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Berberine is an isoquinoline alkaloid, which has demonstrated significant therapeutic
potential in the treatment of various diseases, including tumors, acute and chronic
infections, autoimmune disorders, and diabetes. Studies have demonstrated that
berberine exhibits polypharmacological effects, including antibacterial, anti-
inflammatory, antioxidant, and hypoglycemic activities. To further elucidate the
multifaceted pharmacological mechanisms of berberine, we reviewed 7 targets of
berberine identified through co-crystal structure analysis, including filamentous
temperature-sensitive protein Z (FtsZ), QacR, BmrR, phospholipase A2 (PLA2),
RamR, NIMA-related kinase 7 (NEK7), and mesenchymal-epithelial transition
(MET). Through target fishing, molecular docking, and surface plasmon resonance
(SPR) analyses, combined with cellular and molecular experiments, we further
identified 6 targets of berberine. These findings provide a comprehensive
summary of berberine’s direct molecular targets, offering a theoretical foundation
for further exploration of its diverse pharmacological activities.

KEYWORDS

berberine, ftsZ, QacR, BmrR, PLA2, ramR, Nek7, met

1 Introduction

Berberine, an isoquinoline alkaloid found in Berberidaceae, Ranunculaceae, and
Papaveraceae, was initially utilized for the treatment of diarrhea (Singh and Mahajan,
2013). Notably, accumulating evidence has demonstrated that berberine plays a significant
role in managing diverse conditions, including diabetes, hyperlipidemia, gastrointestinal
infections, cancer, and Alzheimer’s disease (Wang et al., 2022; Shen et al., 2020; Xiong et al.,
2022; Sun C. et al., 2024; Goel, 2023). These therapeutic effects are attributed to its
polypharmacological effects, including antimicrobial, anti-inflammatory, antioxidant, and
hypoglycemic activities (Ehteshamfar et al., 2020; Fatahian et al., 2020; Chu et al., 2014;
Mombeini et al., 2022; Ilyas et al., 2020). Mechanistically, berberine primarily regulates key
signaling pathways, including nuclear factor-κB (NF-κB), janus kinases (JAK)/Signal
transducer and activator of transcriptions (STAT), mitogen-activated protein kinases
(MAPK), adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK)/
mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase (PI3K)/AKT,
and other signaling pathways, to exert these diverse pharmacological effects (Chen
et al., 2017; Haftcheshmeh et al., 2022; Sun A. et al., 2024). Focusing on identified
targets of berberine, we chose seven targets that met the inclusion criteria based on co-
crystal structure analyses. These targets include QacR, BmrR, the d (CGTACG)2 DNA
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sequence, PLA2, RamR, NEK7, and MET [(Schumacher et al., 2001;
Newberry et al., 2008; Yamasaki et al., 2013; Chandra et al., 2012;
Ferraroni et al., 2011; Song et al., 2022; Chen et al., 2022; Zeng et al.,
2021)]. In 2008, Prerna N. Domadia et al. identified that berberine
targets FtsZ by binding to its hydrophobic pocket, thereby
disrupting the formation of the Z-ring (Domadia et al., 2008).
Kate M. Peters et al. proposed that the multiple drug-binding
pockets of QacR exhibit multifunctionality, allowing interactions
with various cationic drugs, including berberine, through multiple
binding modes in 2008 [(Schumacher et al., 2001; Newberry et al.,
2008; Yamasaki et al., 2013; Chandra et al., 2012; Ferraroni et al.,
2011; Song et al., 2022; Chen et al., 2022; Zeng et al., 2021)].
Similarly, Newberry et al. identified berberine as a natural
activator of BmrR, offering critical insights into its interaction
with BmrR and its role in regulating bacterial resistance
(Newberry et al., 2008). In 2011, Ferraroni et al. first reported
the crystal structure of berberine in complex with the d
(CGTACG)2 DNA sequence (Ferraroni et al., 2011). Subsequently,
in 2012, D. Naveen et al. demonstrated through SPR analysis that
berberine binds to phospholipase A2(PLA2) in a concentration-
dependent manner (Chandra et al., 2012). In 2013, Yamasaki et al.
resolved the crystal structure of the RamR-berberine complex,
highlighting its relevance to bacterial resistance (Yamasaki et al.,
2013). In 2020, Zeng et al. showed that berberine directly binds to
NEK7, inhibiting the NEK7- nucleotide-binding oligomerization
domain-like receptor protein 3 (NLRP3) interaction and thereby
exerting anti-inflammatory effects (Zeng et al., 2021). Furthermore,
in 2022, Chen et al. found that berberine acts as a direct MET
inhibitor, playing a pivotal role in the treatment of non-small cell
lung cancer (NSCLC) (Chen et al., 2022).

In 2018, we proposed the Drug-Target Space (DTS) model,
establishing the foundation for AI-based drug-target screening (Chu
et al., 2018). Building on this framework, we identified candidate targets
of berberine. Using SPR, molecular docking, along with cellular and
animal experiments, we confirmed that beta-site amyloid precursor
protein cleaving enzyme (BACE1) and amyloid beta1-42 (Aβ1-42) are
direct targets of berberine, elucidating its pharmacological basis in the
treatment of Alzheimer’s disease. Subsequently, we identified additional
berberine targets, including myeloid differentiation 2 (MD-2), phenol-
soluble modulins alpha 2(PSMα2), transforming growth factor-beta
receptor 1 (TGFBR1), and Janus kinase 2 (JAK2). These findings have
unveiled novelmechanisms underlying berberine’s polypharmacological
actions, particularly in the context of its antimicrobial and anti-
inflammatory effects, as well as its therapeutic potential in
Alzheimer’s disease, pancreatic cancer, lung metastasis, and
myasthenia gravis (Chu et al., 2014; Song et al., 2022; Chu et al.,
2018; Chu et al., 2016; Tian et al., 2022).

2 Ftsz

FtsZ (filamentous temperature-sensitive protein Z) is a key protein
involved in cell division in bacteria. In 2008, Prerna N. Domadia and
colleagues demonstrated that berberine directly targets Escherichia coli
FtsZ, inhibiting the dynamics of Z-ring assembly and disrupting the
process of cell division in bacteria. In their study, berberine exhibited a
high binding affinity to FtsZ, with a dissociation constant (KD) of
0.023 μM at an FtsZ concentration of 10 μM. Berberine was found to

interact with hydrophobic residues near the GTP-binding pocket of
FtsZ, including Pro134, Phe135, Phe182, Leu189, Ile163, and
Pro164 [(Schumacher et al., 2001; Newberry et al., 2008; Yamasaki
et al., 2013; Chandra et al., 2012; Ferraroni et al., 2011; Song et al., 2022;
Chen et al., 2022; Zeng et al., 2021)]. Notably, in 2023, Angela Di
Somma et al. synthesized a series of berberine derivatives with
enhanced antibacterial activity by targeting FtsZ, underscoring the
potential of FtsZ-targeting compounds for the development of more
effective antimicrobial agents (Di Somma et al., 2023).

3 QacR

The binding interaction between berberine and QacR was first
demonstrated. QacR is a protein associated with multidrug
resistance and is found in Staphylococcus aureus (Figure 1). The
qacA gene encodes QacA, a multidrug efflux protein, which can
expel various toxic compounds from bacterial cells, leading to
bacterial resistance. QacR regulates the expression of multidrug
resistance by inhibiting the transcription of the qacA multidrug
transporter gene (Forman et al., 2016). In 2008, Peters and
colleagues proposed that QacR primarily interacts with berberine
through E57 and E58 glutamic acid residues. Moreover, different
cationic drugs binding to the QacR pocket can adopt distinct
positions to neutralize charges. When cationic lipophilic drugs
bind to QacR, the protein undergoes a conformational change,
forming a multidrug-binding pocket (Schumacher et al., 2001).
Within this pocket, glutamic acid residues and aromatic residues
mediate drug interactions. QacR can interact with various cationic
drugs through multiple mechanisms (Peters et al., 2008).

4 BmrR

Berberine can enter the drug-binding pocket of BmrR and bind
to it. Berberine may play a significant role in the regulation of
bacterial resistance by binding to and activating the BmrR protein
(Figure 1). BmrR belongs to themercuric -responsive transcriptional
regulator (MerR) family of multidrug-binding transcription factors
and influences the function of the multidrug efflux pump Bmr by
regulating the expression of the bmr gene, thereby affecting bacterial
resistance (Wade, 2010). In 2008, Newberry et al. discovered that
berberine could form a complex with the BmrR protein, and its
binding site was similar to that of drugs like R6G. Structural studies
of the BmrR-Ber-DNA complex revealed that berberine’s
orientation in the drug-binding pocket is such that its acridine
system is wedged between Trp61 and Tyr93, while the 1,3-dioxo-6a-
azaniumylindole moiety stacks with Tyr123. Additionally, the
positive charge center of berberine is situated on the N1 nitrogen
of the Be ring and is surrounded by the side chains of Glu57 and
Glu58. Berberine forms a hydrogen bond with P144 through its
carbonyl oxygen, further contributing to complex formation.

5 DNA

Berberine’s antimicrobial, anti-inflammatory, antioxidant, and
anticancer activities have been extensively reported, primarily
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attributed to its ability to form complexes with DNA [(Ferraroni et al.,
2011; Vlavcheski et al., 2022; Devarajan et al., 2021)]. In 2003, Mazzini
and colleagues investigated the interactions between berberine and
double-stranded oligonucleotides, including d (AAGAATTCTT)2, d
(GCGATCGC)2, d (CGTATACG)2, d (CGTACG)2, 5′-d (ACCTTT
TTGATGT)-3′/5 (ACATCAAAAAGGT)-3′, as well as single-stranded
5′-d (ACATCAAAAAGGT)-3′, using 1H, 31P NMR, and UV
spectroscopic techniques. They found that berberine tended to bind
to DNA sequences rich in AT base pairs (Mazzini et al., 2003). In 2011,
Ferraroni and colleagues reported the crystal structure of berberine with
the d (CGTACG)2 DNA sequence. In 2021, Wickhorst and others
discovered that berberine derivatives substituted with 9- and 12-
dimethylaminophenyl groups exhibited strong binding affinity to
quadruplex DNA. Furthermore, these derivatives exhibited
differential binding modes and pH-dependent effects on nucleic
acids. Unlike the original berberine, which exhibited enhanced DNA
binding at neutral conditions, these derivatives showed stronger binding
at pH 5 [(Schumacher et al., 2001; Newberry et al., 2008; Yamasaki et al.,
2013; Chandra et al., 2012; Ferraroni et al., 2011; Song et al., 2022; Chen
et al., 2022; Zeng et al., 2021)].

6 PLA2

In 2012, Chandra et al. conducted surface plasmon resonance
analysis and found that berberine bound to Phospholipase A2
(PLA2) in a concentration-dependent manner, with a measured
equilibrium dissociation constant (KD) of 5.55 × 10-8M.

Additionally, through molecular docking experiments, Chandra
et al. identified the active site residues on ppPLA2 that came into
contact with berberine. The most crucial residues involved in this
interaction included G32, R53, D49, Y69, Y52, H48, G33, S34, and
P68. Furthermore, when berberine was biotransformed by Rhizopus
oryzae, the resulting hydroxylated derivatives of berberine exhibited
stronger binding affinity and inhibitory effects on PLA2. This altered
the way berberine interacted with the active site of PLA2, making it
more favorable for berberine to bind to the protein’s active site
(Chandra et al., 2012). PLA2 belongs to the class of lipolytic enzymes
and hydrolyzes the ester bond at the sn-2 position of
phosphatidylcholine. During hydrolysis, PLA2 releases fatty acids
such as arachidonic acid (AA), participating in processes that alter
cell membrane structure and playing a crucial role in inflammation,
cell signal transduction, and carcinogenesis (Khan and Ilies, 2023;
Cathcart et al., 2011; Peng et al., 2021) (Figure 2A).

7 RamR

In 2013, Yamasaki et al. reported the crystal structure of the
complex formed between RamR and berberine. They determined
that the KD value for the binding of berberine to RamR was 17.9 ±
0.03 μM using surface plasmon resonance experiments. After
bacterial cells were treated with berberine, the promoter activity
of RamR was enhanced. Similar to other drugs, berberine’s
Phe155 and RamR’s Phe155 were found to be parallel, indicating
that they interacted with RamR through π–π stacking interactions

FIGURE 1
Illustration of the binding mechanism of berberine with QacR in Staphylococcus aureus and BmrR in Bacillus subtilis. In the presence of berberine,
the inhibitory effect of QacR on qacA expression is relieved. Under normal conditions, BmrR binds to the bmr box and represses transcription of the
BmrRAB operon, which is disrupted when berberine binds to BmrR. These modifications result in the transcription of BmrAB and QacA transporters to
pump out berberine.
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(Yamasaki et al., 2013). In a manner analogous to the mechanisms
observed with QacR and BmrR, RamR is a transcriptional repressor
of the RamA protein gene, which regulates the expression of the
multidrug efflux system genes acrAB-tolC and is an important factor
in multidrug resistance. When berberine is used in antibacterial
therapy, it activates RamR, resulting in the upregulation of the
acrAB-tolC system, which enhances bacterial resistance. In 2022,
Jyoti Mehta and colleagues discovered that methanol extracts of
Diospyros lotus (a medicinal plant) could inhibit the AcrAB-TolC
efflux pump activity in Salmonella enterica serovar Typhimurium,
leading to a 2- to 4-fold increase in the antibacterial potency of
berberine (Mehta et al., 2022).

8 NEK7

In 2020, Zeng et al. reported that berberine directly bind to and
target NIMA-related kinase 7 (NEK7) protein to block NEK7-
NLRP3 interaction, achieving anti-inflammatory efficacy in a
NEK7-dependent manner with an IC50 of 4.2 μM [(Schumacher
et al., 2001; Newberry et al., 2008; Yamasaki et al., 2013; Chandra
et al., 2012; Ferraroni et al., 2011; Song et al., 2022; Chen et al., 2022;
Zeng et al., 2021)]. Researchers have conducted numerous
significant studies on the mechanisms by which NEK7 regulates
the NLRP3 inflammasome signaling pathway. These pathways
include potassium efflux, ROS signaling, lysosomal
destabilization, and NF-κB signaling (He et al., 2016; Sharif et al.,

2019; Gross et al., 2016; Chen et al., 2019; Liu et al., 2020). NEK7 is
considered a potential therapeutic target for NLRP3-related diseases,
and inhibitors targeting NEK7, such as berberine, may suppress
inflammatory responses by modulating NLRP3 [(Zeng et al., 2021;
Jin et al., 2023)].

9 MET

The inhibitory effect of berberine on the MET gene has been
demonstrated. MET is a proto-oncogene that encodes the
transmembrane receptor for hepatocyte growth factor (HGF).
MET exhibits tyrosine kinase (TK) activity, and the MET
tyrosine kinase is the only known high-affinity receptor for HGF.
The HGF/MET signaling pathway is well characterized and
recognized for its essential role in carcinogenesis and tumour
progression (Gowda et al., 2024; Kumar et al., 2024). Studies
have shown that MET amplification is among the most common
mediators of TKI resistance (Peng et al., 2019; Hartmaier et al.,
2023). Therefore, the study of MET inhibitors holds significant
importance for the treatment of diseases such as non-small cell lung
cancer (Yun et al., 2020). In 2022, Chen et al. found that berberine
can act as a naturally-existing MET inhibitor to synergize with
osimertinib in overcoming osimertinib acquired resistance caused
byMET amplification (Chen et al., 2022). Furthermore, they showed
that berberine inhibits MET activity in a dose-dependent manner,
with an IC50 of 19.64 μM. Further research on berberine derivatives

FIGURE 2
Illustrating of the binding mechanisms of berberine with PLA2, MD2, BACE1, Aβ1-42, TGFBR1, and JAK2 in human cells. (A) Phospholipase A2 (PLA2)
converts phospholipids into arachidonic acid, which is then transformed into prostaglandin H2 (PGH2) by cyclooxygenase-1/2 (COX-1/2) and
subsequently into prostaglandin D2 (PGD2) by hematopoietic prostaglandin D synthase (HPGDS). Berberine exhibits anti-inflammatory effects by
inhibiting PLA2, thereby reducing arachidonic acid production. (B) Lipopolysaccharides (LPS) initiate inflammatory responses via the Toll-like
receptor 4 (TLR4)/MD-2 signaling pathway. Berberine disrupts this pathway by binding to MD-2, mitigating the inflammatory response. (C) In the
amyloidogenic pathway, amyloid precursor protein is cleaved by beta-secretase 1 (BACE1) to generate amyloid-beta (Aβ) peptides. The accumulation and
aggregation of Aβ peptides lead to neurotoxic amyloid plaques, inducing senile plaques, apoptosis, and increased reactive oxygen species (ROS) within
mitochondria. Berberine inhibits BACE1 and Aβ, exerting anti-aging and antioxidant effects. (D) Transforming growth factor-beta (TGF-β) binds to
heteromeric receptor complexes composed of TGF-β receptor 1 (TGFBR1) and TGF-β receptor 2 (TGFBR2), triggering signal transduction. This leads to
the phosphorylation of SMAD family members, which thenmigrate to the nucleus to regulate gene expression. Berberine inhibits the binding of TGF-β to
its receptor complex, reducing the expression of inflammatory genes, including RORγt, RORα, and IL-22. Additionally, berberine inhibits the
phosphorylation of STAT proteins by inhibiting Janus kinase 2 (JAK2), further exerting anti-inflammatory effects.
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plays a crucial role in the future development of more optimized
MET inhibitors.

10 PSMα2
In 2016, we found that berberine inhibited the formation of

amyloid-like fibers in S. aureus, including PSMs. Further molecular
dynamics simulations revealed that berberine could bind to the
phenyl ring of Phe19 in PSMα2 [(Schumacher et al., 2001; Newberry
et al., 2008; Yamasaki et al., 2013; Chandra et al., 2012; Ferraroni
et al., 2011; Song et al., 2022; Chen et al., 2022; Zeng et al., 2021)].
Phenol-soluble modulins (PSMs) are important virulence factors in
S. aureus that can comprise the structural scaffold of S. aureus
biofilms through self-assembly into functional amyloids (Zaman
and Andreasen, 2020). Functional amyloids enhance bacterial
resilience to various environmental stresses, augmenting their
persistence within the host while concurrently fostering resistance
to antimicrobial agents and the immune system (Torrent et al., 2012;
Andreasen et al., 2019). Therefore, berberine inhibits the formation
of amyloid-like fibers by affecting the aggregation of PSMs, thereby
suppressing the formation of the S. aureus biofilm and enhancing
the bactericidal activity of antibiotics (Chu et al., 2016).

11 MD-2

In 2014, we investigated the impact of berberine on Salmonella
Typhimurium infection. We discovered that berberine could bind to
the TLR4/MD-2 receptor complex with higher affinity compared to
lipopolysaccharides (LPS) (Chu et al., 2014). MD-2 belongs to the
Toll-like receptor (TLR) family and typically forms a complex with
the TLR4 protein. This complex is responsible for recognizing and
responding to exogenous molecules such as bacterial LPS, leading to
the activation of signaling pathways like NF-κB. Consequently, this
activation triggers an inflammatory response in immune cells.
Excessive activation of TLR4/MD-2 is closely associated with the
development of sepsis, endotoxemia, acute lung injury, rheumatoid
arthritis, and cardiovascular diseases (Zhang et al., 2022)
(Figure 2B).

12 BACE1

We investigated the immunological mechanisms and effects of
berberine in the treatment of Alzheimer’s disease, revealing that
berberine specifically binds to BACE1, one of the key targets in
Alzheimer’s disease (Chu et al., 2018). BACE1 is a crucial target in
Alzheimer’s disease and holds significance in aging, diabetes,
hypertension and cancer (Bao and Shen, 2023). The pathological
role of BACE1 in cerebral amyloid angiopathy (CAA) and
Alzheimer’s disease has been confirmed in experimental studies.
Research has shown that BACE1 expression contributes to the
cleavage of amyloid precursor protein (APP) in neurons of APP-
overexpressing mice, thereby enhancing the generation of Aβ in
neurons (Ihara, 2022). In 2016, Faraco et al. reported that
hypertension increases Aβ levels in APP-overexpressing mice by
upregulating BACE1 in the brain, although the specific molecular

mechanisms, particularly the cell types responsible for the
upregulation of BACE1 expression, have not been clarified
(Faraco et al., 2016). In 2018, using molecular modeling
techniques, we found that berberine was guided into the
electronegative binding pocket of BACE1, where the N+ of
berberine interacts electrostatically with the crucial anion (Asp80)
of BACE1. Additionally, the phenyl group forms a π-π stacking
interaction with the Tyr119 active site residue. Furthermore, surface
plasmon resonance experiments demonstrated the binding affinity
between berberine and BACE1. The equilibrium dissociation
constant KD was calculated to be 1.261 μM [(Schumacher et al.,
2001; Newberry et al., 2008; Yamasaki et al., 2013; Chandra et al.,
2012; Ferraroni et al., 2011; Song et al., 2022; Chen et al., 2022; Zeng
et al., 2021)]. As a potential drug molecule, berberine has the ability
to bind to BACE1, potentially intervening in Aβ production
(Figure 2C).

13 Aβ1-42
In addition to BACE1, our study utilizing multi-target drug

modeling and surface plasmon resonance experiments identified Aβ
1-42 as a high-affinity target of berberine, suggesting its potential in
treating Alzheimer’s disease (Chu et al., 2018). Oligomeric Aβ1-42 is
closely associated with neurodegenerative diseases, especially
Alzheimer’s disease. It induces oxidative stress and mitochondrial
damage in neurons (Thammasart et al., 2023). The aggregation and
deposition of Aβ1-42 in the brain are one of the primary
mechanisms leading to neuronal damage and cognitive decline
(Figure 2C).

14 TGFBR1

In 2022, we studied the impact of berberine on lungmetastasis in
pancreatic cancer and found that berberine can function as a
transforming growth factor-beta receptor 1 (TGFBR1) inhibitor,
preventing pancreatic cancer cells from breaking through
endothelial cells and metastasizing. Through surface plasmon
resonance experiments and molecular docking techniques, we
determined that the equilibrium dissociation constant (KD) for
the binding of berberine to TGFBR1 is 18.0 μM. Berberine
interacts with key residues in the active site of TGFBR1, the
primary receptor of the TGF-β signaling pathway, including
Glu45, Tyr49, Asp81, Tyr82, and His83. It has been
demonstrated that when TGF-β molecules bind to the
TGFBR2 receptor, TGFBR1 is activated and subsequently
transmits the signal into the cell through processes such as
phosphorylation, influencing gene expression and cellular
behavior. Abnormal activity or mutations in TGFBR1 are
associated with various diseases, including cancer, cardiovascular
diseases, and immune disorders (Lu et al., 2021; Chen et al., 2020; Xu
et al., 2023; Tang et al., 2022). Furthermore, our research showed
that berberine inhibits TGFBR1 kinase activity in a dose-dependent
manner, with an IC50 of 7.056 μM [(Schumacher et al., 2001;
Newberry et al., 2008; Yamasaki et al., 2013; Chandra et al.,
2012; Ferraroni et al., 2011; Song et al., 2022; Chen et al., 2022;
Zeng et al., 2021)]. This suggests that berberine can serve as an

Frontiers in Pharmacology frontiersin.org05

Sun et al. 10.3389/fphar.2025.1500511

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1500511


inhibitor in the TGF-β signaling pathway, offering therapeutic
potential for cancer, cardiovascular diseases, immune disorders,
and more (Figure 2D).

15 JAK2

In 2022, we used surface plasmon resonance experiments to
confirm the ligand-binding interaction between berberine and
JAK2, with a measured KD of 15.83 μM. Additionally,
molecular modeling by Song et al. revealed interactions between
BBR and specific residues of JAK2, including VAL863, LEU855,
LYS857, LEU932, LEU983, GLY993, and ASP994 [(Schumacher
et al., 2001; Newberry et al., 2008; Yamasaki et al., 2013; Chandra
et al., 2012; Ferraroni et al., 2011; Song et al., 2022; Chen et al.,
2022; Zeng et al., 2021)]. Earlier studies have also shown that as a
member of the protein tyrosine kinase (PTK) family of JAK
proteins, the abnormal activation of JAK2 is closely associated
with inflammation, hematopoiesis, malignant tumors, and various
age-related diseases (Yang et al., 2021; Fidler et al., 2021; Stevens
et al., 2023; Cho et al., 2022). Furthermore, we demonstrated that
oral berberine can improve the clinical symptoms of experimental
autoimmune myasthenia gravis (EAMG) in rats by reducing the
frequency of T helper (TH)1, TH17, and TH1/TH17 cell subsets.

We also isolated mononuclear cells (MNCs) from the spleens of
EAMG rats and treated them with BBR in vitro, finding that the
phosphorylation levels of JAK1, JAK2, JAK3, STAT1, and
STAT3 were significantly reduced. Similar to JAK2, JAK1 and
JAK3 are also likely targets of berberine interaction (Song et al.,
2022). In 2023, Huang et al. obtained similar conclusions in a
chronic myelogenous leukemia (CML) -like mouse model (Huang
et al., 2023) (Figure 2D).

16 Conclusion

This review highlights the multiple target actions of berberine in
cells and its diverse mechanisms of action. In addition to the
13 berberine targets highlighted in this review, other identified
targets include RXRα, ABL1, AKR1B10, and TIGAR (Ruan et al.,
2017; Yin et al., 2020; Yang et al., 2024; Qi et al., 2024) (Table 1).
Berberine has demonstrated a wide range of pharmacological effects,
including anti-inflammatory, anti-tumor, and therapeutic potential
in inflammatory diseases, acute and chronic infections, autoimmune
disorders, and diabetes. Despite significant progress in
understanding these effects, further studies are needed to deepen
our understanding of berberine’s specific molecular mechanisms
and its broader immunopharmacological properties. While

TABLE 1 Identified targets of berberine.

Targets KD (μM) IC50 (μM) Key residues References

Ftsz 0.02 10.00 Pro 134, Phe 135, Ile 163, Pro 164, Phe 182, Leu 189 Domadia et al. (2008)

QacR 0.72 NA Trp61, Tyr93, Tyr123, Asn157 Schumacher et al. (2001), Peters et al. (2008)

BmrR 10.30 NA Phe224, Ile255, Tyr268, Tyr229, Pro224, Pro144 Newberry et al. (2008)

d (CGTACG)2DNA NA NA G6, G8, C5 Ferraroni et al. (2011)

PLA2 5.55 87.00 Gly30, His40, Asp49, Ser23, Cys29, Cys45 Chandra et al. (2011)

RamR 17.90 NA Site1: Asp152, Met184, Val138, Cys134, Tyr92 Yamasaki et al. (2013), Chu et al. (2018)

Site2: Asp152, Met184, Val138, Cys134, Tyr92, Leu188, Phe155

RXRα 30.10 NA Val242, Glu243, Gln275, Arg316, Arg371 Ruan et al. (2017)

ABL1 0.85 NA LWEIATYGMSP, NAVVLLYMATQ Yin et al. (2020)

NEK7 15.60 4.20 Arg121 Zeng et al. (2021)

MET NA 19.64 Tyr1230, Asp1164 Chen et al. (2022)

AKR1B10 2.07 NA trp-21, lys-125, gln-303, lys-125, phe-123, trp-220, gly-128 Yang et al. (2024)

TIGAR 4.77 NA Asn258 Qi et al. (2024)

PSMα2 NA NA Phe2, Gly6 Chu et al. (2016)

MD-2 NA NA NA Chu et al. (2014)

BACE1 1.26 62.96 Tyr119, Asp276, Asp80, Val117 Chu et al. (2018)

Aβ1-42 1.49 NA Val24, Phe19 Chu et al. (2018)

TGFBR1 18.00 7.06 Glu45, Tyr49, Asp81, Tyr82, His83 Tian et al. (2022)

JAK2 15.83 7.40 Val863, Leu855, Lys857, Leu932, Leu983, Gly993, Asp994 Song et al. (2022)

Identified targets of berberine, including their dissociation constant (KD), half-maximal inhibitory concentration (IC50), interacting residues, and associated references. Abbreviations: Aβ1-42,
amyloid beta1-42; AKR1B10, aldo-keto reductase 1B10; BACE1, beta-site amyloid precursor protein cleaving enzyme 1; JAK2, janus kinase 2; Ftsz, filamentous temperature-sensitive protein Z;

MD-2, myeloid differentiation factor 2; MET, mesenchymal-epithelial transition; NEK7, NIMA-related kinase 7; PLA2, phospholipase A2; PSMα2, phenol-soluble modulins alpha2; RXRα,
retinoid X receptor alpha; TGFBR1, transforming growth factor-beta receptor 1; TIGAR, TP53-induced glycolysis and apoptosis regulator.
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berberine shows promise in various therapeutic areas, several
limitations need to be addressed. Current research is largely
preclinical, and the translation of these findings into clinical
applications remains a challenge, requiring rigorous clinical
trials for validation. More research should explore new
therapeutic avenues where berberine may offer benefits. In
addition, the bioavailability of BBR is rather low after it is
absorbed by the gastrointestinal tract which restricts the
clinical application. There is an urgent need to enhance the
bioavailability of berberine, and further pharmacokinetic studies
are warranted.

In conclusion, while berberine holds significant potential, its
clinical utility is contingent upon further research and validation,
offering both challenges and exciting opportunities for the
development of future therapeutic strategies.
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Glossary
AA arachidonic acid

Aβ1-42 amyloid beta1-42

AKR1B10 aldo-keto reductase 1B10

AMP adenosine 5′-monophosphate

AMPK activated protein kinase

APP amyloid precursor protein

BACE1 Beta-site amyloid precursor protein cleaving enzyme 1

CAA cerebral amyloid angiopathy

CML chronic myelogenous leukemia

DTS Drug-Target Space

EAMG experimental autoimmune myasthenia gravis

EGFR epidermal growth factor receptor

Ftsz filamentous temperature-sensitive protein Z

JAK/STATs janus kinases/Signal transducer and activator of transcriptions

JAK2 janus kinase 2

LPS lipopolysaccharides

MAPK mitogen-activated protein kinases

MBM multi-target binding motifs

MD-2 myeloid differentiation factor 2

MerR mercuric -responsive transcriptional regulator

MET mesenchymal-epithelial transition

MNCs mononuclear cells

mTOR mammalian target of rapamycin

NEK7 NIMA-related kinase 7

NF-κB nuclear factor-κB

NLRP3 nucleotide-binding oligomerization domain-like receptor protein 3

NSCLC non-small cell lung cancer

PI3K phosphatidylinositol 3-kinase

PLA2 phospholipase A2

PSMα2 phenol-soluble modulins alpha2

PSMs phenol-soluble modulins

PTK protein tyrosine kinase

RXRα retinoid X receptor alpha

TGF-β Transforming growth factor β

TGFBR1 transforming growth factor-beta receptor 1

TH T helper

TIGAR TP53-induced glycolysis and apoptosis regulator

TLR Toll-like receptor.
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