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The application of deep learning algorithms in protein structure prediction has
greatly influenced drug discovery and development. Accurate protein structures
are crucial for understanding biological processes and designing effective
therapeutics. Traditionally, experimental methods like X-ray crystallography,
nuclear magnetic resonance, and cryo-electron microscopy have been the
gold standard for determining protein structures. However, these approaches
are often costly, inefficient, and time-consuming. At the same time, the number
of known protein sequences far exceeds the number of experimentally
determined structures, creating a gap that necessitates the use of
computational approaches. Deep learning has emerged as a promising
solution to address this challenge over the past decade. This review provides
a comprehensive guide to applying deep learning methodologies and tools in
protein structure prediction. We initially outline the databases related to the
protein structure prediction, then delve into the recently developed large
language models as well as state-of-the-art deep learning-based methods.
The review concludes with a perspective on the future of predicting protein
structure, highlighting potential challenges and opportunities.
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1 Introduction

Proteins are one of the most important chemicals in animals and the material basis of
living organisms. Proteins undertake various vital activities of living organisms, such as
material transport, energy conversion, and catalytic reactions. A protein molecule is
composed of several different amino acids, and there are 20 different types of amino
acids that undergo dehydration condensation chemical reactions to form peptide bonds,
which in turn form a sequence of amino acids linked from the beginning to the end. Then,
transformations, such as helices, folding, and chemical reactions, result in the formation of
proteins that are complex in both physical space and structure (Wang and Dunbrack Jr
2003). Protein structure can be divided into four levels, as shown in Figure 1. The primary
structure of a protein is the linear sequence of amino acids, which is determined by the
nucleotide sequence of the corresponding gene. The peptide chain results from dehydration
condensation between amino acids to form peptide bonds. The number of polypeptide
chains, the order of amino acid arrangement, and the number and positions of the bonds of
peptide chains determine the primary structure of a protein. Hydrogen bonds are formed by
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the atoms between the residues of the peptide chain, which results in
changes in the local structure of the peptide chain. Protein structure
of proteins refers to the regular coiling or folding patterns formed by
the polypeptide backbone in localized regions, which is stabilized by
hydrogen bonds between backbone groups. Common secondary
structural motifs include the alpha-helices and beta-sheet (Onofrio
et al., 2014). The secondary structure is only related to the spatial
position of the backbone atoms of the main chain and not to the
position of the side chains (R groups). Protein tertiary structure is
formed by the interaction of distant side chains in the protein
secondary structure, and the three-dimensional (3D) spatial
arrangement of the main chain and side chains after folding and
coiling constitutes the protein’s tertiary structure. It gives rise to two
major molecular shapes called fibrous and globular. Globular
protein structures can be divided into four structural classes
(i.e., main alpha-structure, main beta-structures, alpha/beta-
structures, alpha + beta-structures). The function of a protein is
largely determined by its tertiary structure, which fully describes its
3D shape. The function of a protein is largely determined by its
tertiary structure, which fully describes its 3D shape. While the
native state of globular proteins corresponds to a
thermodynamically stable energy minimum under physiological
conditions, pathological aggregates such as amyloids can occupy
deeper energy minima stabilized by cross-β sheet interactions. This
complexity in the energy landscape makes protein structure
prediction particularly challenging (Majid and Khan, 2023). The
quaternary structure of proteins refers to the architecture of a
complex formed by two or more protein molecules, known as
protein subunits, interacting through non-covalent bonds. The
problem of protein structure prediction focuses on the
transformation from amino acid sequence to protein 3D
structure (Anfinsen, 1973). The problem of protein structure
prediction focuses on the transformation from amino acid
sequence to protein 3D structure. While Anfinsen’s dogma

established that the native structure of a protein is determined by
its amino acid sequence, the Levinthal paradox highlights a
fundamental challenge in this process (Levinthal, 1968). Cyrus
Levinthal pointed out that if a protein were to sample all possible
conformations randomly to find its native structure, it would take an
astronomically long time given the enormous number of possible
conformations. However, proteins in nature fold reliably in
microseconds to seconds. This paradox demonstrates the
inherent complexity of the protein folding process, while
simultaneously suggesting that protein folding must proceed
along specific pathways rather than through random
conformational searches. This theoretical framework has
motivated scientists to develop a wide range of approaches for
protein structure prediction. A comprehensive and in-depth
analysis of the multitude of protein sequences, along with the
mining of concealed information, holds profound significance in
the fields of modern biology, medicine, and pharmaceuticals
(Kuhlman and Bradley, 2019; Li et al., 2021). Due to the
extremely rapid growth of protein data and the large scale of
data, traditional experimental methods such as NMR and X-ray
diffraction to obtain protein structures have the limitations of long
cycle time, high cost, and high intermediate product requirements,
and the rate of access to resolved protein structures using
experimental methods is much slower than the explosive growth
of protein sequences (Ladd et al., 1977; Sorgen, 2005). As of 2022,
according to the TrEMBL database (Consortium, 2020), there are
over 200 million sequence entries, with only 200,000 known protein
structures according to the Protein Data Bank (PDB) database
(Compton, 2003). It is not feasible to extract protein structure
information from experimental methods alone, and a method
that enables rapid and accurate prediction of protein structure
based on amino acid sequence information needs to be explored.
Protein structure prediction approaches can be classified into three
categories: template-based modeling (TBM), template-free

FIGURE 1
Four levels of protein structure.
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modeling (TFM), and ab initio. First, TBM approaches rely on
identifying and using known protein structures as templates,
typically through sequence or structural homology. Second, TFM
approaches encompass both traditional (e.g., TrRosetta) and
modern AI-based approaches (e.g., AlphaFold3). While
commonly referred to as “template-free”, the modern AI-based
approaches still rely heavily on comparative analysis and training
data from the Protein Data Bank (PDB). It is important to
emphasize that current AI-based approaches do not explicitly use
templates, but their models are indirectly dependent on known
structural information, as they are trained on large-scale PDB data.
Despite their remarkable success, these AI-based tools show
significant limitations when predicting structures of proteins that
lack homologous counterparts in the PDB. Finally, the third
category, ab initio, represents the true “free modeling” approach.
Unlike TBM and TFM, ab initio approaches are based purely on
physicochemical principles and do not rely on existing structural
information. The specific steps involved in the three protein
structure prediction approaches are illustrated in Figure 2. TBM
tools is well represented by MODELLER Webb and Sali (2016) and
SwissPDBViewer Guex and Peitsch (1997), where MODELLER
implements multi-template modeling to integrate local structural
features from multiple homologous templates, while
SwissPDBViewer provides comprehensive tools for protein
structure visualization and analysis. TBM involves comparing the
target sequence with a suitable template structure and then selecting
the model with the best match while considering mutations,
deletions, and insertions that may be present in the target
template structure (Kong et al., 2021; Wu and Xu, 2021; Kong
et al., 2022; Weißenow et al., 2022; Sun et al., 2013). The specific

steps are as follows. Step 1 involves identifying a homologous
protein structure that serves as a template for the target protein.
It is crucial that the target sequence and the template sequence share
a sequence identity of at least 30%. Step 2 entails creating a sequence
alignment between the target sequence and the template sequence.
This alignment lays the foundation for accurately mapping the
amino acids from the target sequence to their corresponding
positions in the template structure. In step 3, through the
sequence alignment, amino acids from the target sequence are
replaced into the spatial positions of corresponding amino acids
in the template structure. This replacement and modeling process is
facilitated by homology modeling software, which utilizes the
alignment to predict the three-dimensional structure of the target
protein. Step 4, the generated structural model undergoes a quality
assessment to evaluate its accuracy and reliability. Based on the
assessment results, the sequence alignment may be adjusted or
corrected, followed by a reiteration of the model building
process. This cycle of model building and quality evaluation
continues until the model meets the required quality standards.
Finally, in step 5, the 3D structure is then refined at the atomic level
to obtain the final predicted model. TBM is based on the distance
between the target protein structure and the template protein
structure, which can be subdivided into comparative modeling
and threading. Comparative modelling, also known as Homology
modeling, is designed for target proteins with near-homologous
templates, and templates can be usually identified by sequence-based
comparisons. Threading, also known as fold recognition, operates
under the premise that dissimilar amino acid sequences can map
onto similar protein structures. Protein threading involves
comparing a target sequence andor a hidden Markov model

FIGURE 2
We categorize protein structure prediction approaches into three types: template-based modeling (TBM), template-free modeling (TFM), and ab
initio. Detailed steps of these three approaches are provided in the Introduction section.
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Karplus (2009) against one or more protein structures to identify the
best matching sequence-structure template pair. Consequently,
threading can effectively identify similar folds or structural motifs
in a target sequence, even when sequence similarity is minimal. As
different threading programs are trained with different scoring
functions and matching algorithms, the template recognition and
matching results are often different for the same query sequence.
However, establishing the best sequence–template pairing is very
challenging, especially when only remotely related templates to the
target protein are available.

TFM predicts the structure of a protein directly from the
sequence without using global template information by using
only amino acid sequence information and without reference to
any protein template (Xu and Wang, 2019; Senior et al., 2019; de
Oliveira et al., 2021; Hou et al., 2019; Chen et al., 2020). The steps for
this process are delineated as follows. Step 1 involves performing
multiple sequence alignments (MSAs) between target proteins and
their homologous sequences. This process gathers information
about amino acid alterations between the homologous sequences
and discerns correlation patterns of sequence changes occurring at
varied positions. Step 2: Target protein sequences and multiple
sequence comparisons are used to construct the basis for
predicting local structural frameworks, including torsion angles
and secondary structures. Step 3: Backbone fragments are
extracted from proteins predicted to have similar local structures
and are used for model building, and based on the mutations in
multiple sequence comparisons, residue pairs that may be in spatial
contact can also be predicted. Step 4: 3Dmodels of protein structures
are built by prediction of local structure and disability contacts,
which includes gradient-based optimization, distance geometry, and
fragment assembly. Step 5: Based on the large search space, the
model is improved using the energy function to identify low-energy
conformational groups by comparing them with each other. Given
the water-soluble nature of amino acids in proteins, physically
standard molecular dynamics potential energy functions are used
to model protein folding; the protein structure is most stable when
the energy is at its lowest. Fragment assembly, a highly effective
approach in free modeling, starts by identifying short structural
fragments from unrelated proteins. Fragment lengths can be discrete
or continuous, and the fragments are mainly based on the
comparison of local structural features extracted from the
template, such as secondary structure, solvent accessibility, twist
angle, and other similarities. Fragment assembly simulation is
performed by replacing the main chain structure of a specific
region of the simulated structure with the structure of the
selected fragment, which can be of the desired bond length,
angle, or other component. The replaced fragment can be
extracted directly from the fragment itself. Constructing models
through fragment assembly reduces the entropy of the
conformational search space while ensuring that the local
structure of the model is well-formed. TFM is more time-
consuming than TBM, as it requires the creation of a model
from a random conformation. Although some optimization
algorithms such as gradient descent have made progress, there is
still a disparity between TFM and TBM in terms of accuracy.

Ab initio approaches rely entirely on physicochemical principles
(such as molecular mechanics force fields and energy minimization)
and conformational search algorithms, without depending on any

known structural data (including training data) for prediction
(Pierri et al., 2008). This approach is based on Anfinsen’s
thermodynamic hypothesis, which states that a native structure
corresponds to the global free energy minimum under a given set
of conditions. Among the notable ab initio tools, Rosetta (Rohl et al.,
2004) employs a technique calledMonte Carlo withMinimization to
explore the conformational space of a protein and predict its three-
dimensional structure from the amino acid sequence. This method
iteratively optimizes to find the lowest energy conformation.
QUARK (Xu and Zhang, 2012) stands as another representative
tool, specifically designed for ab initio protein structure prediction
and peptide folding simulation. QUARKmodels are built from small
fragments (1–20 residues long) by replica-exchange Monte Carlo
simulation under the guidance of an atomic-level knowledge-based
force field. Despite its capabilities, the tool is constrained by
computational limitations, being applicable only to proteins
shorter than 200 amino acids and requiring over 48 h for
structure prediction. While these approaches are computationally
expensive and have certain limitations, they offer unique value in
understanding the fundamental physical principles of protein
folding, particularly for novel proteins lacking homologous
templates in structural databases (Dill et al., 2008).

The structure of this review is as follows. Section 1 describes the
generation of protein structures and the two types of modeling
approaches currently available for protein structure prediction.
Section 2 articulates the necessity for protein structure prediction
and explores the potential influence of deep learning in this domain.
Section 3 lists publicly available databases in the field. Section 4
discusses in detail the contribution of deep learning in this area of
study. Section 5 summarizes our work, offering a perspective on the
potential future directions of the field.

2 Current status of protein structure
prediction research

The determination of protein structures has led to a greater
understanding of the foundations of biology. Physical experiments
such as X-ray crystallography, nuclear magnetic resonance
spectroscopy, and cryo-electron microscopy have helped obtain
protein structures (Ladd et al., 1977; Sorgen, 2005; Cheng et al.,
2021), but there is still a large and growing gap between the number
of proteins and the number of known protein structures. The study
of protein structure is necessary, and protein structure prediction is
an important area of research in biology. For example,: protein
structure prediction is a crucial part of protein design. It has been
widely used for the evaluation of designed candidate proteins with
topology or symmetry constraints (Huang and Li, 2023). The
pathological features of some diseases are also related to proteins,
the two primary pathological features of Alzheimer’s disease are the
accumulation of Amyloid-beta (Aβ) plaques and
hyperphosphorylated tau (p-tau) protein, which form
neurofibrillary tangles (Lin R.-R. et al., 2023). When an organism
is infected by microorganisms such as parasites, bacteria, or viruses,
certain proteins play a key role in the immune response by acting as
antibodies. These proteins are involved in detecting and neutralizing
the pathogens, helping the organism defend against the disease.
When an organism is treated with a drug, specific proteins can serve
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TABLE 1 The databases involved in protein structure prediction.

Type Name Description URL API

In vitro determined
structure

PDB Berman et al. (2000) PDB is an archive of experimentally-determined structures
of proteins, nucleic acids, and complex assemblies

www.rcsb.org Yes

MMDB Madej et al. (2014) MMDB contains experimentally resolved structures of
proteins, RNA, and DNA, derived from the PDB, with
value-added features

www.ncbi.nlm.nih.gov/Structure/
MMDB/mmdb.shtml

Yes

SCOP Murzin et al. (1995) A database of protein structural domains based on their
evolutionary and structural relationships

https://scop.mrc-lmb.cam.ac.uk/ No

BMRB Ulrich et al. (2007) A repository for experimental and derived data of
biomolecular NMR studies

https://bmrb.io/ Yes

In silico predicted
structure

AlphaFold Protein Structure Database
Jumper et al. (2021)

This platform provides open access to over 200 million
protein structure predictions, aiming to accelerate scientific
research

https://alphafold.ebi.ac.uk/ No

Sequence UniProt Consortium (2019b) A comprehensive protein sequence and functional
annotation database, consisting of UniProtKB, UniParc,
and UniRef.

www.uniprot.org/ Yes

ModBase Pieper et al. (2014) A database of comparative protein structure models based
on the sequences of proteins with known structures

https://modbase.compbio.ucsf.edu/ No

ProteinNet AlQuraishi (2019) A standardized data set for machine learning of protein
structure

https://github.com/aqlaboratory/
proteinnet

No

ENA Amid et al. (2020) ENA provides a comprehensive record of the world’s
nucleotide sequencing information, covering raw
sequencing data, sequence assembly information and
functional annotation

www.ebi.ac.uk/ena Yes

GenBank Benson et al. (2012) A database of nucleotide sequences that is maintained by
the National Center for Biotechnology Information (NCBI)

www.ncbi.nlm.nih.gov/genbank/ Yes

HSSP Dodge et al. (1998) A database of alignments of protein sequences and their
secondary structures, which can be used for the prediction
of protein structures

https://swift.cmbi.umcn.nL/gv/hssp/ No

Family Pfam Mistry et al. (2021) It is a comprehensive collection of protein domains and
families, represented as multiple sequence alignments and
as profile hidden Markov models

https://pfam.xfam.org/ Yes

HOMSTRAD Mizuguchi et al. (1998) A curated database of protein structure alignments for
homologous families

www-cryst.bioc.cam.ac.uk/homstrad/ No

SUPERFAMILY Gough and Chothia
(2002)

A database of protein domains and their relationships,
based on hidden Markov models (HMMs) and structural
alignments

https://supfam.org/ No

PROSITE Sigrist et al. (2010) A database of protein families, domains, and functional
sites, which are annotated with information about their
structure, function, and evolutionary history

https://prosite.expasy.org/ NO

Family InterPro Mitchell et al. (2015) A database of protein families, domains, and functional
sites, which integrates information from several different
databases and predictive algorithms

www.ebi.ac.uk/interpro/ Yes

SMART Letunic et al. (2015) A database of protein domains and families, providing
information about the sequence, structure, and function of
these domains and families

https://smart.embl-heidelberg.de/ Yes

Interaction DIP Salwinski et al. (2004) Catalogs experimentally determined interactions between
proteins

https://dip.doe-mbi.ucla.edu/ No

STRING Szklarczyk et al. (2019) A database of protein-protein interactions and functional
associations, which integrates experimental and
computational data from multiple sources

https://string-db.org/ Yes

BioGRID Oughtred et al. (2019) https://thebiogrid.org/ Yes

(Continued on following page)
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TABLE 1 (Continued) The databases involved in protein structure prediction.

Type Name Description URL API

A database of protein-protein and genetic interactions,
integrating experimental data from high-throughput
screens and literature curation

Function CATH Sillitoe et al. (2021) CATH is a hierarchical classification of protein domains
based on their structures and functions

www.cathdb.info/ No

PIR Wu et al. (2002) An integrated public resource of functional annotation of
protein data to aid in the exploration of the protein universe

https://pir.georgetown.edu/ Yes

Hybrid NKAB Berman et al. (2022) This tool offers searching, reporting, statistical analysis,
mapping, and visualization for all experimentally
determined 3D structures involving nucleic acids,
maintained by both NDB and PDB.

https://nakb.org/ No

SWISS-MODEL Waterhouse et al.
(2018)

A web-based protein structure homology-modeling server
that uses a template-based approach to generate three-
dimensional models of proteins

swissmodel.expasy.org/ Yes

PSPC Moult et al. (2018) It provides resources for the community-wide Critical
Assessment of Techniques for Protein Structure Prediction
(CASP) experiments

https://predictioncenter.org/ No

EVcouplings Hopf et al. (2019) A platform for predicting protein structure, function, and
mutations using evolutionary sequence covariation

https://evcouplings.org/ No

PMP Haas et al. (2013) PMP provides a single, consistent interface to various
sources of computational models of protein structure

https://proteinmodelportal.org/ Yes

PRISM server Baspinar et al. (2014) A server for predicting protein-protein interactions and
modeling their 3D complexes

https://prism.ccbb.ku.edu.tr/ No

SGC Lee et al. (2009) A not-for-profit organization that aims to determine the
three-dimensional structures of proteins of medical
relevance

www.thesgc.org/ No

Protein Atlas Thul and Lindskog
(2018)

It aims to map all the human proteins in cells, tissues and
organs using integration of various omics technologies

www.proteinatlas.org/ Yes

COFACTOR Zhang et al. (2017) A protein function prediction tool that uses multiple
sources of data to generate predictions, including protein-
protein interaction data, gene ontology terms, and sequence
information

https://zhanglab.ccmb.med.umich.
edu/COFACTOR/

No

HMMER Finn et al. (2011) It is a tool for searching protein sequences against a
database of HMMs of protein families and domains

https://hmmer.org/ Yes

Hybrid Robetta Kim et al. (2004) A protein structure prediction server that uses comparative
modeling, de novo modeling, and structure-based protein
function prediction

https://robetta.bakerlab.org/ No

MODELLER Webb and Sali (2016) A software package for protein structure prediction, which
uses comparative modeling to generate 3D models of
protein structures based on homology to known structures

https://salilab.org/modeller/ Yes

Phyre2 Kelley et al. (2015) A web-based service for protein modeling, prediction, and
analysis

www.sbg.bio.ic.ac.uk/phyre2 No

PconsFold Yang et al. (2020a) A tool for protein structure prediction, which uses a
probabilistic approach to generate models that are more
accurate and reliable than those generated by traditional
methods

https://toolkit.tuebingen.mpg.de/
tools/pcons-fold

Yes

ModFOLD McGuffin (2008) A tool for protein structure prediction, which uses an
ensemble approach to generate models that are more
accurate and reliable than those generated by individual
methods

www.reading.ac.uk/bioinf/
ModFOLD/

Yes

PIP Ofran and Rost (2003) A tool for protein-protein interaction prediction, which
uses a machine learning approach to predict the interaction
partners of a query protein based on its sequence and
structural features

www.pip-tools.org/ Yes

(Continued on following page)
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as target receptors. The drug molecule interacts with these receptors,
allowing the drug to bind to the correct protein in the body, thereby
triggering the appropriate chemical reaction and producing the
desired therapeutic effect to treat the disease. In this regard, the
prediction of protein structure is a prerequisite for research on drug
reuse, disease treatment, and protein function (Pan et al., 2022;
Gligorijević et al., 2021; Xu et al., 2022; Tang et al., 2021). As a basis
for the prediction of drug–target, drug–disease (Yang et al., 2020b;
Liu et al., 2020; Meng et al., 2022), and target–disease associations in
the study of protein function and drug repositioning and based on
the widening gap between the number of known proteins and the
number of actual proteins, protein structure prediction requires
more powerful deep learning for research. Artificial intelligence (AI)
is broadly affecting many aspects of various fields and addressing
diverse tasks and problems in place of humans (Huang et al., 2023;
Fu et al., 2024). Deep learning is gradually becoming a key technique
in research areas such as computer vision, speech recognition, and
natural language processing (Esteva et al., 2021, Chai et al., 2021;
Cochero et al., 2022; Santhanavijayan et al., 2021; Shahamiri, 2021;
Alsayadi et al., 2021; Pandey et al., 2022; Lauriola et al., 2022; Wahab
et al., 2021; Yang et al., 2022; Ye et al., 2022; Li et al., 2022). With
advances in deep learning algorithms and increased computing
power, great progress has been made in biomedical fields such as
predicting protein structures, single-cell technologies (Wen et al.,
2022), and cancer research (Gu et al., 2020; Ji et al., 2023; Shi et al.,
2022). CASP is an international competition to assess the state of the
art in modeling protein structures from amino acid sequences, with
the aim of advancing the problem of computing 3D structures of
proteins from amino acid sequence information (Qian et al., 2018).
With the development of deep learning techniques, more than half
of the teams involved in CASP 14 used deep learning algorithms in
the protein structure prediction task, we employ data analysis of
submissions to the CASP14 and CASP15 competitions as evidence.
Our findings indicate that within CASP14, a total of 88 papers
explicitly reported the use of deep learning methodologies,

compared to 40 papers that did not incorporate such
technologies. Similarly, in CASP15, 68 submissions were
identified as utilizing deep learning approaches, whereas
16 submissions were found to abstain from applying deep
learning techniques. The DL-based AlphaFold2 in CASP14 can
accurately predict the 3D structures of 98.5% of human proteins.
It is even considered to be the second-largest breakthrough in life
sciences after the human genome project (Xu Y. et al., 2021). This
demonstrates the excellent learning capability of deep learning and
accelerates the development of the field of bioinformatics.

AlphaFold3, further extends these capabilities by modeling
interactions between proteins and diverse biomolecules (e.g.,
DNA, RNA, ligands) with atomic precision (Abramson et al.,
2024), demonstrating remarkable success in predicting protein
complexes and multi-domain assemblies. However, the
performance of AI-based tools like AlphaFold is inherently
constrained by the limitations of the PDB. Recent studies
highlight that the PDB’s restricted size and structural bias may
lead to overfitting andmemorization effects in deep learningmodels.
Chakravarty et al. (2024) While AlphaFold3 improves upon its
predecessor in capturing biomolecular interactions, it still
struggles with dynamic systems such as fold-switching proteins.
For example, AlphaFold3 failed to predict the experimentally
observed dimeric conformation of human XCL1, instead
generating a domain-swapped structure inconsistent with
evolutionary restraints. This underscores a critical issue: the PDB
predominantly contains static, thermodynamically stable
conformations, with limited representation of dynamic or multi-
state proteins. Consequently, even advanced models exhibit modest
success rates for known fold-switching cases within their training
sets and perform poorly on novel conformations These limitations
emphasize that current AI tools remain dependent on the structural
diversity present in training data, calling for expanded databases
with transient states and hybrid approaches integrating
physical modeling.

TABLE 1 (Continued) The databases involved in protein structure prediction.

Type Name Description URL API

MolIDE Canutescu and Dunbrack Jr
(2005)

A tool for interactive molecular visualization and analysis,
providing a user-friendly interface for exploring protein
structures and their interactions

https://dunbrack.fccc.edu/molide/
molide.php

No

PRODIGY Xue et al. (2016) A tool for predicting protein-ligand binding affinity, using a
physics-based approach to model the thermodynamics and
kinetics of the binding process

https://milou.science.uu.nL/services/
PRODIGY/

Yes

Reactome Fabregat et al. (2018) A bioinformatics tool for visualizing, interpreting, and
analyzing pathway knowledge

https://reactome.org/ Yes

HHblits Remmert et al. (2012) A tool for protein sequence alignment, using a profile
hidden Markov model (HMM) to align query sequences
against a database of HMMs for protein families and
domains

https://toolkit.tuebingen.mpg.de/
tools/hhblits

Yes

PISA server Krissinel and Henrick
(2007)

A server for analyzing protein-protein and protein-ligand
interactions, providing information about the geometry,
energetics, and surface area of these interactions

www.ebi.ac.uk/pdbe/pisa/ Yes

CRISPR Grissa et al. (2007) A database of CRISPR/Cas systems, providing information
about the classification, function, and diversity of these
systems in bacteria and archaea

https://crispr.i2bc.paris-saclay.fr/ No
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3 Summary of databases

The exponential growth of protein-related data, driven by
advancements in genome sequencing and proteomic techniques,
presents significant opportunities for computational protein
structure prediction methods to reveal novel protein structures.
The Protein Data Bank wwPDB consortium (2018) (PDB) serves as
a repository for experimentally determined 3D structures, primarily
focusing on proteins, nucleic acids, and biological macromolecules.
As of 2023, the PDB contains an impressive collection of
214,108 structures. The Universal Protein Resource (UniProt)
Consortium U. (2019) is a comprehensive database that offers
detailed information on protein sequences and functional

annotations. It consists of three databases: UniProtKB Boutet
et al. (2007), UniParc, and UniRef. Among these, UniProtKB is
the largest component, providing known protein sequences and
related annotation information. UniParc serves as an archive library,
housing copies of all known protein sequences, while UniRef is a
protein clustering database that groups similar proteins, offering
representative sequences and related annotations. Table 1
summarizes the databases involved in protein structure prediction.

Accessing publicly available datasets is essential for leveraging
data in deep learning models. Therefore, ensuring easy downloads or
APIs for dataset availability is crucial. Researchers have the flexibility
to select inputs from diverse data sources and conduct cross-
database comparative analyses. Protein structure prediction, a

TABLE 2 Models used for protein structure prediction.

Model Input Architecture Year URL

SPIN2 O’Connell et al. (2018) Sequence DNN 2018 https://sparks-lab.org

MULTICOM Hou et al. (2020) Sequence DNN 2020 https://github.com/multicom-toolbox/multicom/

APPTEST Timmons and Hewage
(2021)

Sequence CNN 2021 https://research.timmons.eu/apptest

ProALIGN Kong et al. (2022) Sequence, Secondary Structure CNN 2022 NA

2C-BRNN Guo et al. (2018) Sequence RNN 2018 https://github.com/guoyanb/JBCB 2018/

CRNN Zhong and Gu (2020) Sequence RNN 2020 NA

CSI-LSTM Miao et al. (2021) Sequence, Secondary Structure LSTM 2021 https://github.com/eagleccnu/CSI_LSTM/tree/master

PG-GNN Xia and Ku (2021) Sequence GNN 2021 NA

Nahid et al. Nahid et al. (2021) Sequence GNN 2021 NA

DeepMetaPSICOV Kandathil et al.
(2019)

Sequence ResNet 2019 https://github.com/psipred/DeepMetaPSICOV/

Yang et al. Yang et al. (2020a) MSA ResNet 2020 https://github.com/gjoni/trRosetta

ThreaderAI Zhang and Shen (2020) Sequence ResNet 2020 https://github.com/ShenLab/ThreaderAI

ProSPr Stern et al. (2021) Sequence, MSA ResNet 2021 https://github.com/dellacortelab/prospr

Xu et al. Xu et al. (2021a) Sequence ResNet 2021 https://github.com/j3xugit/RaptorX-3DModeling/

NDThreader Wu and Xu (2021) Sequence ResNet 2021 https://github.com/wufandi/DL4SequenceAlignment

Alphafold2 Jumper et al. (2021) Sequence, MSA Transformer-based 2021 https://github.com/deepmind/alphafold

RoseTTAFold Baek et al. (2021) Sequence, MSA Transformer-based 2021 https://github.com/RosettaCommons/RoseTTAFold

trRosetta Du et al. (2021) Sequence Transformer-based 2021 https://yanglab.nankai.edu.cn/trRosetta/

RGN2 Chowdhury et al. (2022) Sequence Transformer-based 2022 https://github.com/aqlaboratory/rgn2/

ESMfold Lin et al. (2023b) Sequence Transformer-based 2023 https://github.com/facebookresearch/esm

ProteiNN Szelogowski (2023) Sequence Transformer-based 2023 https://github.com/danielathome19/ProteiNN-Structure-
Predictor/

AlphaLink Stahl et al. (2023) Sequence, MSA Modified AlphaFold2 2023 https://github.com/lhatsk/AlphaLink/

Alphafold3 Abramson et al. (2024) Sequence, Ligands, covalent
bonds

Transformer-based 2024 https://github.com/google-deepmind/alphafold3

EigenFold Jing et al. (2023) Sequence Diffusion-based 2023 https://github.com/bjing2016/EigenFold/

RFdiffusion Watson et al. (2023) Sequence Diffusion-based 2023 https://github.com/RosettaCommons/RFdiffusion/

OmegaFold Wu et al. (2022) Sequence Transformer-
based, LLM

2022 https://github.com/HeliXonProtein/OmegaFold
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complex and challenging task, requires a range of databases. These
databases can be broadly categorized into six types: protein
sequence, structure, family, interaction, function, and hybrid
methods databases. The PDB exemplifies a protein structure
database, offering experimentally determined 3D structures of
proteins (Burley et al., 2017). The quality and quantity of
structural databases directly determine the level of development
and optimization of structural prediction methods. More structural
data allows for more accurate algorithm training and testing, thereby
improving the accuracy of predictive models. However, it’s also
important to consider complementary datasets providing sequence
information, protein associations, family details, and functional
annotations. Sequence databases like UniProt Consortium U.
(2019) and RefSeq O’Leary et al. (2016) database at NCBI
contain amino acid sequences of numerous proteins, serving as
the foundation for protein structure prediction. The breadth and

depth of sequence databases directly affect the accuracy and
feasibility of protein structure prediction. More abundant
sequence data means a higher chance of finding sequences highly
similar to the target protein, thereby increasing the success rate of
structure prediction. Family databases classify proteins based on
sequence and structural similarities. By providing structural
information of similar family members, the family database
supports accurate model prediction on unknown proteins. In
addition, the functional information of the family database
provides strong support for annotation and prediction of protein
functions. The widely used Pfam database focuses on protein
families, while InterPro(Paysan-Lafosse et al., 2023) integrates
multiple databases, including Pfam, ProSite Sigrist et al. (2012),
and PRINTS Attwood et al. (2000). Additionally, protein family
databases like SMART (Letunic et al., 2012), CDD (Lu et al., 2020),
and PROSITE Sigrist et al. (2012) greatly contribute to

FIGURE 3
Architecture of deep learning models. (a) DNN takes the protein sequence as input and outputs the protein structure after processing through
several hidden layers. (b) The CNN takes the protein structure as input for pre-processing, then, within the convolution layer, features are extracted by
convolutional operations to reduce noise and pool data features remain unchanged while the data is compressed to reduce overfitting. After several
rounds of convolution and pooling operations, the data is compressed. At the same time, the data is abstracted into features with higher information
content, and finally, through the fully connected layer, the results are obtained. (c) RNN takes protein sequence data as input and increases the number of
layers of the network for vertical expansion, using chaining and recursion to finally obtain prediction results. (d) LSTM can solve the long-term
dependency problem found in general RNN, as well as issues such as long-termmemory and gradients in back propagation. (e)GRU, a variation of LSTM,
runs more efficiently than LSTM networks. GRU can achieve comparable results and can improve training efficiency to a great extent. (f) The amino acid
sequence of the protein is used as input in GNN to abstract the protein structure as a graph structure. The features of nodes and edges are extracted by
edge embedding and node embedding to obtain edge translation path and node translation path. In node translation path, each amino acid is considered
as a node within a graph, with the node’s feature vector typically encompassing the physicochemical properties of the amino acid. The translation of
edges focuses on the interactions between amino acids in the protein sequence. In GNNs, edges represent the relationships between nodes (amino
acids), and by updating the weights of these edges, it’s possible to capture these interactions, thereby reflecting the three-dimensional structural
characteristics of proteins in the graph. The geometry of the 3D protein backbone structure is then predicted after the distance geometric graph
representation and the dihedral geometric graph representation, respectively. (g) Deep residual neural network takes protein templates and query
sequences as input and predicts the protein 3D structure by the input feature tensor. (h) Large language models train a processed data, often using
techniques like transfer learning from pre-trained models.
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understanding protein structure-function relationships. Interaction
databases such as STRING Szklarczyk et al. (2021), I2D Brown and
Jurisica (2005) and BioGrID Oughtred et al. (2021) provide valuable
information on protein-protein interactions, including functional
and regulatory associations. Interaction information enriches the
context of structure prediction, allowing researchers to not only
predict the structure of individual proteins but also to predict the
interactions and arrangements of proteins within complexes.
Function databases like CATH Sillitoe et al. (2021), PIR Wu
et al. (2002) and Gene Ontology Consortium G. O. (2019), aid in
comprehending the connection between protein structure and
function. Functional information provides important clues for
predicting structures, especially in predicting protein functional
domains and active sites, helping to improve the relevance and
accuracy of structure predictions. Hybrid methods databases,
including ModBase (Pieper et al., 2014), Robetta Kim et al.
(2004), and SWISS-MODEL Waterhouse et al. (2018), offer
integrated tools and resources that combine multiple approaches.
The comprehensive information from hybrid databases makes
structure prediction more holistic and accurate, especially for
complex prediction tasks that require an integrated consideration
of sequence features, structural patterns, and functional
information.

4 Advances in deep learning for protein
structure prediction

Machine learning techniques have contributed substantially to
the generation of innovative concepts in the field of protein structure
prediction, resulting in notable advancements. Most machine
learning methods for protein structure prediction have focused
on methods based on co-evolution (Bonetta and Valentino, 2020;
S Bernardes, 2013; Zhang and Zhang, 2019; Yang et al., 2014). The
accuracy of these methods depends on the number of homologous
protein sequences available in the database. Protein structure
prediction is challenging when there are no target proteins with
homologous protein sequences in the database. Machine learning
models with simpler structures are unable to predict them
accurately, whereas deep learning can learn deeper and more
complex structural features; thus, deep learning models are

considered for protein structure prediction. Deep learning
methods can be utilized to integrate and extract features from
these various data sources, allowing for accurate and efficient
prediction of protein structures. Table 2 summarizes the deep
learning models used in the protein structure prediction. Table 3
lists the available online web servers for protein structure prediction.
Integrating data from multiple sources can lead to more accurate
predictions of protein structure and function. One example is the
AlphaFold algorithm, which combines PDB data, protein sequence
data from UniProt, and multiple sequence alignment data from
publicly available databases. The utilization of these data sources in
combination with deep learning approaches has led to significant
advancements in the field of protein structure prediction, offering
new avenues for drug discovery and protein engineering. We next
analyze and summarize deep learning models such as deep neural
networks, convolutional neural networks, recurrent neural
networks, graph neural networks, and deep residual neural
networks for protein structure prediction.

4.1 Deep neural networks

Deep neural networks (DNNs) are also called multilayer
perceptrons. The layers within a DNN can be divided into three
categories: the input layer, the hidden layer, and the output layer,
with nodes fully connected between the layers. The framework of the
model is shown in Figure 3a. The amino acid sequence is input to the
DNN after one-hot encoding or embedding representation, and
after the processing through the hidden layers, a number of protein
structures are finally output, with the structure having the highest
score as the final prediction.DNNs have been used by many
researchers to model protein structure prediction. Aaron Hein
et al. used artificial neural networks (ANNs) to optimize the
encoding of protein primary sequence structure, which helps in
the prediction of protein secondary structure and protein tertiary
structure, thus improving the quality of protein structure prediction
Hein et al. (2021). John Jumper et al. designed important DNN-
based protein 3D structure model, called MULTICOM.
MULTICOM is an automated protein structure prediction system
that involves three major components: contact distance prediction
based on deep convolutional neural networks, distance-driven
template-free modeling, and protein model ranking that’s
empowered by deep learning and contact prediction (Hou et al.,
2019; Hou et al., 2020; Wang et al., 2010). In general, deep neural
networks can assist in predicting protein primary, secondary, and
tertiary structures. These networks have shown promise in
optimizing predictions for primary and secondary structures
(Senior et al., 2019; Du et al., 2021; Timmons and Hewage, 2021;
Senior et al., 2020; Mulnaes et al., 2020; Ju et al., 2021). While deep
neural networks (DNNs) have demonstrated remarkable success in
predicting secondary and tertiary structures of globular proteins,
These methods excel when evolutionary or structural homologs exist
in training datasets (e.g., the PDB), leveraging coevolutionary
patterns to infer folds. However, their efficacy diminishes for
non-globular proteins, such as intrinsically disordered proteins
(IDPs) or fold-switching systems, where training data are sparse
or conformational diversity is critical. For example, AlphaFold often
mispredicts alternative folds or dynamic conformations due to

TABLE 3 Web servers available for protein structure prediction.

Web server URL

AlphaFold3 https://alphafoldserver.com/

D-I-TASSER https://zhanggroup.org/D-I-TASSER/

Robetta https://robetta.bakerlab.org

I-TASSER https://zhanggroup.org/I-TASSER/

Phyre2 http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index

Modeller https://salilab.org/modeller/

SWISS-MODEL https://swissmodel.expasy.org

ModeBase https://modbase.compbio.ucsf.edu/modweb/

DMFold https://zhanggroup.org/DMFold/
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overreliance on static training-set structures (Chakravarty et al.,
2025). Similarly, DNNs struggle with membrane proteins and IDPs,
where sequence-structure relationships diverge from globular
paradigms (Agarwal and McShan, 2024).

4.2 Convolutional neural networks

A convolutional neural network (CNN) is a type of neural
network. It is a feed-forward neural network with a deep
structure and convolutional calculation. The structure of the
CNN is shown in Figure 3b. The amino acid sequences are
converted to a two-dimensional matrix as input after being
represented by solo thermal encoding or embedding and pre-
processed using strategies such as normalization, and principal
components analysis. It then enters the convolution layer, where
the convolutional operations extract features, enhance signal
characteristics, and reduce noise. Following this, after pooling,
the data features remain unchanged while the data is
compressed, thereby reducing overfitting. After several rounds of
convolution and pooling operations, the input data is abstracted into
features with higher information content. These then enter the fully
connected layer to generate prediction results based on the final
extracted data features.

Gabriel Cretin et al., leveraging the capabilities of deep neural
networks, proposed the PYTHIA method. This approach
incorporates a deep residual incidence neural network with a
convolutional block attention module to predict the local
conformation of a protein directly from the amino acid sequence
Cretin et al. (2021). TBM, which aims to construct structural models
by replicating and refining the structural framework of other known
proteins, is an accurate method for protein structure prediction.
However, it is challenging to identify distant homologous templates,
and as a result, the accuracy of TBM rapidly decreases when the
evolutionary relationship between the target and the template
diminishes. Lupeng Kong et al. proposed a novel deep learning
method, named ProALIGN, that predicts accurate
sequence–template comparisons (Kong et al., 2022). Protein
alignment are represented as a binary matrix, after which a deep
convolutional neural network is employed to predict the optimal
permutation from the query protein and its template. This method
can enhance the accuracy of matching target proteins from the TBM
method, with the template proteins in the protein database. This
improves subsequent protein structure prediction and enhances the
overall accuracy of protein structure prediction. Protein secondary
structure prediction is crucial for studying protein structure and
function. Both traditional machine learning methods and deep
learning neural networks have been utilized, and have made great
progress in approaching the theoretical limits. Shiyang Long et al.
constructed a contextual convolutional neural network (Contextnet)
with high accuracy on the JPred and CASP13 datasets (Long and
Tian, 2019). The CNN also successfully integrated 1D structural
features, 2D contact information, and 3D structural quality scores to
improve protein model quality assessment, where contact prediction
using convolutional neural networks was first shown to consistently
improve protein model rankings. Convolutional neural networks
can predict tertiary structures directly from protein as well as
structural sequences, and Timmons et al. proposed the use of

neural networks and simulated annealing algorithms to predict
tertiary sequences from peptide primary sequences to help
accelerate the peptide drug design process (Timmons and
Hewage, 2021). A large convolutional residual neural network
proposed by Jinbo Xu et al. can predict the correctly folded
structures of 26 of the 32 free model targets of CASP13 and L/
5 long-range contacts with an accuracy of over 80% Xu
J. et al. (2021a).

4.3 Recurrent neural networks

Recurrent Neural Networks (RNNs) are a class of neural
networks designed to handle sequential data, performing
recursive operations along the sequence’s evolution direction. All
nodes (recurrent units) are connected in a chain-like manner. The
RNN can also be expanded vertically by increasing the number of
layers of the network as in other neural networks, as shown in
Figure 3c. Long short-term memory (LSTM) is a temporal recurrent
neural network designed to solve the long-term dependency
problem of general RNNs, all of which have a chained form of
repeating neural network modules. A recurrent unit is a type of
RNN. Like LSTM, it was proposed to solve problems such as long-
term memory and gradients in back propagation. The LSTM model
is shown in Figure 3d. A GRU is a simple variant of LSTM. It is
simpler in structure, is no less effective, and is more efficient in
operation than LSTM networks, making it a popular network
structure at present. The GRU can achieve comparable results,
which can improve the training efficiency to a great extent. Its
structure is shown in Figure 3e. Proteins exhibit strong sequential
characteristics at the primary structure level, and models such as
RNN, LSTM, and GRU can predict their 3D tertiary structures based
on this sequence information.

Protein secondary structure provides crucial structural insights,
and its accurate prediction from primary sequences is pivotal in
protein research. The local interactions and neighboring residues in
the primary sequence determine the secondary structure formation.
RNNs, LSTM networks, and GRUs have demonstrated remarkable
performance in predicting protein secondary structures from amino
acid residue information and capturing long-range interactions.
Yanbu Guo et al. proposed 2D convolutional bidirectional
recurrent neural networks (2C-BRNNs) (Guo et al., 2018) to
improve the accuracy of secondary structure prediction by
extracting discriminative local interactions between amino acid
residues and then further capturing the interactions between
amino acid residues using bidirectional gated recurrent units or
bidirectional LSTM. AK Sharma et al. proposed the use of deep
RNNs to predict the secondary structure of proteins from primary
sequences. Bidirectional LSTM models (Sharma and Srivastava,
2021) have been used to extract past and unknown residue
information from primary sequences, on which the description
and understanding of protein structure rely heavily. In protein
NMR studies, it is more convenient to predict the secondary
structure from chemical shifts than from inter-nuclear distances.
Zhiwei Miao et al. proposed a deep neural network based on bi-
directional LSTM (Miao et al., 2021) to predict the 3-state secondary
structure of proteins using the NMR chemical shifts of the backbone.
Wei Zhong et al. proposed clustered RNNs as a method for protein
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tertiary structure prediction (Zhong and Gu, 2020) using RNNs
from multiple sample clusters organized in a hierarchical tree
structure to learn local sequence–structure relationships at
different granularity levels. Their model can learn the non-linear
sequence–structure relationships of proteins more effectively than a
single machine learning model. Understanding protein
sequence–structure relationships is key to using sequence
information to predict the 3D structure of proteins. J Antony
et al. combined LSTM and bidirectional LSTM neural network
architectures for predicting the tertiary structure of proteins from
primary sequences (Antony et al., 2021), and their results showed
that bidirectional LSTM networks with primary sequence and site-
specific scoring matrix data as input had high accuracy. Lina Yang
et al. were able to better handle long sequences by building a GRU
neural network that can handle long sequences for learning long-
term dependencies well (Yang L. et al., 2020). They combined batch
normalization with GRU to construct a new network, and a
position-specific scoring matrix was used to correlate with other
features to build a completely new feature set, thus effectively
improving prediction accuracy.

4.4 Graph neural networks

Graph neural networks (GNNs) have become a research hotspot
in areas such as natural language processing, computer vision, and
traffic prediction. Graph convolutional networks have shown
practical utility in the field of bioinformatics. The protein
backbone holds proteins together and produces the tertiary
structure of a protein. The amino acid sequence of a protein is
used as input to predict the geometry of the 3D protein backbone
structure. This is a sequence-to-structure prediction task that
abstracts the protein structure to that of a graph, extracting the
features of the nodes and edges, in the process shown in Figure 3f.

Determining the three dimensions of a protein from its sequence
is one of the most challenging problems in biology. Geometric deep
learning has been highly successful in the fields of social networking,
chemistry, and computer graphics. Although it is natural to render
protein structures as 3D shapes, few existing studies have examined
protein structures directly as graphs. Tian Xia et al. explored the
geometric deep learning and proposed a graphical neural network
architecture to address these challenges (Xia and Ku, 2021). The
proposed protein geometric GNN models distance geometric
representations and dihedral geometric representations by
geometric graphical convolution. This study shed new light on
the study of protein 3D structures. The authors validated the
effectiveness of GNNs on multiple datasets. AlphaFold2 and
related systems use deep learning to predict protein structures
from co-evolutionary relationships encoded in MSAs. Despite
recent dramatic improvements in accuracy, the following
challenges remain: (i) predicting proteins that cannot generate
MSAs templates and that evolve rapidly; (ii) rapidly exploring
designed structures; and (iii) understanding the rules of
spontaneous polypeptide folding in solution. Ratul Chowdhury
et al. reported the development of an end-to-end distinguishable
recursive geometric network (RGN) that can predict protein
structures without using MSAs from an individual protein
sequence to predict protein structure (Chowdhury et al., 2022).

Compared to AlphaFold2, the RGN is superior in predicting distal
protein structures. The prediction of protein secondary structure
based on amino acids is important for gathering information about
protein features and their mechanisms, such as the catalytic function
of enzymes, biochemical reactions, and DNA replication. Tamzid
Hasan Nahid et al. proposed a new technique for predicting protein
secondary structure using GNNs Nahid et al. (2021). First, a graph is
drawn from a dataset using primary sequences (amino acids). The
entire graph is then iterated sequentially using a GNN to summarize
the information of neighboring nodes. The method has high
accuracy in the prediction of eight states of protein
secondary structure.

4.5 Deep residual neural networks

Deep learning networks can improve the learning efficiency by
increasing the number of layers, but the classification and
recognition prediction of deeper networks are not improved by
increasing the number of layers. Rather, the gradient disappears due
to the stacking of layers. Deep residual neural networks can deepen
the network and solve the gradient disappearance problem at the
same time. Figure 3g shows the protein 3D structure predicted by
ResNet after inputting the template structure and query sequence to
the feature tensors.

Protein structure prediction (PSP) is considered to be a complex
problem in computational biology. Although co-evolution-based
approaches have made significant progress in PSP, it is still a
challenging and unsolved problem. Predicting contacts and
distances between residues from co-evolutionary data using deep
learning has greatly advanced protein structure prediction (Wu and
Xu, 2021). F Wu et al. proposed a new method, New Deep Learning
Threader (ND Threader), to refine sequence–template alignments
from predicted protein distances. It is a good premise for protein
structure prediction. The method is based on TBM and uses an
integration of deep ResNet (residual neural network) and
conditional random field to align query proteins to templates
without using any distance information. The sequence–template
alignment and input to deep ResNet were then used to predict the
interatomic distance distribution, and a 3D model was constructed
using PyRosetta. A deep residual network was developed by Jianyi
Yang et al. to predict the direction of residuals in addition to distance
(Yang et al., 2020a). This model assigned higher probabilities to
newly designed proteins and helped identify the key residues that
determine folding. The method is expected to be used for a wide
range of protein structure prediction and design problems. S. Geethu
et al. proposed a new method for predicting inter-residue distances
and dihedral angles using a deep ResNet architecture designed to
generate an average of 125 homologous sequences from a set of
custom sequence databases (Geethu and Vimina, 2021). These
sequences were used to generate input features. As a result of the
neural network, a structure library was generated, from which the
lowest potential structure was selected as the final predicted 3D
protein structure. H Zhang et al. showed that a new TBM approach,
called ThreaderAI (Zhang and Shen, 2020), improved protein
tertiary structure prediction. ThreaderAI formulated the task of
querying sequence to template alignment as a computer vision and a
classical pixel classification problem and applied deep residual
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neural networks for the prediction. ThreaderAI first uses deep
learning to predict the probability matrix of residue–residue
alignment by integrating sequence profiles, predicted sequence
structural features, and predicted residue–residue contacts and
then builds a template–query alignment by applying a dynamic
programming algorithm to the probability matrix using the aligned
template for structure prediction with high accuracy.

4.6 Transformer

The transformer is a deep learning architecture that has gained
widespread popularity in natural language processing tasks,
particularly in the context of machine translation. The key
innovation of the transformer is its ability to capture long-range
dependencies between input sequences, which is particularly
relevant in the case of protein sequences, where long-range
interactions between amino acids are critical to determining the
final structure (Jiang et al., 2023). The multi-head attention
mechanism, on the other hand, enables the model to attend to
different parts of the sequence simultaneously, allowing it to capture
both local and global features of the protein. For example,
Alphafold2, the researchers utilized a combination of the
transformer architecture and multi-head attention mechanism,
along with other innovations such as the use of distance
constraints and evolutionary information, to predict protein
structures with unprecedented accuracy. Similarly, other models
such as RosettaFold and ESMfold have also incorporated the
transformer architecture and multi-head attention mechanism,
with impressive results. The quality of the input MSAs is
therefore a key factor in determining whether a high-accuracy
model can be produced. DMFold algorithm (Zheng et al., 2024),
which excelled in the protein complex structure prediction category
of the recent CASP15 competition by integrating DeepMSA2 with
the state-of-the-art AlphaFold2 modeling approach. Compared with
existing MSA construction methods, one of the major advantages of

DeepMSA2 lies in the iterative search and model-based preselection
strategy, which can result in MSAs with more balanced alignment
coverage and homologous diversity. The 2024 release of
AlphaFold3 by DeepMind Abramson et al., 2024) represents a
revolutionary breakthrough in biomolecular structure prediction.
Unlike its predecessor AlphaFold2 which focused solely on protein
structures, AlphaFold3 achieves end-to-end joint prediction of
proteins, nucleic acids (DNA/RNA), small molecule ligands, and
their complexes. The architecture replaces AlphaFold2’s Evoformer
with a Pairformer module, reducing reliance on multiple sequence
alignments (MSAs) while improving data utilization efficiency. The
framework introduces a geometric diffusion model that enables
probabilistic sampling of complex conformations, significantly
enhancing the modeling capability for flexible interfaces and
allosteric effects, thereby extending its applicability to a broader
range of biomolecules.

4.7 Diffusion-based model

Although AlphaFold2 and alternative models such as
RoseTTAFold Baek et al. (2021), ESMFold Lin et al. (2022), and
OmegaFold (Wu et al., 2022) are widely considered to have
successfully addressed the challenge of predicting protein
structures from sequences, their effectiveness is primarily limited
to globular proteins with a clear counterpart or homologous
crystallized protein in the training dataset (the PDB). These
models are developed and trained as deterministic mappings
from input (sequence or MSA) to output (structure), which
limits their ability to model structural ensembles. As generative
models, diffusion-based models learn an iterative, stochastic
generative process that model multimodal data distributions and
generate samples efficiently (Watson et al., 2022), applied in many
domains, including molecules generation (Hoogeboom et al., 2022),
protein-ligand complex structure generation (Nakata et al., 2023)
and protein structure generation (Anand and Achim, 2022; Trippe

FIGURE 4
Diagram illustrating the future research hotspots and application scope of deep learning-based protein structure prediction. Protein structure
prediction is the basis for disease diagnosis, drug repositioning, and vaccine development research. Future research can predict the 3D structure of
proteins, including obtaining remote homologous sequences, interpretability of protein structure predictions, and protein domain boundary prediction,
by DNN, CNN, GNN, RNN, LSTM, ResNet, and LLM deep learning algorithms.
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et al., 2022; Wu et al., 2024; Fu et al., 2023). There have been a
limited number of diffusion models designed for forward problems
involving protein structures (Nakata et al., 2023; Qiao et al., 2022).
However, a recent study firstly designed a diffusion generative
modeling framework (called EignFold) for protein structure
prediction from a fixed protein sequence. EignFold (Jing et al.,
2023) is a novel harmonic diffusion process that models the
molecule as a system of harmonic oscillators and explored the
application of diffusion modeling to protein structural ensembles,
aiming to develop a tool for modern structure prediction
frameworks.

4.8 Large language model

Large language models (LLMs) are built on a transformer with
many parameters which enable the model to better understand the
relationships between different elements of the input Høie et al.
(2022). They have recently applied to machine translation, question
answering, language-image pre-training with emerging
functionalities, such as performing higher-level reasoning and
generate lifelike images and text. Recent advances have proved
the power of large language models in processing the protein
sequence databases (Lin Z. et al., 2023; Wu et al., 2022; Fang
et al., 2022). The primary, secondary, tertiary, and quaternary of
protein structures bear an analogy to the letters, words, sentences,
and texts of human language Hu et al. (2022). These characteristics
of reused and rearranged of modular elements significantly benefit
the development of protein large-scale language models. For
example, Meta AI, FAIR Team developed a high accuracy end-
to-end atomic level protein structure prediction method using the
individual sequence of a protein, called ESMFold. ESMFold has up
to 15 billion parameters and is the largest protein language model to
date (Lin et al., 2022). Different from the AlphaFold2, RoseTTAFold
and other related models that use deep learning and MSAs (Jumper
et al., 2021; Yang et al., 2020a; Baek et al., 2021), Chowdhury et al.,
proposed an end-to-end protein language model (named
AminoBERT) (Chowdhury et al., 2022) using single protein
sequences. These protein large language models open up new
possibilities for protein structure prediction, especially proteins
that have not been structurally characterized before.

4.9 Applications in disease-related protein
structure prediction

Deep learning methods for protein structure prediction have
demonstrated significant practical value in addressing urgent public
health challenges. A notable example is the application of AlphaFold
during the COVID-19 pandemic. In early 2020, when SARS-CoV-
2 was first emerging, DeepMind rapidly deployed AlphaFold to
predict structures of several understudied viral proteins, including
the membrane protein, protein 3a, Nsp2, Nsp4, Nsp6, and Papain-
like proteinaseTeam (2020). These predictions were released to the
scientific community before experimental structures were available,
providing valuable insights for understanding viral mechanisms and
accelerating therapeutic development. The accuracy of these
predictions was later validated when the experimental structure

of ORF3a protein was determined, confirming AlphaFold’s ability to
predict novel protein folds accurately. As the pandemic evolved,
deep learning methods continued to provide crucial insights into
new variants. Yang et al. utilized AlphaFold2 to predict the
structures of S, M, and N proteins in the Omicron variant, with
particular emphasis on analyzing the structural alterations in the
RBD and NTD regions of the S protein and their potential
implications for viral transmission and immune evasion. This
study provided crucial structural insights for the development of
vaccines and therapeutic strategies targeting the Omicron variant
(Yang et al., 2021). More recent applications have extended to other
emerging diseases. For instance, Sahu et al. employed RoseTTAFold
to predict protein structures of Monkeypox virus targets. By
combining these structural predictions with computational drug
screening, they identified potential FDA-approved drugs that could
be repurposed to target these viral proteins (Sahu et al., 2023). This
approach demonstrates how AI-powered structure prediction can
accelerate the drug discovery process by enabling rapid
identification of therapeutic candidates for emerging diseases.
These applications highlight how deep learning methods have
transformed from purely academic tools into practical solutions
for urgent public health challenges, enabling rapid response to
emerging diseases through structure-based drug discovery and
therapeutic development.

5 Model validation

Deep learning models are often evaluated by cross-validation
(Berrar, 2019; Liu et al., 2021), in which the original observation
dataset is divided into a training set for model training and a separate
set for evaluating model performance (Zhong and Gu, 2020; Cretin
et al., 2021; Akbar et al., 2021; Xu et al., 2020). The most commonly
used cross-validation methods include hold-out cross-validation
(Ziggah et al., 2019), k-fold cross-validation (Wong and Yeh,
2019), and leave-one-out cross-validation (LOOCV) Magnusson
et al. (2020). Hold-out cross-validation splits the dataset into two
mutually exclusive sets; that is, the training and test sets have no
cross-over samples. This requires that the number of samples in the
training set is at least 50% of the total number of samples. However,
there are limitations to hold-out cross-validation, as this validation
method only performs one division, and when the division of the
dataset is not performed randomly, the evaluation results are subject
to chance. This can lead to underfitting or overfitting when the
training and test sets are not evenly distributed. K-fold cross-
validation is a widely used cross-validation technique. It divides
the dataset into k equally-sized, mutually exclusive sets at random.
Then, the k sets are used as the test set and the rest as the training set,
and the final validation result is averaged after k validations. As each
data appear once in the validation set and k-1 times in the training
set, this will significantly reduce underfitting. The majority of the
data in the dataset is used for training, and the possibility of
overfitting is also reduced. LOOCV is a special type of k-fold
cross-validation. In LOOCV, the value of k is the number of
samples in the dataset. One sample at a time is used as the test
set and the rest as the training set, which provides the closest
expectation to training on the entire test set. LOOCV, being the
most objective method, is therefore used by many researchers to test
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the ability of various prediction methods. However, when the
number of proteins in a given set is not large enough, the
sequential exclusion of each protein from the set may result in a
severe loss of information. In such cases, the leave-one-out test
cannot be utilized.

Q3 accuracy and Q8 accuracy are among the most frequently
used evaluation metrics by researchers in protein secondary
structure prediction Drori et al. (2018), protein structures are
diverse, but the torsion angles and hydrogen bonds in protein
structures are repetitive, allowing the classification of protein
residues into relatively few structural categories. In the 1980s, the
Dictionary of Secondary Structure Patterns (DSSP) proposed eight
residue categories, which were later combined into three categories
in order to ease the difficulty of protein structure prediction.

Qm � 100 × ∑Nres
i�1 Mi

Nres
(1)

where m = 3 and m = 8 is referred asQ3 andQ8 accuracy, respectively.
Nres is the total number of residues, and Mi is correctly predicted
number of residues in state i Equation 1. Thus, Q8 and Q3 provide the
overall percentage of trimers and octamers that have their residues
correctly predicted. The root mean square deviation (RMSD) Maiorov
and Crippen (1994) is a traditional and commonly used metric for
assessing the quality of predicted structures.

D A, B( ) �
���������������������

1
n n − 1( )/2 ∑

i<j
dA
ij − dB

ij( )2√
(2)

where n is the number of atoms in protein, dAij and dBij are the
corresponding distances between the ith and jth atoms Equation 2.
The RMSD calculates the average distance between equivalent atom
pairs in two best stacked protein structures. Typically, only
backbone atoms are involved in the RMSD calculation.

TM-score (Zhang and Skolnick, 2005) is a metric for assessing
the topological similarity of protein structures. TM-score weights
smaller distance errors more heavily than larger distance errors,
making the score values more sensitive to global folding similarity
compared to local structural variation.

TM − score � max
1

Ltarget
∑Laligned
i�1

1

1 + di
d0 Ltarget( )( )2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3)

Here,Laligned is the number of residues in the aligned regions, Ltarget is
the length of the target protein, di is the distance between
corresponding residues in the target and predicted structures,
and d0(Ltarget) is a normalization factor adjusted based on the
target protein’s length, facilitating comparisons across proteins of
different sizes Equation 3. The TM-score introduces a length-
dependent scale to normalize the distance error, making the size
of the TM-score independent of the length of the random structure
pair, thus allowing the TM-score to refine traditional metrics such as
RMSD. The Global Distance Test (GDT-score) is calculated based
on the largest set of residue-residue pairs that fall within a defined
distance from the demarcation line given the superimposed
structure (Chen and Cheng, 2022). The Global Distance Test
Total Score (GDT_TS) (Li et al., 2016) is a threshold-based
measure that determines the topology.

GDT − TS � 1
4

GDT1 + GDT2 + GDT3 + GDT4( ) (4)

Each GDTi score is calculated as the percentage of Cα atoms in the
predicted structure that are within the corresponding distance
threshold from the native structure, multiplied by 100. GDT1 ,
GDT2, GDT3 and GDT4 are the scores for the 1.00Å, 2.00Å, 3.00Å,
and 4.00Å thresholds, respectively Equation 4. GDT_TS is the most
widely used scoring method to assess the overall quality of a model
after CASP4. GDT scores typically range from 0 to 100, with higher
scores indicating a more perfectly constructed target backbone
conformation. The metric also shows a strong dependence on
protein length. GDT_TS allows comparison of results within and
between experiments, and this focus on similarity allows the
measure to distinguish models that are poor, but contain locally
correct fragments, from those that are globally wrong in a way that
other related measures cannot.

In recent years, researchers have developed numerous quality
assessment (QA) methods to evaluate the accuracy of predictions for
protein quaternary structures. One widely used metric is LDDT/
pLDDT (Local Distance Difference Test/Probability Local Distance
Difference Test), which measures the local structural similarity
between predicted and native structures. This metric calculates
the difference between predicted and native structures at each
residue and averages these differences over the entire structure.
LDDT/pLDDT has proven effective in evaluating the accuracy of
predicted protein structures, especially when experimental data is
unavailable. Another metric, DockQ Score, is specifically designed to
evaluate the accuracy of predicted protein-protein docking
structures. This composite score considers various aspects of the
predicted structure, including shape complementarity, electrostatics,
and desolvation energy. DockQ Score has also demonstrated
effectiveness in evaluating the accuracy of predicted protein-
protein docking structures when compared to other available
metrics. For example, studies such as Chen et al. (2022) and
Chen et al. (2023) have utilized these metrics to assess protein
structure predictions.

6 Conclusion

Protein structure prediction has a crucial role in bioinformatics
because protein structure determines protein function. The study of
protein structure is fundamental to research areas such as drug
repositioning, disease treatment, and protein function. The study of
protein structure prediction has received increasing attention from
researchers with the continuous development of deep learning
techniques and especially the use of deep learning models to
accomplish protein structure prediction tasks. This paper
provides a summary of protein structure prediction based on
deep learning, and it is easy to see that the addition of deep
learning methods has made a significant contribution to protein
structure prediction. As shown in Figure 4, in the coming years, we
are likely to see more advances in protein structure prediction.

For template modeling, all protein structure prediction methods
take multiple sequence alignment as input. Therefore, access to
homologous sequences becomes the main reason for improved
prediction results. Searching for remote homologous sequences in
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databases can be a difficult research problem. Finding sequence
information in major sequence databases to generate multiple
sequence comparisons and using more powerful search
algorithms to generate multiple sequence comparisons quickly
offer possibilities in this field.

Deep learning models are often considered black-box systems
because the internal decision-making processes are not easily
interpretable to humans. While the models consistently make
predictions, the intricate workings of how input data is transformed
into predictions can be complex and not straightforward to understand.
This is also true in bioinformatics, so research into the interpretability of
deep learning models could enhance the interpretability of the
sequence-to-structure process in protein structure prediction. In
addition, the sequence–structure–function relationship of proteins
can be complemented and refined.

The task of single-domain protein structure prediction has been
accomplished to some extent, and the correct assignment of domain
boundaries from sequences is a key step toward accurate multi-domain
protein structure prediction. Future work could be carried out in the
area of deep learning-based prediction of multi-domain protein
structures. Zheng et al. (2021) developed a contact-based domain
boundary prediction algorithm, FUpred, for detecting protein
domain boundaries, which could be a new trend in protein structure
research. The majority of protein structure prediction methods,
including AlphaFold2, focus primarily on predicting static protein
structures, which is a significant limitation, but proteins undergo
conformational changes and flexible motions under physiological
conditions, which are important for their functions. As a unified
structure prediction tool, AlphaFold3 has significantly expanded its
prediction scope, capable of not only predicting protein structures but
also the structures and interactions of various biomolecules including
DNA, RNA, antibodies, small molecules. While achieving such
comprehensive coverage, AlphaFold3 has also improved prediction
accuracy, particularly demonstrating significant advances in predicting
protein-DNA complexes and protein-antibody complexes. However,
AlphaFold3 still faces certain limitations. Approximately 4.4% of
predictions exhibit chirality mismatches or steric clashes, particularly
prominent in large complexes. Furthermore, similar to its predecessors,
AlphaFold3 primarily focuses on predicting static conformations and
may not fully capture protein dynamic transitions. These challenges
indicate that despite major breakthroughs in deep learning-based
structure prediction, there remains substantial room for
improvement in enhancing prediction accuracy and molecular
dynamics simulation. Structure prediction is only the first
step. Challenges remain in using these structures for better
functional annotation and designing new proteins. In summary,
despite the breakthrough, there is still ample room for improvement
in protein structure prediction, such as handling complex cases,
capturing dynamic features, improving time efficiency, and reducing
reliance on experimental data. Future efforts are needed to address these
challenges and push the boundaries of this field.

With the advancing development of protein structure prediction
techniques, they will play an even more important role in biology
and medicine. For example, in the development of vaccines, proteins
act as scaffolds for immunogens. In disease treatment, proteins act as
receptors that bind to drugs for pharmacological responses and act
as drug carriers that integrate multiple targeting cues. Proteins are
designed to make drugs active in specific environments to reduce

side effects. The importance of protein structure prediction is
reflected in the need for protein structures to support research in
all of these application areas. As protein structure data grow
exponentially and provide a larger platform for protein structure
prediction, the possibility of using these data to create new
methodological techniques is opened.

7 Key points

• A comprehensive review and summary of datasets involved in
protein structure prediction, providing an up-to-date
overview of available resources in this field.

• Protein structure prediction based on deep learning has been
receiving increasing attention. These approaches can capture
underlying features and grasp the complex structures of amino
acid sequence information.

• Evaluation metrics are clearly listed for the evaluation of
computational protein structure prediction model.

• There are several challenges to future trends for protein
structure prediction, including homologous sequences
generation, interpretable deep learning approaches and
automation pipeline.
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