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Background: Epithelial ovarian cancer (EOC) is a cancer that affects the female
reproductive system and is highly lethal. It poses significant challenges in terms of
treatment and often has a poor prognosis. In recent years, with the advent of
PARPi, the treatment of ovarian cancer has entered a new stage of full-process
management. Although more and more drugs have been approved, the
therapeutic effect of PARPi is still very limited. With the rapid development of
PD-1/PD-L1, CTLA-4, oncolytic viruses, cancer vaccines, adoptive cell therapy,
etc., tumor immunotherapy has provided new opportunities for the treatment of
ovarian cancer.

Methods: This study used comprehensive transcriptome analysis across multiple
databases to gather gene transcripts and clinical features of normal ovarian
samples and tissue samples from ovarian cancer. The aim was to explore the
mechanisms underlying tumor immunotherapy resistance and to reveal the
relationship between ovarian cancer’s immune microenvironment and genes
linked to inflammation. Various R packages were used for differential gene
analysis, enrichment analysis, co-expression network construction, and
prognostic model building.

Results: It has been found that the prognosis of ovarian cancer patients is closely
associated with sets of genes involved in inflammation. The immune infiltration
microenvironment, clinicopathological features, and survival rates differed
significantly between two inflammatory gene expression patterns identified
using cluster and immune microenvironment analyses. Further analysis
revealed that the high-risk group had a higher abundance of M2-type
macrophage infiltration, more active anti-tumor immune response, higher
tumor stemness score, potentially worse prognosis, and lower response rates
to multiple chemotherapy drugs and immune checkpoint inhibitors.

Conclusion: These findings provide new perspectives and potential targets for
immunotherapy and prognostic evaluation of ovarian cancer and offer new
strategies and directions for clinical treatment and patient management. This
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study provides crucial information to further our comprehension of drug response
mechanisms and tumor immunotherapy. It offers new strategies and methods for
the treatment and prognostic improvement of ovarian cancer.

KEYWORDS

epithelial ovarian cancer, tumor immunotherapy, tumor immune microenvironment,
cancer prognosis model, tumor-associated macrophages (TAM)

1 Introduction

In the female reproductive system, the deadliest cancerous
growth is called epithelial ovarian cancer (EOC). Ovarian cancer
ranks seventh among malignant tumors in women globally,
accounting for over 310,000 new cases annually, according to the
2020 Global Cancer Statistics (Lee et al., 2022; Konstantinopoulos
and Matulonis, 2023). Every year, ovarian cancer claims the lives of
about 210,000 people. In 2020, ovarian cancer was diagnosed in
60,000 new cases and killed 40,000 people in China (Zhao et al.,
2023). Patients with advanced stage ovarian cancer have an
approximately 30% 5-year survival rate. With multiple
recurrences, the interval between treatments and recurrences
becomes shorter, leading to decreased sensitivity to platinum-
based drugs and eventually developing into platinum resistance.
The treatment is highly challenging, and the prognosis is often poor
(Marchetti et al., 2021; Porter and Matulonis, 2023). Overcoming
chemotherapy resistance in ovarian cancer is an urgent and
important clinical issue.

Inflammation reactions are mainly divided into acute and
chronic types. Acute inflammation occurs mainly in physical,
chemical, or acute infection conditions as the body’s early
defense mechanism, and it usually resolves quickly on its own
(Yang et al., 2023). Chronic inflammation, on the other hand,
occurs in chronic infections or autoimmune diseases, where the
body’s normal feedback regulation cannot stop the inflammation,
leading to chronic inflammation (Liu et al., 2022). Statistics show
that chronic inflammation contributes to about 20% of malignant
tumors worldwide (Kennel et al., 2023; Venakteshaiah and Kumar,
2021; Haas et al., 2021). Non-steroidal anti-inflammatory drugs
clinically reduce the incidence and metastasis of various solid
tumors and decrease tumor-induced mortality. Chronic
inflammation is thought to significantly influence the initiation,
growth, and progression of cancers.

The mechanisms through which chronic inflammation initiates
tumor occurrence, and development are diverse but often involve
the microenvironment provided by inflammation for tumors. As a
crucial part of the cancer stroma, cancer-associated fibroblasts
(CAFs) are intimately associated with inflammation and the
tumor immune microenvironment (TME) (Chen et al., 2021).
CAFs interact with various signaling pathways such as NF-κB,
PI3K-Akt, IL6-JAK-STAT3, and TGF-β to help form and
maintain the TME, influencing ECM structure and generating
immune therapy resistance (Mao et al., 2021; Wu F. et al., 2021).
Additionally, activated CAFs promote monocyte adhesion and drive
macrophages toward M2 polarization, further inhibiting immune
responses in the TME (Lavie et al., 2022; Galbo et al., 2021).
Therefore, analyzing the relationship between genes linked to
inflammation and the tumor immune milieu can aid in

comprehending reasons for EOC immunotherapy resistance and
contribute to developing innovative immunotherapy strategies.

2 Methods and materials

2.1 Data acquisition

The TCGA database (https://portal.gdc.cancer.gov/) included the
gene transcripts and clinical details of 429 ovarian cancer tissue
samples from patients with the disease. The patient’s clinical
features encompassed survival status, time, tumor grade, age, etc.
In the meantime, the GTEx database (https://www.gtexportal.org/
home/) was accessed to download 88 normal ovarian samples. For
validation, the gene expression profiling microarray datasets for
ovarian cancer tissues were acquired from the GEO database
(https://www.ncbi.nlm.nih.gov/geo). These datasets, GSE26712
(Zheng et al., 2019) and GSE102073 (Ye et al., 2021), each
contained 153 and 84 ovarian cancer tissues, respectively.
Additionally, ovarian cancer single-cell datasets EMTAB8107 (Ding
et al., 2024), GSE118828 (Yu et al., 2022), GSE130000, and
GSE154600 (Jiang et al., 2023) were downloaded to explore gene
expression at the single-cell level.

2.2 Acquisition of inflammation-related
gene sets

Inflammation-related gene sets were obtained from the
Molecular Signatures Database (MSigDB) (Castanza et al., 2023)
(https://www.gsea-msigdb.org/gsea/msigdb/), including
BIOCARTA_INFLAM_PATHWAY (v2023.2.), GOBP_
CHRONIC_INFLAMMATORY_RESPONS (v2023.2),
HALLMARK_INFLAMMATORY_RESPONSE (v2023.2.), and
REACTOME_INFLAMMASOMES (v2023.2.).

2.3 Scoring of inflammation-related gene
sets and prognostic evaluation

With the help of the GSVA (Hänzelmann et al., 2013) R package
(v2.0.4), we evaluated the gathered sets of gene sets associated with
inflammation using single-sample gene set enrichment analysis
(ssGSEA). ssGSEA is an extension of the GSEA method,
primarily designed for individual samples where GSEA is not
applicable. The algorithm uses the empirical cumulative
distribution function to calculate enrichment scores (ES) and
rank normalized gene expression values for a given sample. The
prognostic correlation between gene sets associated with
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inflammation and patients with ovarian cancer was assessed
simultaneously using the Cox proportional hazards model.

2.4 Consensus clustering based on
inflammation-related gene set scores

Consensus clustering was often used in cancer subtype
classification studies using the Consensus ClusterPlus R package
(v4.12.6) (Wilkerson and Hayes, 2010). This study’s ovarian cancer
subtype classification was conducted based on the aforementioned
inflammation-related gene set scores. The optimal clustering effect
was determined by combining the consensus cumulative
distribution function (CDF) with the Proportion of Ambiguous
Clustering (PAC) score. In the CDF plot, the consensus
matrix’s cumulative distribution function was displayed for
different values of k (represented by colors), aiding in
identifying the approximate maximum CDF value, where
consensus and cluster confidence are maximized, resulting in
the most reliable clustering analysis. In PAC analysis, lower
PAC values indicate more ideal clustering effects.

2.5 Kaplan-Meier (KM) survival analysis

Currently, the most widely used method for survival analysis is
the Kaplan-Meier approach. The KM approach, as it is commonly
called, was proposed by Kaplan and Meier. The Kaplan-Meier
survival analysis compares the survival circumstances of two
patient groups using a univariate analysis that integrates patients’
survival times and terminal states. The Kaplan-Meier survival curve,
a commonly encountered representation, visually reflects survival
differences under various conditions.

2.6 Immune cell infiltration analysis

Based on the IOBR (Zeng et al., 2021) R package (v2.0), we
employed built-in algorithms such as TIMER, CIBERSORT,
MCPcounter, EPIC, and quanTIseq (Newman et al., 2015;
Becht et al., 2016; Finotello et al., 2019; Racle et al., 2017; Li
et al., 2016) to assess the abundance of immune cell infiltration
in the tumor immune microenvironment of each ovarian
cancer tissue.

2.7 Drug sensitivity analysis

The OncoPredict (Maeser et al., 2021) R package (v1.2)
was created by Maeser et al. and was used to predict
medication reactions in cancer patients. OncoPredict adapts
tissue gene expression patterns to the semi-maximal inhibitory
concentration (IC50) of drugs taken from cancer cell lines in the
Genomics of Drug Sensitivity in Cancer (GDSC) database and the
Cancer Cell Line Encyclopedia (CCLE) maintained by the Broad
Institute. An unpaired t-test was used to assess the sensitivity of
198 drugs (between high-risk and low-risk groups). Set at p <
0.05 was the significance level.

2.8 Prediction of immunotherapy sensitivity

The Cancer Immunome Atlas (TCIA) (Charoentong et al., 2017)
database (https://tcia.at/) was used to download the Immunophenotype
Scores (IPS) for CC. Subsequently, IPS were compared across different
tumor groups to predict sensitivity to immunotherapy.

2.9 Differential gene identification

Using the limma (Ritchie et al., 2015) R package (3.60.4),
differential gene expression analysis was performed on the TCGA
data. This involved data preprocessing, normalization, and
identifying significant differences in gene expression levels
through linear modeling. Statistical thresholds were set (adj. P.
Val. < 0.01 and |log2(FC)| > 1) to screen for significantly
differentially expressed genes. Finally, to decipher the biological
significance of these differential genes, enrichment analysis and
functional annotation were performed.

2.10 Enrichment analysis

The clusterProfiler (Wu T. et al., 2021) R package (v4.12.6) was
used to perform enrichment analysis, which consisted of two steps:
(1) Over-Representation Analysis (ORA) to investigate the
functional enrichment of gene sets through Genomes (KEGG)
analyses, Kyoto Encyclopedia of Genes, Gene Ontology (GO),
and (2) Gene Set Enrichment Analysis (GSEA) to examine the
enrichment of validated gene sets in KEGG pathways. These
enrichment results revealed the gene sets’ biological functions
and pathway associations.

2.11 Weighted gene Co-Expression network
construction

In systems biology, co-expression gene modules and their
correlation to phenotypes are identified using Weighted Gene Co-
Expression Network Analysis (WGCNA) (Langfelder and Horvath,
2008). Gene co-expression networks are constructed by calculating
gene-gene correlations and then converting the correlation matrix
into a weighted matrix. Gene modules are then built based on
the weighted matrix, and the eigengene for each module is
computed. Subsequently, the correlation between module
eigengenes and phenotypic data determines the module-phenotype
relationship. Ultimately, gene modules associated with phenotypes of
interest are identified, revealing underlying biological pathways and
mechanisms. The WGCNA method aids in uncovering key modules
and gene correlations within gene regulatory networks.

2.12 Prognostic model construction and
validation

The TCGA dataset was initially used to construct a survival
prognostic model using the multiCox and Least Absolute Shrinkage
and Selection Operator (LASSO) techniques. Gene features were
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selected using LASSO, and multiCox was employed for
multivariable Cox regression to establish the prognostic model.
The model was then used for independent external validation
datasets, and its ability to predict survival was evaluated using
Kaplan-Meier survival analysis and time-dependent ROC curve
analysis. These validation analyses verified the prognostic
predictive efficacy of the model across different datasets, ensuring
its reliability and generalizability.

2.13 mRNA Stemness Index (mRNAsi)

Derived from the PCBC database’s mean-centered RNA-Seq
data of PSCs (syn2701943) (Gul et al., 2023). A stem cell feature
signature was found using the One-Class Logistic Regression
(OCLR) machine learning approach, and it was confirmed
using leave-one-out cross-validation. A Spearman correlation
analysis was then used to compare the stem cell features and
the normalized expression matrix of tumor samples. Finally, by
scaling the Spearman correlation coefficient between 0 and 1, the
mRNA Stemness Index (mRNAsi) was determined. A higher
mRNAsi indicates a higher degree of tumor dedifferentiation
and stronger stemness.

2.14 Single-cell analysis

The following methods were used to process ovarian cancer
single-cell sequencing data: We first converted the scRNA-seq
data into a Seurat (Hao et al., 2024) object using the Seurat R
package. We performed quality control (QC) by determining the
percentage of ribosomal or mitochondrial genes and eliminating
low-quality cells. FindVariableFeatures was used to determine
the top 2000 genes exhibiting high variability. Furthermore,
dimensionality reduction techniques were used to group
approximately 2000 genes using Principal Component Analysis
(PCA) and Uniform Manifold Approximation and Projection
(UMAP). We could identify marker genes for each cluster using
the FindAllMarkers tool with |Log2FC| and min. 0.3 and
0.25 are the respective pct cutoff values. Different cell types
were annotated using the SingleR (Aran et al., 2019) R
package. Finally, we used the AddModuleScore function to
compute the expression levels of prognostic model genes at the
single-cell level.

2.15 Cell lines

Fenghuishengwu in China is where human ovarian surface
epithelial cells (HOSE) are sourced (HOSE, CL0154). From the
American Type Culture Collection, the SKOV3 cell line was
acquired. Mycoplasma is routinely tested for in all cell lines. A
complete medium, consisting of 1% double antibiotics and 10%
fetal bovine serum (FBS), is used to cultivate both HOSE and
SKOV3. When the cell confluence reaches 80%–90%, they
are passaged.

2.16 Cell transfection

Similarly, 5 × 105 cells were cultured in each well of a 6-well plate.
For transfection, HOSE and SKOV3 cells were treated with 15 nM of
siRNA IL-6, siRNA TGF-β1 and siRNA NC (P4157, GenePharma,
Shanghai, China), respectively, using Lipofectamine 3000 (L3000150,
Thermo, New York, Waltham, MA, United States).

2.17 qPCR

HOSE and SKOV3 cells were lysed to obtain total RNA using a
TRIzol reagent (15,596,026, Invitrogen, New York, NY,
United States). The qRT-PCR analysis was performed using the
HiScript II One Step qRT-PCR SYBR Green kit (P131, Vazyme,
Nanjing, China) and a Bio-Rad CFX96 PCR system (Bio-Rad,
Hercules, CA, United States). RuiBiotech (Beijing, China) created
and manufactured the primers used in this investigation.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used
as the internal reference for assessing the target gene expression
using the 2−ΔΔCT method.

2.18 Western blot

The total protein was extracted using a cell lysate solution, and
the proteins were separated using 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). PVDF
membranes were then used to hold the separated proteins
(03010040001, Millipore, Billerica, MA, United States). After a
30-min blocking, the membranes were subjected to adding
primary antibodies and incubated at 4°C. The primary
antibodies were obtained from Abcam (Abcam, United States).
Secondary antibodies (BA1054, 1:5000, Boster, Wuhan, China)
were added to the membranes and incubated for 2 h at room
temperature after washing. The membranes were then visualized
using an ECL development kit (A38554, Invitrogen, New York,
NY, United States) and photographed with a GE Las-4000 (GE
Healthcare, Piscataway, NJ, United States). After conducting the
experiment thrice, the gray values were obtained using Media
Cybernetics’ ImageJ 1.8.0 program (Silver Spring, MD,
United States). An internal reference was beta-actin.

2.19 Statistical analysis

The analysis was conducted using SPSS 26.0 and the R
programming language. The measurement data was expressed
using the standard deviation (x ± s). A one-way ANOVA was
employed to compare the groups. Dunnett’s multiple comparisons
were performed to determine whether the variance was uneven.
Measurement data with a normal distribution were displayed as
mean ± standard deviation, and t-tests were used to compare
groups. The Mann-Whitney U test was performed using
measurement data that was not normally distributed and
displayed as the median and interquartile range to compare
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groups. Count data were expressed as rates, and group
comparisons were conducted using the χ2 test.

3 Results

3.1 Identification of inflammatory molecular
subtypes in ovarian cancer based on
consensus clustering

First, we obtained four inflammatory-related gene sets
from the MSigDB database, including BIOCARTA_INFLAM_

PATHWAY, GOBP_CHRONIC_INFLAMMATORY_RESPONS,
HALLMARK_INFLAMMATORY_RESPONSE, and REACTOME_
INFLAMMASOMES. Most inflammatory-related genes had
significantly different expression profiles in tumor and normal
tissues, with most genes significantly elevated in tumor tissues,
according to our analysis of the TCGA ovarian cancer dataset and
the corresponding normal tissues from the GTEx database (Figure 1).
This suggests a correlation between inflammatory phenotypes and
tumor development.

Meanwhile, based on ssGSEA, we performed enrichment
scoring of inflammatory-related gene sets for each ovarian
cancer tissue (Figure 2A). Univariate COX regression analysis

FIGURE 1
Expression profiles of inflammation-related markers in OV reveal distinct patterns. Four key inflammation-related signatures, such as the
BIOCARTA_INFLAM_PATHWAY, have been examined for their expression levels (A), GOBP_CHRONIC_INFLAMMATORY_RESPONS (B), HALLMARK_
INFLAMMATORY_RESPONSE (C), and REACTOME_INFLAMMASOMES (D).
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FIGURE 2
Distinct TME landscapes in OV. (A) The GSVA score of each signature is associated with inflammation between two subclusters. (B) A forest plot
displaying the hazard ratio for each signature associated with inflammation was found using univariate Cox regression analysis. (C) The TCGA-OV
consensus score matrix for the glioma sample, with k = 2 clustering number. The consensus score indicates the degree of interaction between two
samples. (D, E) The consensus matrix’s PAC scores (E) and CDF curves (D) for each (K) (F) Boxplots that display the distribution of GSVA scores for
every inflammatory signature between two subclusters; (G) Kaplan-Meier curves that analyze survival differences between two subclusters using the log-
rank test. (H) Stacked bar graphs showing the distributions between two subclusters for age populations (left panel) and stages (right panel). Using Chi-
squared testing, P values were calculated.
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identified three inflammation-related gene sets as significantly
and positively associated with better prognosis (HR < 1) in
ovarian cancer patients. These gene sets are thought to be
protective prognostic factors (Figure 2B). This suggests these

inflammatory-related gene sets’ potential research value and
clinical significance. We, therefore, performed consensus
clustering analysis using the Consensus ClusterPlus R package
based on the enrichment scores of these four inflammatory-related

FIGURE 3
A hot-TME is shaped by the C2 subcluster in OV. (A) The immune cell subset infiltration abundances for two TME subclusters were measured using
CIBERSORT, MCP-counter, quanTIseq, EPIC, and TIMER. (B) The patterns of immunoregulator expression for each of the two TME subclusters.
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gene sets. The maximum number of clusters was set to 10, with
100 subsamples drawn, a sample proportion of 0.8, K-means as the
clustering algorithm, and Euclidean distance as the metric.
Ultimately, we performed nine clusters with k values ranging from
2 to 10. Through comprehensive evaluation using CDF curves and
PAC analysis, we selected the ideal number of clusters as 2 (Figures
2C–E). At the same time, we found significant differences in
inflammatory enrichment scores (Figure 2F) and overall survival
rates (Figure 2G, log-rank p = 0.076) among patients with
different inflammatory gene expression patterns. Chi-square tests
for clinicopathological features revealed differences in the age
distribution (with 65 years as the cutoff) and clinicopathological
grading among patients in different groups (Figure 2H).

3.2 Distinct immune infiltration
microenvironments, responsiveness to drug
treatment, and deregulated signaling
pathways among subtypes

Previous studies have reported that different tissue types often
have distinct immune infiltration microenvironments. Thus, we
used five immune microenvironment analysis methods in this
study—CIBERSORT, MCPcounter, quanTIseq, EPIC, and
TIMER—for integrated evaluation and analysis of immune cell
infiltration profiles to thoroughly examine the immune profiles
among various subtypes. We found that the C2 subtype had
much more infiltrating NK cells, B cells, macrophages, CD8+

FIGURE 4
The drug sensitivity of the two subgroups. (A) Violin plot showing the estimated half-life (IC50) of chemotherapy drugs between two subgroups. (B)
A raincloud plot that shows the difference in IPS scores between two subclusters.
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T cells, and CD4+ T cells than the C1 subtype, with consistent results
across various analysis methodologies. This suggests that the
C2 subtype exhibits the biological characteristics of a so-called
“hot” tumor immune microenvironment (Figure 3A). In the
meanwhile, we found that the C2 subtype had far higher
amounts of immunomodulators and cytokines expressed than the
C1 subtype, based on a list of genes encoding immunomodulators
and chemokines that we downloaded from the TISIDB
database (Figure 3B).

With the deepening of research on the immune tumor
microenvironment, substantial evidence suggests that tumors
with different levels of immune cell infiltration have distinct
response rates to chemotherapy and immunotherapy. Therefore,
we examined the IC50 values of vinblastine, paclitaxel, docetaxel,
and cisplatin. We found that, except cisplatin, the C2 subtype’s
IC50 values were considerably higher than the C1 subtype’s,
indicating a noticeably lower response rate of the C2 subtype to
these three drugs (Figure 4A). Simultaneously, we utilized IPS, IPS-

PD1/PD-L1/PD-L2, IPS-CTLA4, and IPS-PD1/PD-L1/PD-L2 +
CTLA4 to assess differences in the response rates to immune
checkpoint inhibitor therapy among different subtypes. We found
that IPS, IPS-PD1/PD-L1/PD-L2 and IPS-CTLA4 were significantly
higher in the C2 subtype compared to the C1 subtype (Figure 4B).

We hypothesize that the distinct immune infiltration
microenvironments and responses to drug treatment among
different subtypes are based on significantly different signaling
pathways and biological differences. Therefore, we identified
genes that were differently expressed among various subtypes
using the limma R package (Figure 5A). We carried out an over-
representation analysis (ORA), which included GO_BP/CC/MF
(Figure 5B), and last, we performed a GSEA analysis. The results
suggested multiple signaling pathways were significantly
deregulated in C2 (Figures 5C, D). In summary, subtypes based
on inflammatory gene enrichment scores exhibit distinct immune
infiltration microenvironments, responses to drug treatment, and
deregulated signaling pathways, warranting further investigation.

FIGURE 5
DEGs between the two subclusters. (A)The volcano map shows the genes classified as downregulated (blue) and upregulated (red) inside the two
subclusters. (B) The 10 most gene-enriched GO terms in hubs. (C, D): GSEA of the dysregulated pathways in the C2 subclusters.
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FIGURE 6
WGCNA detects modules associated with subclusters and hub genes embedded within them. (A) Examination of network configuration for various
soft-threshold power levels. On the scale-free topology fit index, the left panel illustrates the effect of a soft-threshold power of 3. The effect of the same
criterion on the average connectivity is shown in the right panel (B)Cluster dendrogram of themodules exhibiting coexpression. Each color corresponds
to a co-expression module. (C) Amodule-trait heatmap shows how clinical traits andmodule eigengenes relate. (D) Bar charts showing the top five
enriched phrases for every module gene. The connection between gene significance and module membership in the brown modules. (E) Hub genes of
the appropriate module were identified as dots in color with MM > 0.6 and GS > 0.3. (F) Top 10 enriched GO terms of hub genes.
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3.3 Identification of biological features of
different inflammatory subtypes using
WGCNA gene co-expression
network analysis

To conduct the WGCNA analysis, we first added the
differentially expressed genes identified in the previous step. Four
co-expression modules were obtained after setting the soft threshold
β to three and the minimum number of genes in a module to 30
(Figures 6A, B). We utilized GO enrichment analysis and found that
modules other than the gray module possessed distinct biological
characteristics. Since previous analyses suggested that patients in the

C2 subtype had a better prognosis, responsiveness to drug treatment,
and deregulated signaling pathways, we hypothesized that genes
significantly associated with C2 might be involved in tumor
development, invasion, and resistance to drug treatment. Based
on WGCNA co-expression network analysis, we found that the
C2 subtype had the strongest positive correlation with the turquoise
module (Figure 6C, Cor = 0.54), which contained 2323 genes. We
could run functional enrichment analyses on these genes using
thresholds (MM > 0.6 and GS > 0.3) to identify key genes inside
the module (Figures 6D, E). The results showed that immune
receptor activity and other biological processes were the primary
roles of the module’s key genes (Figure 6F).

FIGURE 7
Construction and validation of an inflammatory prognostic signature. (A) Identification of prognostic hub genes using the optimal parameter (λ)
obtained from the LASSO regression analysis. (B) The coefficients of signature genes are shown in a multiCox regression analysis-calculated lollipop
chart. (C–E) Comparing how two groups’ survival rates differed throughout the three datasets. Time-dependent ROC examination of the three
datasets’ model.
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3.4 Construction of an ovarian cancer
prognosis model based on inflammatory-
related prognostic genes

The key genes found in the previous step served as the prognosis
model’s input genes. In this study, we used the TCGA dataset to
train the model. Then, we assessed the model’s prognostic efficacy
using independent external datasets based on time-dependent ROC
curves and Kaplan-Meier survival analysis.

With the help of multivariate COX regression analysis, Least
Absolute Shrinkage and Selector Operation (LASSO) (Figure 7A),
and module key genes, we constructed a prognosis model in this
study. The genes included in the model and their corresponding
regression coefficients are shown (Figure 7B). Risk scores based on
the prognostic model were simultaneously computed for all
ovarian cancer samples in the training and validation sets. The
samples were divided into low-risk and high-risk groups based on
the median risk score. Our result shows the plotted Kaplan-Meier
curves, which indicate substantial differences between the two
groups (Figures 7C–E). Using a time-dependent ROC curve
analysis, the prediction efficiency at 1, 3, and 5 years was also

evaluated, and the results indicated that the prognostic model had
good prediction performance.

3.5 Relationship between risk score and
tumor immune microenvironment

Based on the CIBERSORT immune microenvironment analysis
algorithm, we analyzed the TCGA dataset divided into high-risk and
low-risk groups. We found that the low-risk group had higher
M1 macrophages and CD8+ T cell infiltration abundances, while
the high-risk group had significantly higher abundances of
M2 macrophage infiltration (Figure 8A). This suggests an active
anti-tumor immune response in the tissue immunological
microenvironment of the high-risk group. Further analysis of
T cell exhaustion markers and M2 macrophage markers showed
that the high-risk group had significantly higher expression levels
than the low-risk group (Figures 8B, C). Simultaneously, analysis of
cellular stemness levels also indicated higher stemness scores in the
high-risk group, suggesting more pronounced tumor stemness,
i.e., dedifferentiation (Figure 8D). Since cellular stemness levels

FIGURE 8
Shows the TME phenotypes in various risk categories. (A) Box plot showing the distributions across two risk categories of 22 immune cell subsets
found by CIBERSORT. (B, C) The box figure illustrates the TEXterm characteristics and M2 polarization regulators expression patterns in two risk groups.
(D) A violin plot comparing the two risk groups’ mRNAsi index values.
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are negatively correlated with prognosis, these results imply a poorer
prognosis for patients in the high-risk group.

3.6 Relationship between risk score and
responsiveness to drug treatment

The amount of immune cell infiltration substantially impacts
immunotherapy and chemotherapy, according to previous studies,
with the high-risk group having less anti-tumor immune cell
infiltration than the low-risk group. To determine if the high-risk
group responded less frequently to these four drugs, we examined
the IC50 values of cisplatin, vinblastine, paclitaxel, and docetaxel.
Compared to the low-risk group, the IC50 values of the high-risk
group were much greater (Figure 9A). We employed IPS, IPS-PD1/

PD-L1/PD-L2, IPS-CTLA4, and IPS-PD1/PD-L1/PD-L2 +
CTLA4 simultaneously to evaluate variations in immune
checkpoint inhibitor therapy response rates across various risk
groups. IPS, IPS-PD1/PD-L1/PD-L2, and IPS-CTLA4 levels were
considerably lower in the high-risk group than in the low-risk
group (Figure 9B).

3.7 Relationship between risk score and
cancer hallmark signaling pathways

We hypothesize that the distinct immune infiltration
microenvironments and drug responsiveness observed among
risk groups are based on significantly different signaling
pathways and biological differences (Zeng et al., 2021).

FIGURE 9
Comparison of therapeutic sensitivity between two risk categories. (A) Violin plot illustrating the expected IC50 values of therapeutic drugs for two
different risk groups. (B) Raincloud plot illustrating two defined risk groups’ IPS scores.

Frontiers in Pharmacology frontiersin.org13

Wang et al. 10.3389/fphar.2025.1500251

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1500251


Consequently, we initially employed the limma R package to find
genes differently expressed amongst various risk groups. Then, using
cancer hallmarks as a guide, we ran a GSEA analysis on these
differentially expressed genes. According to the findings, the high-
risk group had significantly higher levels of several signaling
pathways and significantly lower levels of others, including IL6-
JAK-STAT3, hypoxia, and glycolysis. In summary, the prognostic
model based on inflammatory genes exhibits distinct immune
infiltration microenvironments, drug responsiveness, and
deregulated signaling pathways, which has important implications
for clinical decision-making (Figure 10).

3.8 Single-cell level analysis of risk scores

We integrated four single-cell datasets and obtained 88,089 ovarian
cancer single cells after quality control, dimensionality reduction, and
clustering. With a clustering resolution set to 0.4, we identified
20 clusters (Figures 11A, B). Out of these 20 clusters, we identified
12 cell subpopulations by combining manual annotation methods with
SingleR automatic annotation. We then analyzed the risk scores of
these 12 cell subpopulations (Figures 11C, D). The results showed that

the prognostic model genes related to inflammation were primarily
expressed in immune-related cells, further validating the findings from
traditional transcriptome analysis at the single-cell level.

3.9 Upregulation of IL6 and TGFβ1 in ovarian
cancer cells promotes cell proliferation

Following the bioinformatics analysis, the study explored the
expression levels of CCL2, IL10, IL6, and TGFβ1 in normal ovarian
epithelial cells (HOSE) and ovarian cancer cells (SKOV3). The
research team used qPCR to detect the mRNA expression levels in
cells. Compared with HOSE, CCL2 (p = 0.003), IL10 (p = 0.003),
IL6 (p = 0.002), and TGFβ1 (p = 0.002) were all highly expressed in
SKOV3, and the differences were statistically significant
(Figure 12A). Subsequently, the study used siRNA IL6 and
TGFβ1 to transfect the SKOV3 cell line. qPCR results revealed
that following transfection, there was a drop in the mRNA
expression levels of TGFβ1 (p = 0.0002) and IL6 (p = 0.002)
(Figures 12B, C). Further, CCK8 was used to evaluate the
proliferation of SKOV3 after transfection. Following the
knockdown of IL6 and TGFβ1, the capacity of SKOV3 cells to

FIGURE 10
Hallmarks of dysregulated cancer in two risk groups.
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proliferate decreased in comparison to the siRNANC group. There
was a statistically significant difference (p < 0.0001, p < 0.0001)
(Figure 12D). Finally, we used Western blot to further evaluate the
protein expression levels of IL6 and TGFβ1 in HOSE and
SKOV3 cells. The SKOV3 group had higher levels of TGFβ1
(p = 0.0001) and IL6 (p = 0.004) protein expression compared
to HOSE, and these changes were statistically significant
(Figures 12E, F).

4 Discussion

Chemotherapy resistance in EOC results from various
processes, including reduced drug sensitivity, the influence of
the tumor microenvironment (TME), changes in the
metabolism of tumor cells, interactions between stromal cells
and tumor cells, and immune evasion mechanisms (Veneziani
et al., 2023). Among these, the TME and immune evasion
mechanisms play crucial roles in chemotherapy resistance in
EOC. The TME has a major impact on drug resistance,

metastasis, and tumor growth. It comprises stromal cells,
immune cells, and blood vessels surrounding tumor cells
(Agarwal and Kaye, 2003). In ovarian cancer, the tumor
microenvironment can promote drug resistance through various
mechanisms (Pujade-Lauraine et al., 2019). For example, tumor-
associated macrophages (TAMs) can secrete multiple growth
factors and inflammatory cytokines, promoting tumor cell
proliferation and survival while reducing their sensitivity to
chemotherapy drugs. Immune evasion mechanisms (Khan et al.,
2021; Kim et al., 2012): Although tumor cells can employ several
defence mechanisms to evade immune system attacks, which is
crucial to antitumor processes. For instance, tumor cells can
express immune checkpoint molecules to inhibit T-cell activity
or secrete immunosuppressive factors to suppress the proliferation
and function of immune cells.

Several studies have shown that inflammatory oxidative stress
responses play a role in the pathogenesis of several cancers,
including colon, stomach, and liver (Bast et al., 1993; Ray et al.,
2023). Phagocytes and leukocytes recruited during inflammatory
responses can induce DNA damage by producing peroxides and

FIGURE 11
The highly active signature associated with inflammation in OV’s scRNA-seq datasets. (A) UMAP visualization of three public OV scRNA-seq cohorts
with 88,089 cells. (B) A manual annotation was done on 12 major cell types. (C) Vlnplots showing cell type-specific marker expression values. (D) Single-
cell signature gene expression is determined via Seurat’s AddModuleScore method.
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reactive nitrogen species, leading to gene mutations, deletions, and
rearrangements, which in turn cause tumorigenesis. The massive
secretion of pro-inflammatory factors is a hallmark of chronic
inflammatory response processes and plays a vital role in the
development of tumors. For example, IL-6 reduces the
expression of tumor suppressor genes and DNA repair genes by
inducing DNA methylation, thereby promoting tumorigenesis
(Macciò and Madeddu, 2013; Torres et al., 2009). IL-6 and its
downstream targets are closely related to processes such as cell
proliferation and metabolism, suggesting its contribution to
tumorigenesis. The expression of the proto-oncogene Kras in
the pancreas activates the Stat3/Socs3 signaling pathway, which

relies on IL-6 and its downstream signaling pathways, ultimately
promoting pancreatic cancer development. Inflammatory
cytokines released during inflammatory responses facilitate
tumor metastasis and invasion. Epithelial-mesenchymal
transition (EMT) of tumor cells is a crucial process for their
metastasis and invasion. TGFβ (Monavarian et al., 2022; Brewer
et al., 2003; Vergara et al., 2010) has been reported to promote
EMT in tumor cells, while TNFα, IL-6, and IL-1 can also promote
tumor ETM by upregulating gene expression related to
transcription factors such as NF-κB and STAT3. Additionally,
pro-inflammatory factors upregulate chemokine receptors such as
CCR1, CCR4, and CXCR7, enabling tumor cells to metastasize to

FIGURE 12
Upregulation of IL-6 and TGFβ1 in ovarian cancer cells promotes cell proliferation. n = 3. **p < 0.01, *p < 0.05, ****p < 0.0001, ***p < 0.001. (A)
Comparison of themRNA expression of CCL2, IL6, IL10, and TGFβ1 in normal ovarian cells and ovarian cancer cell SKOV3. (B–D) After knocking down IL6
and TGF-β1, the proliferation ability of ovarian cancer cells decreased. (E,F)Comparison of the protein expression of IL6 and TGFβ1 in normal ovarian cells
and ovarian cancer cell SKOV3.
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specific organs. Therefore, inflammatory cytokines and mediators
in the tumor microenvironment are essential for tumor cell
survival, metastasis, and development. Our research has found
that in the high-risk group of EOC (Macciò and Madeddu, 2012;
Browning et al., 2018), various signaling pathways, including
hypoxia and glycolysis, are significantly upregulated, while
pathways such as IL6-JAK-STAT3 are downregulated. These
findings further confirm the significance of targeting
inflammatory genes to improve drug responses in the immune
microenvironment.

Moreover, in the risk model based on inflammatory gene
scoring, the high-risk group exhibits higher infiltration of
M2 macrophages with pronounced anti-tumor immune
responses and a higher degree of dedifferentiation. Additionally,
patients in the high-risk group show significantly lower response
rates to IPS, IPS-PD1/PD-L1/PD-L2, and IPS-CTLA4 inhibitors
compared to the low-risk group. Single-cell transcriptome
sequencing data confirms this, with inflammatory prognosis
model genes primarily expressed in immune-related cells. In the
tumor microenvironment of ovarian cancer, the immune cells
comprise innate and adaptive immune cells. B lymphocytes and
T lymphocytes are components of the adaptive immune system,
with T lymphocytes being particularly prevalent in ovarian tumor
tissue and ascites (Fucikova et al., 2022; McMullen et al., 2021).
Tumor-infiltrating lymphocytes (TILs) are T cells found in
primary/metastatic tumors; tumor-associated lymphocytes
(TALs) are T cells seen in ascites (Cummings et al., 2021).
Through suppressing immune responses, CD4+ Tregs preserve
immune homeostasis and promote self-tolerance. Tregs inhibit
anti-tumor responses in cancers, and their presence in the ovarian
cancer tumor microenvironment has been associated with a poor
prognosis. The loss of human leukocyte antigen (HLA)-I
expression by tumor cells is the primary mechanism of immune
evasion in T cell-mediated anti-tumor immunity (Lavoué et al.,
2013; Zhang et al., 2022). There is a direct correlation between the
frequency of TILs and the quantity of HLA-I-positive tumor cells
in various solid tumors, including ovarian cancer. T-cell
exhaustion is another method of immune evasion. Studies have
revealed that TILs and TALs exhibit elevated expression levels of
ICRs for PD-1, CTLA-4, TIM-3, BTLA, and LAG-3.

Tumor macrophages, in addition, comprise a very diverse and
heterogeneous cell population that can be divided into type 2 (M2)
and classically activated type 1 (M1) macrophages. The
microenvironment of ovarian cancer tumors is rich in IL-6, IL-
10, and CSF-1, which promotes M2 polarization and the
accumulation of M2 macrophages (Truxova et al., 2023). An
increase in the proportion of M2 macrophages often indicates a
poor prognosis in ovarian cancer. These data imply that tumor
macrophages may stimulate tumor growth, invasion, and
metastasis via various pathways. The extracellular matrix
(ECM) is another component of the immune microenvironment
in addition to immune cells (Lin et al., 2022; Khatoon et al., 2022),
which affects tumor growth and metastasis. Studies have shown
that ECM affects cancer cells via biochemical and biophysical
mechanisms in addition to acting as a physical structure and
growth factor reservoir. Activating the signaling pathways for
ERK, PI3K, and Rac; changing the function of cell cycle
regulatory elements; regulating pro- and anti-apoptotic

regulators (Bcl-2 and NF-κB); influencing tumor invasion and
migration through the signaling pathways for TGFβ and RhoA/
Rac; influencing tumor cell stemness through the activation of
STAT3 and Wnt; and activating the previously mentioned anti-
apoptotic and stem cell signaling pathways, in addition to acting as
a physical barrier to the delivery of anticancer drugs, which results
in chemotherapy resistance (De Nola et al., 2019; Rodriguez et al.,
2018; Damei et al., 2023; Majidpoor and Mortezaee, 2021).

Numerous studies have demonstrated the complex interplay
between inflammation, the immune microenvironment, and the
development and progression of EOC. Our findings imply that by
using genes linked to inflammation, a better understanding of the
characteristics of the immunological milieu in EOC patients can be
achieved. This approach can facilitate the development of targeted
immunotherapy drugs for different risk groups, ultimately improving
patient prognosis.

Although the study comprehensively analyzed multiple data sets
related to ovarian cancer, the sample size is still very limited. Patients
of different races, regions, and genetic backgrounds may have
different molecular characteristics and immune response
mechanisms, and may not fully represent the diversity of ovarian
cancer patients worldwide. In addition, bioinformatics tools play an
important role in gene expression analysis, mutation detection, and
pathway enrichment, but these tools themselves have limitations.
Although in vitro experiments are an important means to verify gene
function and pathway activity, the in vitro environment cannot fully
simulate the complexity of the in vivo environment. Therefore, the
results of in vitro experiments may not be directly applicable to the
in vivo environment, and subsequent studies need to be further
verified in animals and multi-center clinical samples.

5 Conclusion

In conclusion, the construction of an ovarian cancer prognosis
model based on inflammatory-related prognostic genes can stratify
EOC patients by risk. Developing corresponding drugs based on
the characteristics of the immune infiltration environment, drug
responsiveness, and signaling pathways of different risk groups is
of great significance for clinical decision-making.
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