practical
pathways for the sustainable production of crucial AD
treatments. As the global population ages and the burden of
neurodegenerative diseases grows, plant-derived neuroactive
alkaloids like huperzine A and galantamine will continue to
play an essential role in treatment. The future of this research
lies in the intersection of synthetic biology, metabolic
engineering, and traditional plant sciences, paving the way for
innovative solutions to Alzheimer’s disease and other
neurological disorders.
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