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Liver cancer exhibits diverse molecular characteristics and distinct immune cell
infiltration patterns, which significantly influence patient outcomes. In this study,
we thoroughly examined the liver cancer tumor environment by analyzing data
from 419,866 individual cells across nine datasets involving 99 patients. By
categorizing patients into different groups based on their immune cell
profiles, including immune deficiency, B cells-enriched, T cells-enriched and
macrophages-enriched, we better understood how these cells change in various
patient subgroups. Our investigation of liver metastases from intestinal cancer
uncovered a group of mast cells that might promote metastasis through
pathways like inositol phosphate metabolism. Using genomic and clinical data
from The Cancer Genome Atlas, we identified specific cell components linked to
tumor characteristics and genetics. Our detailed study of cancer-associated
fibroblasts (CAFs) revealed how they adapt and acquire new functions in the
tissue environment, highlighting their flexibility. Additionally, we found a
significant connection between CAF-related genes and the prognosis of
hepatocellular carcinoma patients. This research provides valuable insights
into the makeup of the liver cancer tumor environment and its profound
impact on patient outcomes, offering fresh perspectives for managing this
challenging disease.
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1 Introduction

Liver cancer represents a formidable challenge in oncology, with
an estimated 906,000 new cases and nearly 830,000 deaths each year
(Rumgay et al., 2022). The disease is characterized by extensive
molecular heterogeneity between individuals and within the same
tumor in a single patient (Losic et al., 2020). This intricate variability
renders the treatment of liver cancer a complex undertaking and
impairs our understanding of its origins and progression. To
effectively address this challenge, it is imperative to
comprehensively explore the heterogeneous nature of liver
cancer. Such an investigation has the potential to unveil the
underlying mechanisms driving liver cancer development. It may
pave new avenues for innovative therapeutic strategies in the fight
against this aggressive malignancy.

The heterogeneity of the tumor immune microenvironment in
liver cancer has been a hot topic in cancer research. In previous
studies, the heterogeneity of the tumor immune microenvironment
was mainly characterized based on pathological analysis and bulk
transcriptome sequencing (Gao et al., 2021; Dong et al., 2022; Gao
et al., 2019), which cannot accurately resolve immune cell
composition and may ignore the critical subsets present at lower
frequencies. With the development of single-cell sequencing
technology, the heterogeneity of the liver cancer immune
microenvironment has been further appreciated in recent years.
A recent single-cell sequencing technology study conducted a
detailed analysis of the liver cancer immune microenvironment
and identified four subtypes: immune-suppressive, immune-active,
mixed, and normal (Xue et al., 2022). Additionally, it has been
suggested that the heterogeneity of the liver cancer immune
microenvironment may be an essential factor contributing to
drug resistance (Maacha et al., 2019), recurrence (Zhang et al.,
2018), and poor prognosis (Liu et al., 2020). Overall, the
heterogeneity of the tumor immune microenvironment in liver
cancer is a complex and vital field that requires further
investigation and exploration.

Cancer-associated fibroblasts (CAFs) are a distinct group of
fibroblasts that reside within the tumor microenvironment and
promote cancer progression through the secretion of various
cytokines and signaling molecules (Sahai et al., 2020; Chen et al.,
2021). In liver cancer, the abundance and activity of CAFs are closely
linked to patient prognosis (Affo et al., 2017). It has been shown that
CAFs can facilitate liver cancer development through multiple
mechanisms, including secretion of growth factors, inhibition of
immune response, promotion of cell proliferation, and angiogenesis
(Kubo et al., 2016; Yin et al., 2019). In addition to promoting liver
cancer development, CAFs have also been implicated in drug
resistance (Chen and Song, 2019), a significant obstacle in liver
cancer therapy. It has been demonstrated that CAFs can mediate
drug resistance of liver cancer cells through the secretion of various
resistance-related molecules (Uchihara et al., 2020; Yu et al., 2017).

Furthermore, CAFs interact with immune cells to influence
liver cancer immune response and the efficacy of immunotherapy
(Liu et al., 2019). Current research on the function of CAFs in
liver cancer has mainly focused on cytokines and signaling
pathways. However, the underlying molecular mechanisms by
which CAFs promote liver cancer development remain elusive
and require further investigation. Additionally, developing more

effective therapeutic strategies targeting CAFs to inhibit liver
cancer growth and drug resistance remains critical for
future research.

This study used data from 419,866 individual cells across nine
datasets to examine the liver cancer tumor environment. The results
show that liver cancer has diverse molecular characteristics and
distinct immune cell infiltration patterns that can significantly
impact patient outcomes. The immune cell profiles of patients
were classified into different groups, including immune
deficiency, B cells-enriched, T cells-enriched and macrophages-
enriched, which helped researchers gain a deeper understanding
of how these cells change in various patient subgroups. We also
identified specific cell components linked to tumor characteristics
and genetics using genomic and clinical data from TCGA.
Additionally, the study provided valuable insights into the
makeup of the liver cancer tumor environment and its impact on
patient outcomes, offering fresh perspectives for managing this
challenging disease.

2 Materials and methods

2.1 Datasets collection

The Log2-normalized expression matrix for liver cancer in The
Cancer Genome Atlas (TCGA), along with relevant clinical and
phenotype data, was obtained from the official UCSC Xena website
(https://xenabrowser.net/datapages/). Additionally, transcriptomic
data, in conjunction with clinical records, originating from
159 paired tumor and normal tissue samples obtained from
Chinese patients (CHCC) afflicted with Hepatitis B Virus (HBV)-
associated Hepatocellular Carcinoma (HCC), were procured
through the National Omics Data Encyclopedia database (https://
www.biosino.org/node/) under accession number OEP000321 [20].
Furthermore, we accessed the LIRI-JP dataset (ICGC),
encompassing transcriptome profiles from 231 HCC specimens,
via the International Cancer Genome Consortium Data Portal
(https://dcc.icgc.org/). In addition, we acquired gene expression
microarray data and comprehensive clinical annotations of
GSE14520, which comprises 221 HCC samples, from the Gene
Expression Omnibus repository (https://www.ncbi.nlm.nih.gov/
geo/). For single-cell analyses, we collected liver cancer datasets
from GEO, including GSE125449 (comprising eight samples),
GSE140228 (comprising five samples), GSE112271 (comprising
two samples), GSE178318 (comprising six samples), GSE151530
(comprising 23 samples), GSE166635 (comprising two samples) and
GSE164522 (comprising ten samples). Furthermore, we obtained
single-cell data from liver cancer samples (20 samples) through the
Single-Cell Colorectal Cancer Liver Metastases (scCRLM) Atlas
website (http://www.cancerdiversity.asia/scCRLM/) and one
single-cell data from colorectal cancer samples
GSE132465 (23 samples).

2.2 Preprocessing of single-cell datasets

Individual sample quality control was meticulously executed,
eliminating substandard data instances, such as those originating
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from damaged or diseased cells, vacant droplets devoid of captured
cells, and doublets where multiple cells were concurrently captured.
Typically, inferior cells or empty droplets exhibit a paucity of
expressed genes, whereas doublets are prone to manifest an
increased gene count. Additionally, inferior or diseased cells often
exhibit elevated mitochondrial gene expression. Quality filtering was
conducted based on two criteria: (1) the stipulation that cells must
express a minimum of 300 genes and (2) the prerequisite for a
mitochondrial-to-ribosomal gene ratio of less than 20%.
Subsequently, data underwent normalization, dimensionality
reduction, and clustering procedures.

Given that single-cell sequencing mandates that each barcode
label uniquely corresponds to a single viable cell, occasional
scenarios arise where two or more cells share a barcode,
identified as doublets. To address this, DoubletFinder (McGinnis
et al., 2019) was employed for the identification and subsequent
removal of potential doublets. Ultimately, our analysis retained
200,466 single cells from 72 distinct patients and spanning six
distinct datasets.

2.3 Odds ratios (OR) calculation

We employed the odds ratios (ORs) method as Zheng et al.
(2021) detailed to evaluate meta-clusters’ proclivities in terms of
tissue distribution. To evaluate the distribution of specific cell
types across different tissues, we assessed the likelihood of a
particular cell type being enriched or depleted in a given tissue.
This analysis involved creating a table that compared the number
of cells of a specific type in the tissue of interest to their numbers
in other tissues, while also considering the distribution of all
other cell types in those tissues. For each cell type and tissue
combination, we calculated an OR to quantify the association
between the cell type and the tissue. The OR measures whether a
specific cell type is more likely to appear in one tissue compared
to others. To ensure the statistical robustness of the results, we
used Fisher’s exact test to evaluate the significance of the
association and adjusted the resulting p-values for multiple
comparisons using the false discovery rate (FDR) method. An
OR greater than 1.5 indicates that the cell type is more likely to be
found in the tissue of interest, signifying enrichment. An OR less
than 0.5 suggests that the cell type is less likely to be present in
that tissue, indicating depletion or exclusion.

2.4 Tumor microenvironment-
based subtype

Using the integrated single-cell expression matrix derived from
the amalgamation of six datasets, we proceeded with cell
subpopulation annotation and the computation of cell
subpopulation proportions in each sample. Subsequently, we
conducted sample clustering alongside their respective matrices
of cell subpopulation proportions utilizing the hclust function.
This enabled us to categorize the samples into distinct subtypes,
including immune-deserted, B cell-enriched, T cell-enriched, and
macrophage-enriched subtypes, based on the prevalence of each cell
type within the individual clusters.

2.5 Pathway activity estimation

Utilizing the integrated single-cell expression matrix derived
from the combination of six datasets, we isolated the expression
matrix for subsequent analysis from the Seurat object. Cancer
hallmark pathways and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways and their associated gene
information were obtained from the Gene Set Enrichment
Analysis (GSEA) database (Subramanian et al., 2005). Employing
the R package GSVA (Hänzelmann et al., 2013), we used the
expression matrix to conduct a single-sample Gene Set
Enrichment Analysis (ssGSEA) on each sample. The pathway
activity level for each sample was determined by considering the
enrichment score of each pathway.

2.6 Transcription factor activity score

Utilizing the integrated single-cell expression matrix from the
amalgamation of six datasets, we isolated the expression matrix from
the Seurat object for subsequent analysis. Regulatory associations
between transcription factors and their targets and the
corresponding gene information were acquired from the GSEA
database. Employing the R package GSVA, we conducted
ssGSEA for each sample, utilizing the expression matrix. The
transcription factor activity level for each sample was determined
by considering the enrichment score of each transcription factor.

2.7 Scissor analysis

The Scissor algorithm (Sun et al., 2022) introduces an innovative
methodology for analysing single-cell data, capitalizing on an
extensive array of phenotypic data to discern highly
phenotypically correlated cell subpopulations within single-cell
sequencing datasets. Significantly, Scissor identifies cells linked to
specific phenotypes, displaying distinct molecular profiles
characterized by key marker genes and pertinent biological
processes associated with the respective phenotype. Notably, the
Scissor algorithm eliminates the necessity for unsupervised
clustering in single-cell data analysis, thereby mitigating
subjectivity in determining cluster numbers and resolution.
Moreover, Scissor provides a versatile framework for seamlessly
integrating diverse external phenotypic data into the analysis
pipeline, facilitating hypothesis-free identification of cell
subpopulations with clinical and biological relevance. In this
investigation, we harnessed mutation, survival, and gene
expression data from the TCGA database for liver cancer to
predict the cell subpopulations most closely linked to specific
mutations, overall survival, and progression-free survival, with all
parameters employed at their default settings.

2.8 CAF signature-based risk score

Using the R function FindAllMarkers, we computed
differentially expressed genes (DEGs) distinguishing CAFs from
other cell types. The top 40 genes exhibiting the highest log2
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FIGURE 1
Schematic outline of the overall concept used in this study. (A)Overview of the core liver cancer atlas depicted as uniform manifold approximation
and projection (UMAP) plots. (B) Overview of the epithelial components depicted as UMAP plots. (C) Overview of the immune components depicted as
UMAP plots. (D)Overview of the stromal components depicted as UMAP plots. (E)UMAP of cell-typemarker genes used for cell-type annotation. (F)Cell-
type composition differences between tumor and normal-adjacent tissues. (G) An analysis of cell-type of LM, PL, PC, and CRC.
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(FoldChange) were selected for constructing the risk model.
Employing the R package “glmnet v4.1-2″, we conducted
LASSO-Cox regression analysis on the expression of these
40 genes in TCGA LIHC samples to identify candidate genes.
Subsequently, after 1,000 rounds of adjustment and cross-
validation, a 9-gene signature was established. A linear
combination of the expression of these characteristic genes was
employed to compute the risk score for each patient, with the
minimum criterion determining the regression coefficient. The
risk score formula is defined as follows: risk score = k1 * x1 + k2
* x2 + . + ki * xi (i = n), where i denotes each selected gene, k signifies the
regression coefficient, and x represents the expression level. Specifically,
this study defines the final model as risk score = 0.091*THY1 +
0.199*CNN3 + 0.089*IGFBP3-0.066*IGFBP7-0.031*SERPING1-
0.066*C7-0.017*RARRES2-0.096*C1S-0.015*CXCL14. Furthermore,
leveraging the optimal survival cutoff derived from TCGA data, we
stratified the samples into high-risk and low-risk groups.

2.9 Bioinformatics analysis

Assessment of epithelial cell copy number variation was
conducted using the infervcnv package. Evaluation of the
mutation landscape in TCGA liver cancer samples was
performed utilizing the R package maftools (Mayakonda et al.,
2018). Pseudo-time series analysis was executed using the R
package monocle3 (Cao et al., 2019). Survival analysis and
Kaplan-Meier curve plotting were carried out using the R
package survival (Therneau and Lumley, 2015). Time-dependent
receiver operating characteristic (ROC) curve analysis was
conducted using the R package timeROC. The generation of
nomograms and calibration curves was achieved using the R
package rms.

3 Results

3.1 Establishment of a combined single-cell
atlas for liver cancer

In this study, publicly accessible single-cell sequencing datasets
for liver cancer were curated, and stringent quality control measures,
including the removal of doublets, were applied, resulting in the
inclusion of 419,866 single cells from 99 patients spanning nine
datasets, establishing a fundamental single-cell atlas for liver cancer.
The harmony algorithm (Korsunsky et al., 2019) was employed to
effectively mitigate batch effects, ensuring the robustness of the
integrated dataset with minimal batch influence, as visually
demonstrated in Supplementary Figure S1A. Utilizing specific
marker genes for annotation, the cells were categorized into three
major groups: epithelial, immune, and stromal cells (as presented in
Figures 1A–D). These included epithelial cells, endothelial cells,
fibroblasts, B cells, plasma cells, mast cells, macrophages/monocytes,
dendritic cells, natural killer cells, and T cells. Notably, the markers
distinguishing these cell populations were identified, such as
KRT8 for epithelial cells, VWF for endothelial cells, COL1A1 for
cancer-associated fibroblasts, MS4A1 for B cells, MZB1 for plasma
cells, MS4A2 for mast cells, CD68 for macrophages/monocytes,

LAMP3 for dendritic cells, CD3D for T cells, and GNLY for natural
killer cells. Cells displaying high expression of genes associated with
cell proliferation, such as MKI67 and TOP2A, were intentionally
excluded to ensure the robustness of the dataset.

Regarding cell composition, T cells were found to comprise the
majority of cells, followed by epithelial and B cells, with their
proportions illustrated in Supplementary Figure S1B.
Nonetheless, substantial variability in immune and epithelial cell
proportions was observed among different samples within the
datasets (Supplementary Figure S1C; Supplementary Table S1). A
comparison of tumour and normal-adjacent tissue samples revealed
distinct characteristics in tumor samples, marked by elevated
proportions of endothelial cells and fibroblasts alongside
decreased NK and CD8+ T cell proportions (Figure 1F). These
findings suggest a potential immunosuppressive
microenvironment in liver cancer, contributing to its malignant
progression (Oura et al., 2021). Additionally, an examination of
cellular compositions in metastatic lesions of livers (LM), primary
liver (PL), primary colorectal cancers (PC) and non-metastatic
colorectal cancers (CRC) unveiled a significant increase in mast
cell content in PC and endothelial cell content in PL (Figure 1G).
Such differences between the microenvironments of metastatic and
primary lesions may arise from adverse conditions, including
regulating immune response and angiogenesis in the tumor
microenvironment (Li X. et al., 2021), promoting tumor cell
adhesion, vascular penetration, and migration to distant tissues.
Further stratification of epithelial cells based on tissue origin and
copy number variation (CNV) led to their classification into two
distinct groups: normal and malignant epithelial cells. Furthermore,
an evaluation of gene expression related to normal liver marker ALB
demonstrated markedly heightened expression of ALB in normal
epithelial cells, indicating that the tumor tissue has lost its
normal function.

3.2 Deciphering unique immune phenotypes
through single-cell analysis

Subsequently, patient stratification was undertaken based on
each sample’s distinctive immune cell composition. As delineated in
Figure 2A, a four-fold categorization of patients emerged,
encompassing immune-deserted, T cell-infiltrated, B cell-
infiltrated, and macrophage-infiltrated types, each defined by
variations in the prevalence of enriched cell types. The immune-
deserted type (D-type) primarily comprised epithelial cells, with
other immune cell populations maintained at relatively lower levels.
In contrast, the macrophage-infiltrated type (M-type) exhibited a
pronounced increase in macrophages/monocytes. The T cell-
infiltrated type (T-type) showcased the highest levels of T cell
infiltration, encompassing CD4+ and CD8+ T cells. Lastly, Both
cell-infiltrated types (B-type) displayed a relatively heightened
proportion of mast and cDC cells (Supplementary Figure S2).

A comparison of differentially enriched pathways among tumor
cells across subtypes was performed to elucidate the distinctive
tumour cell gene expression profiles in each subtype. As shown
in Figure 2B and Supplementary Table S2, tumor cells in D-type
expressed significantly higher levels of fatty acid metabolism
signaling pathways. Tumor cells often express higher levels of
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active kinases that can promote the synthesis and accumulation of
fatty acids (Zhao et al., 2020; Li W. et al., 2021), thereby suppressing
immune responses (Wu et al., 2021; Zhao et al., 2021). Additionally,
tumor cells can regulate key molecules in fatty acid metabolisms,
such as fatty acid synthase and lipoxygenase, to affect the activation
and function of immune cells, thus creating an immunosuppressive
microenvironment (Hu et al., 2020). Tumor cells in M-type
displayed a high inflammatory response. Macrophages, as one of
the key cells in the inflammatory response, can secrete a variety of
biologically active mediators, such as cytokines, chemokines, and
growth factors, which can promote inflammation, attract and
activate other immune cells, thereby initiating and amplifying the
inflammatory response (Korbecki and Bajdak-Rusinek, 2019).

Contrasting the distinctive cellular metabolic pathways
(Figure 2C; Supplementary Table S3), The Toll-like receptor
(TLR) signaling pathway was significantly upregulated in the
M-type. When macrophages recognize pathogen-associated
molecular patterns through surface-expressed TLR receptors, a
series of signal transduction pathways are triggered, initiating
and amplifying inflammatory responses (Lauterbach et al., 2019).
These findings suggest that macrophages and the TLR signaling

pathway play crucial roles in initiating and regulating inflammation,
and their interactions and regulations may have important
implications for immune system function and disease development.

Finally, an evaluation of differentially enriched transcription
factors (Figure 2D; Supplementary Table S4) revealed notable
enrichment of NR1H4 in the T cell-enriched
subgroup. NR1H4 has been reported to be closely related to
MYC expression and stability (Wang et al., 2022), and the
activation of the MYC gene is crucial for T cells’ normal
function and immune response (Saravia et al., 2020).
Additionally, we observed significant activation of MAP2K1 in
the M-type, which, according to previous literature, may regulate
pulmonary macrophage inflammatory responses and resolution of
acute lung injury (Long et al., 2019).

3.3 Crosstalk between tumor cells and TME

The crosstalk between tumor cells and immune cells in the
microenvironment is the basis for studying the interaction between
tumors and their surroundings. We first overviewed the connections

FIGURE 2
Tumor immune phenotypes in liver cancer. (A) Patient characteristics and stratification of the tumor immune phenotypes. The original datasets
provide tumor origins. (B)Differential activation of cancer hallmark pathways between the four tumor immune phenotypes in cancer cells. (C)Differential
activation of KEGGpathways in cancer cells between the four tumor immune phenotypes in cancer cells. (D)Differential activation of transcription factors
in cancer cells between the four tumor immune phenotypes in cancer cells.
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between malignant epithelial cells and other cells in the immune
microenvironment (Figure 3A; Supplementary Figure S3A). The
specific ligand-receptor interactions are shown in Supplementary

Figure S3B. In D-type tumors, the immunosuppressive
microenvironment is shaped by the interaction of VTN
(vitronectin) and MDK (midkine) (Figure 3B), with their

FIGURE 3
Crosstalk between epithelial cells and immunemicroenvironments. (A)Circos plot of the cellular crosstalk of cancer cells toward themajor immune
cells. (B) Differentially expressed ligands of cancer cells in each subtype (B, M, T, D) (C) Cancer-immune cell crosstalk in each patient subtype.
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respective receptors (ITGA8, ITGB1, and ITGB5) (Figure 3C).
VTN-ITGB1 signaling plays a critical role in reducing immune
cell activation and migration, creating an exclusion zone that
hinders effective T cell infiltration (Palazzo et al., 2022).
Similarly, MDK-LRP1 (Hu et al., 2024) and MDK-SDC1 (Tan
et al., 2023) interactions promote pro-tumorigenic signaling and
immune escape pathways, further reinforcing immune suppression
in this subtype. The receptors of MDK include ITGB1, LRP1, NCL,
SDC1, and SDC2. Most of these ligand-receptor interactions can
only be found in D-type.

In T-type tumors, an elevated level of NAMPT (nicotinamide
phosphoribosyltransferase) was observed. NAMPT emerges as a
critical regulator of T cell metabolism and immune function. As a
key enzyme in the NAD + biosynthesis pathway (Garten et al., 2015),
NAMPT ensures the energy supply necessary for T cell proliferation
and effector functions by maintaining intracellular NAD + levels.
Beyond its metabolic role, NAMPT promotes the differentiation and
activity of Th1 cells (Mercurio et al., 2021), which secrete pro-
inflammatory cytokines such as interferon-gamma (IFN-γ) (Cope
et al., 2011), thereby amplifying the cytotoxic activity of CD8+

T cells. This creates a tumor microenvironment that supports robust
anti-tumor immunity. This dual role of NAMPT, both intracellularly
and extracellularly, underscores its importance in establishing the
enhanced immune response characteristic of T-type tumors.

To better understand the tumor microenvironment in liver cancer,
we analyzed TME cell interactions in single-cell data, focusing on the four
primary immune-related groups: B, D, M, and T. The interaction
dynamics within the TME (Supplementary Figure S3D) showed that
the T group exhibited strong T cell interactions, particularly involving
CD8+ and CD4+ T cells, promoting an active immune response. In
contrast, the M group showed predominant interactions between
macrophages and fibroblasts, suggesting a tumor-promoting and
immunosuppressive microenvironment. The B group and D group
exhibited weaker or more limited interaction patterns, with the D
group reflecting an immune-deserted environment. Using the marker
genes of these groups, we classified TCGA liver cancer samples into these
four groups based on their gene expression profiles and evaluated their
clinical relevance. The survival analysis (Supplementary Figure S3E)
revealed significant differences in overall survival among the four
groups. Patients in the T group showed the best prognosis, likely due
to the robust anti-tumor immune activity driven by T cell interactions. In
contrast, the M group had the worst prognosis, likely due to the pro-
tumorigenic roles of macrophages, which secrete factors that promote
tumor growth, immune suppression, and extracellular matrix
remodeling, creating a microenvironment that fosters tumor
progression and metastasis. Patients in the B and D groups showed
intermediate survival outcomes. These findings emphasize the
importance of TME composition and interaction dynamics in shaping
clinical outcomes and suggest that targeting macrophage-driven
processes in the M group or enhancing T cell responses in other
groups could improve patient outcomes in liver cancer.

3.4 Reshape of TME during liver metastasis
of colorectal cancer

A subset of liver cancer arises from colorectal cancer metastasis
to the liver, and the mechanism driving this metastasis involves

many tumor microenvironmental factors. To explore the immune
cell composition differences between the microenvironments of
non-metastatic colorectal cancer, primary liver cancer, and
colorectal cancer metastatic to the liver, we compared the
immune cell populations in these three conditions. As shown in
Figure 4A, mast cell populations were significantly enriched in
colorectal cancer metastatic to the liver compared to non-
metastatic colorectal cancer. A subset of mast cells was also
present in liver metastatic lesions compared to primary liver
cancer (Figure 4B). These results suggest mast cells may play a
role in colorectal cancer metastasis to the liver. We further
characterized the mast cells into two subsets based on differential
marker expression (Supplementary Figure S4A). High IL32, S100A8,
and KRT86 expression defined one subset. IL32 has been shown to
induce pro-inflammatory cytokines and mediate chemotaxis of
eosinophils and mast cells (Kempuraj et al., 2010), while
S1008 has been reported to be associated with mast cell
activation (Goyette and Geczy, 2011). Compared to the other
subset, this population displayed a more activated state
(Figure 4C). We then compared the composition of these mast
cell subsets between non-metastatic colorectal cancer, primary liver
cancer, and colorectal cancer metastatic to the liver. As shown in
Figure 4D and Supplementary Figure S4B, this activated mast cell
population was significantly expanded in colorectal cancer
metastatic to the liver. Pseudo-time analysis suggested that these
activated mast cells may represent a more differentiated
state (Figure 4E).

Previous studies have reported that metabolic pathways are
important in promoting colorectal cancer metastasis to the liver
(La Vecchia and Sebastián, 2020). To investigate the potential
role of metabolism in this process, we compared the activity of
different metabolic pathways between these two subsets of cells.
Inositol phosphate metabolism, Glycosaminoglycan
biosynthesis, Phenylalanine, tyrosine and tryptophan
biosynthesis were significantly upregulated in the activated
mast cell population (Figure 4F). These pathways represent
potential therapeutic targets to disrupt mast cell-mediated
pro-metastatic effects. For example, inositol phosphate
metabolism inhibitors, such as LiCl (lithium chloride), have
shown promise in modulating cellular signaling and immune
responses. Similarly, glycosaminoglycan biosynthesis inhibitors,
including heparin analogs or beta-xylosides, could prevent mast
cell degranulation and extracellular matrix remodeling, both
critical for metastatic progression. We further validated these
findings using primary colorectal cancer and liver metastatic
lesions from different tissue sources (Supplementary Figure
S4C). Finally, we interrogated the relationship between these
metabolic pathways and colorectal cancer metastasis using The
Cancer Genome Atlas (TCGA) colorectal cancer dataset. By
obtaining pathway activity scores for each sample using
single-sample gene set enrichment analysis (ssGSEA) and
correlating these scores with metastasis-related gene
signatures, we found that Inositol phosphate metabolism and
Glycosaminoglycan biosynthesis were significantly correlated
with colorectal cancer metastasis (Figure 4G). These results
suggest that a subset of mast cells may promote colorectal
cancer metastasis to the liver through metabolic pathways that
regulate immune cell function.
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FIGURE 4
Mast cells and their association with liver metastasis in colorectal cancer. (A) Cell-type composition differences between non-metastatic and
metastatic colorectal cancer. (B) Cell-type composition differences between primary liver and liver metastasis of colorectal cancer. (C) UMAP of all mast
cells colored by different subclusters. (D)Comparison of cell fractions ofmast cells among different tissue origins. (E)UMAP of all mast cells from the core
liver cancer atlas with monocle vectors projected on top. (F)Differential activation of metabolic pathways inmast cells. (G)Correlation of metastatic
index and metabolic pathway activities in colorectal cancer.
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3.5 Integration analysis reveals genotype-
immune phenotype associations

In our subsequent analysis, we harnessed the innovative
SCISSOR tool, which has recently emerged as a valuable resource
for linking cell types, genetic profiles, and survival outcomes within
the framework of single-cell sequencing data. Our primary objective
was to unravel disparities in immune cell constituents across diverse
phenotypic categories. Initially, we focused on the genetic mutation
data and their interplay with cellular components. As illustrated in
Supplementary Figure S5A, we compiled a catalogue of frequently
occurring mutations in liver cancer based on TCGA mutation data,
including noteworthy mutations such as TP53, CTNNB1, and

APOB. Given the well-documented prevalence of TP53 and
CTNNB1 mutations in liver cancer (Tornesello et al., 2013), we
delved into their associations with immune cell composition
(Figures 3A, B). Notably, TP53 mutations exhibited a significant
positive correlation with mast and T cells while demonstrating a
negative correlation with B cells and endothelial cells
(Supplementary Figure S5B). These suggest that mutations in the
TP53 gene can lead to the development of tumors, which can
stimulate an immune response from mast cells and T cells,
ultimately leading to the death of the tumor cells.

Additionally, TP53 can regulate the production of cytokines,
thereby affecting the activation and function of mast cells and T cells
(Hussain et al., 2007). On the contrary, CTNNB1 is the opposite,

FIGURE 5
Association of cellular composition and distinct genotypes and survival in the TCGA data. (A) Association of cellular composition with TP53mutation
in patients with LIHC. (B) Association of cellular composition with CTNNB1 mutation in patients with LIHC. (C) Association of cellular composition with
overall survival. (D) Kaplan-Meyer plot of patients with high and low Fibroblasts/pDC cell fractions of TCGA patients with liver cancer as determined by
deconvolution with xCell. P-value has been determined using CoxPH regression using tumor stage and age as covariates. (E) Kaplan-Meyer plot of
patients with high and low NK/CD8+ T cell fractions of TCGA patients with liver cancer as determined by deconvolution with xCell. P-value has been
determined using CoxPH regression using tumor stage and age as covariates. (F) Association of cellular composition with overall survival.
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which is consistent with the mutual exclusivity of mutations in
CTNNB1 and TP53 in many cases (Tornesello et al., 2013). Besides,
APOB mutations exhibited a significant positive correlation with
endothelial cells and fibroblasts while demonstrating a negative
correlation with DC cells and macrophages
(Supplementary Figure S5C).

Expanding our inquiry to the linkage between immune cell
components and overall survival outcomes (Figure 5C), we
pinpointed specific cell populations significantly associated with
adverse patient prognoses, notably fibroblasts and pDC. Conversely,
NK and T cells emerged as robust indicators of improved patient
survival. Our exploration extended to the estimation of distinct
cellular components for each sample via xCell (Aran et al., 2017),
leveraging TCGA liver cancer data, and we assessed their
relationships with overall patient survival (Figures 5D, E and
S5D). Our survival analysis was predicated on bulk data, and the
phenotype associations rooted in single-cell data echoed consistent
results. Among these, fibroblasts showcased the most robust
association with unfavorable patient outcomes, underscoring the
pivotal role of cancer-associated fibroblasts in instigating and
advancing tumor development. Furthermore, as gauged by
progression-free survival analysis, our phenotype associations
substantiated similar trends (Figure 5F).

3.6 Plasticity and canonical functional
properties of CAFs

Given the robust association observed between fibroblast
components and overall survival in liver cancer, we embarked on
an exhaustive subcategorization of all fibroblasts, predicated on
distinct marker expressions, culminating in the classification of
these fibroblasts into two major categories: cancer-associated
fibroblasts (CAFs) and normal-associated fibroblasts (NAFs)
(Figure 6A; Supplementary Table S5). Among the classical
markers used to denote normal fibroblasts, COL1A1 stands out
prominently. At the same time, FAP is recognized as a common
CAF marker that is frequently employed to discern activated
fibroblasts actively shaping the tumor microenvironment.
Intriguingly, we observed widespread expression of
COL1A1 across all fibroblasts, whereas FAP exhibited specific
and elevated expression in CAFs (Figure 6B; Supplementary
Figure S6A). Furthermore, a striking prevalence of CAFs was
evident in cases of primary liver cancers, while colorectal cancer
metastatic to the liver cancers exhibited significantly higher levels of
normal fibroblasts. We then hypothesized that CAFs may exert a
distinct influence on the prognostic outcomes of liver cancer
patients. Transcription factor activity analysis revealed a

FIGURE 6
Characterization of cancer-associated fibroblasts using scRNA-seq. (A)UMAP of CAFs from the extended atlas was classified into cancer-associated
fibroblasts (CAFs) and normal-associated fibroblasts (NAFs). (B) Expression levels of FAP and ACTA2 between CAFs and NAFs. (C) Transcription factor
analysis of CAFs versus NAFs using ssGSEA. (D) UMAP of all fibroblasts colored by CAFs and NAFs subclusters. (E) Circos plot of the cellular crosstalk of
fibroblast subclusters toward cancer cells and CD8+ T cells. (F) UMAP of all fibroblasts from the core liver cancer atlas with monocle vectors
projected on top.
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significant upregulation of ZNF419 in CAFs (Figure 4C), a marker
previously identified in studies as indicative of immune
microenvironment alterations and an adverse prognosis in cancer
(Song et al., 2021).

Subsequently, we further characterised fibroblasts into subtypes
based on their marker expressions (Supplementary Figure S6C).
CAFs underwent division into five subtypes, while NAFs were
classified into eight subtypes (Supplementary Figure S6C).
Substantial variations in the prevalence of distinct fibroblast
subtypes were evident across different datasets (Figure 6D;
Supplementary Figure S6D). Notably, primary liver cancer
significantly enriched all kinds of fibroblasts (Supplementary
Figure S6E). Cellular communication analysis suggests the

existence of extensive crosstalk between CAFs and CD8+ T cells
(Supplementary Figure S7). For example, MMP2+ CAFs can
regulate CD8+ T cells through THBS2 (Figure 6E). Existing
research has implicated MMP2 as potentially upregulated in
certain cancers, particularly within CAFs situated in the tumor’s
periphery (Affo et al., 2017). Fibroblasts can also regulate the
expression of matrix metalloproteinases such as MMP2, affecting
tumour cells’ growth and metastasis (Zhou et al., 2017). Within the
tumor microenvironment, CAFs wield influence over the
metabolism of cancer cells, supplying them with essential
metabolic substrates that, in turn, promote tumor growth. The
expression of CXCL14 in CAFs is known to influence tumor
growth and metastasis by recruiting immune cells and other cell

FIGURE 7
Identification of CAF-based signature and construction of risk model. (A) Top 40 expressed cell markers in CAFs identified by core liver single-cell
datasets. (B) ROC curve of risk scores and OS status. (C–F) Kaplan-Meyer plot of patients with high and low-risk scores of (C) TCGA, (D) CHCC, (E)
GSE14520, (F) ICGC, patients with liver cancer as determined by risk model. (G) Time-dependent AUC value in TCGA, CHCC, GSE14520 and ICGC.
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types, thus facilitating their localization within tumor tissues. This
process significantly impacts the tumor microenvironment,
ultimately shaping the trajectory of tumor development and
influencing responses to treatment. Pseudo-time analysis hinted
at CAFs with high MMP2 and CXCL14 expression representing
terminal subtypes that stem from normal fibroblasts (Figure 6F).
This underscores the transformation of normal fibroblasts into
activated cancer-associated fibroblasts during the malignant
progression of cancer.

3.7 CAF gene signature is associated with a
worse prognosis

We procured single-cell gene expression profiles, followed by
identifying genes significantly upregulated within CAFs compared
to other cell types. From this analysis, we selected the top
40 differentially expressed genes for further investigation
(Figure 7A). To pinpoint optimal prognostic gene biomarkers
from this set of 40 CAF-specific genes, we employed a LASSO-
Cox regression model on the gene expression profiles and clinical
data derived from TCGA LIHC samples (Supplementary Table S6).
This approach led to the formulation of a nine-gene signature
model, where the risk score computation was structured as
follows: risk score = 0.091*THY1 + 0.199*CNN3 + 0.089*IGFBP3-
0.066*IGFBP7-0.031*SERPING1-0.066*C7-0.017*RARRES2-0.096*C1S-
0.015*CXCL14. A detailed exposition of the model parameters can
be found in Supplementary Figure S8A. Notably, the predicted risk
score exhibited pronounced distinctions across various survival
statuses (Figure 7B; Supplementary Figure S8B).

Furthermore, Kaplan-Meier survival analysis and Cox regression
substantiated that patients bearing higher risk scores faced significantly
bleaker prognoses (Figure 7C). Figures 7D–F provide a comprehensive
portrayal of the risk score’s robust performance across diverse datasets,
affirming its consistency in prognosticating survival probabilities. In
addition, our exploration encompassed time-dependent ROC curve
analysis, further underscoring the substantial potential of the risk score
in forecasting patient survival statuses (Figure 7G). To enhance the
clinical utility of the risk score, we developed a nomogram capable of
predicting 1-year, 3-year, and 5-year overall survival probabilities. As
illustrated in Supplementary Figure S9A, the nomogram analysis
demonstrated minimal deviation between the risk score and actual
overall survival probabilities at these designated time points
(Supplementary Figures S9A–D).

4 Discussion

This study presents a comprehensive analysis of liver cancer
using single-cell sequencing data, establishing a detailed single-cell
atlas and uncovering crucial insights into the tumor
microenvironment, immune phenotypes, genetic mutations, and
their impact on patient prognosis. The study identifies distinct
immune phenotypes, reveals the influence of genetic mutations
on immune cell composition, and highlights the significance of
fibroblasts, particularly cancer-associated fibroblasts, in patient
survival. A CAF gene signature model is developed as a
prognostic tool, offering potential clinical applications.

Our analysis of immune cell composition revealed distinct
immune phenotypes within liver cancer patients. These
phenotypes, including immune-deserted, T cell-infiltrated, B cell-
infiltrated, and macrophage-infiltrated types demonstrated
variations in enriched cell types. D-type tumors exhibit a
profound immunosuppressive microenvironment facilitated by
VTN and MDK. These ligands, through interactions with
integrin receptors such as ITGB1 and ITGA8, reduce T cell
activation and migration while promoting immune tolerance.
This mechanism establishes an exclusionary barrier that impedes
immune cell infiltration. Conversely, in T-type tumors, NAMPT is a
critical modulator of T cell metabolism and immune responses. By
maintaining NAD + levels, NAMPT supports T cell proliferation
and enhances the differentiation and activity of Th1 cells, fostering
an environment conducive to strong anti-tumor immunity. Further
investigation into tumor cell gene expression profiles across these
subtypes highlighted significant differences in fatty acid metabolism,
inflammation, and Toll-like receptor signaling pathways. The
identification of an immune-deserted phenotype in liver cancer
aligns with recent research emphasizing the role of immune
evasion in tumor progression (Siddiqui and Glauben, 2022; Li
et al., 2005). Recent studies have investigated immunotherapeutic
strategies, including immune checkpoint inhibitors, to reverse such
immunosuppression in liver cancer (Cheng et al., 2020). The
upregulation of fatty acid metabolism in immune-deserted
tumors underscores the significance of metabolic reprogramming
in immune evasion. Recent publications have elucidated the
interplay between tumor cell metabolism and immune cell
function (Leone and Powell, 2020), highlighting metabolic
pathways as potential therapeutic targets.

Moreover, we investigated the immune cell composition
differences between non-metastatic colorectal cancer, primary
liver cancer, and colorectal cancer metastatic to the liver. These
analyses indicate the critical involvement of mast cells in colorectal
cancer metastasis to the liver and suggest potential therapeutic
strategies. Mast cell-related metabolic pathways, including
inositol phosphate metabolism and glycosaminoglycan
biosynthesis, could be targeted to mitigate metastasis. Existing
therapies such as tyrosine kinase inhibitors (e.g., imatinib)
(Pardanani et al., 2003), which suppress c-KIT-mediated mast
cell activation, have been used to treat systemic mastocytosis.
While not specifically studied in CRC liver metastasis, targeting
mast cells through c-KIT inhibition could be explored, given the role
of mast cells in promoting metastasis through immunosuppressive
and pro-angiogenic activities. Additionally, LiCl (lithium chloride)
(Wei et al., 2012), an inhibitor of inositol phosphate metabolism,
and heparin analogs, which block glycosaminoglycan biosynthesis,
represent promising avenues for therapeutic intervention. Other
approved drugs, such as masitinib (Ettcheto et al., 2021) (a selective
tyrosine kinase inhibitor) and omalizumab (Serrano-Candelas et al.,
2016) (an anti-IgE antibody), could also be evaluated for their
potential to inhibit mast cell activity and prevent metastasis.
These strategies underscore the translational relevance of
targeting mast cells and their metabolic pathways in colorectal
cancer metastasis. Integrating genetic profiles and single-cell data
allowed us to identify significant associations between genetic
mutations, immune cell composition, and patient survival.
TP53 mutations were correlated with mast cell and T cell
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infiltration, while CTNNB1 mutations exhibited distinct
associations with endothelial cells and fibroblasts. These findings
shed light on the interplay between genetic alterations and the
immune microenvironment in liver cancer.

Furthermore, Our analysis revealed that fibroblast
components, particularly CAFs, were strongly associated with
poor prognosis in liver cancer. CAFs contribute to tumor
progression through multiple mechanisms, including immune
suppression, angiogenesis, and extracellular matrix remodeling.
Key signaling pathways, such as TGF-β signaling (Busch et al.,
2015) and fibroblast growth factor (FGF) signaling (Cristinziano
et al., 2021), mediate tumor-CAF interactions, promoting cancer
cell proliferation and invasion. For instance, CAFs expressing
MMP2 interact with tumor cells via THBS2, enhancing
extracellular matrix degradation and tumor cell motility (Drev
et al., 2017). Similarly, CXCL14, highly expressed in CAFs,
recruits immune and stromal cells to support tumor growth
(Westrich et al., 2020). The distinct prevalence of CAFs in
primary liver cancers and NAFs in colorectal cancer liver
metastases suggests a dynamic role for fibroblasts at different
stages of cancer progression. In primary liver cancers, CAFs
actively shape a pro-tumorigenic microenvironment through
pathways such as TGF-β, FGF signaling, and integrin-
mediated adhesion, promoting tumor cell invasion and
immune evasion. In metastatic lesions, the relative abundance
of NAFs may indicate a transitional microenvironment,
potentially reflecting a reduced ability to support metastatic
growth compared to primary tumors. This differential
fibroblast composition highlights the need to explore CAF-
targeted therapies, such as inhibitors of TGF-β signaling or
matrix metalloproteinases, to improve patient outcomes in
liver cancer.

This study relies on publicly available single-cell sequencing
datasets, which may have inherent biases and variations in data
quality. Future studies should consider incorporating additional
datasets and validating findings in independent cohorts. While
the study provides detailed cell annotations based on marker
genes, the accuracy of these annotations may be influenced by
the choice of markers and the potential presence of rare cell
types. A more in-depth validation of cell types is warranted.
Besides, although the study identifies potential interactions and
pathways, functional experiments are needed to validate the
biological significance of these findings. In vitro and in vivo
experiments would better understand the mechanisms involved.
The prognostic gene signature model requires further validation in
clinical settings.

5 Conclusion

Our study provides comprehensive insight into the immune
phenotypes, genetic associations, and tumor microenvironment
interactions in liver cancer. The identification of key genes, pathways,
and prognostic markers offers valuable information for understanding
liver cancer progression and may contribute to the development of
targeted therapies and personalized treatment strategies.
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