Skip to main content

ORIGINAL RESEARCH article

Front. Pharmacol.

Sec. Renal Pharmacology

Volume 16 - 2025 | doi: 10.3389/fphar.2025.1492834

Preventive Treatment of Tripdiolide Ameliorates Kidney Injury in Diabetic Mice by Modulating the Nrf2/NF-κB Pathway

Provisionally accepted
  • Department of Urology, First Affiliated Hospital of Jilin University, Changchun, China

The final, formatted version of the article will be published soon.

    Although tripdiolide has demonstrated a protective role in lupus nephritis, its potential therapeutic and preventive effects on diabetic kidney injury remain inconclusive. In this study, a diabetes mice model was used to evaluate the effect of preventive treatment of tripdiolide on the kidney. The study assessed diabetes related factors levels, while comparing kidney pathological changes, alterations in intestinal microbiota composition, oxidative stress and inflammation in kidneys, validating cytokine expression and protein pathway activation. The experiment demonstrated that tripdiolide preventive treatment effectively suppressed the hyperglycemia and elevated hemoglobin level, attenuated the concentrations of creatinine and blood urea nitrogen, mitigated histopathological alterations in the kidney, and alleviated inflammatory cell infiltration. Tripdiolide regulated intestinal microbiota in diabetes mice and affected the abundance of Allobaculum, Dubosella, and Prevotella, and the differential metabolic pathways primarily revolve around ubiquinol biosynthesis and menaquinol biosynthesis. Tripdiolide treatment significantly attenuated renal oxidative stress and inflammation in diabetic mice, as evidenced by the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), heme Oxygenase-1, and the downregulation of phosphorylated nuclear factor-κB (P-NF-κB), and NOD-like receptor protein 3. Experiments performed in RAW264.7 cells demonstrated the effect of tripdiolide. Tripdiolide may play a protective role in hyperglycemia induced kidney injury by changing the composition of intestinal microorganisms, regulating Nrf2/NF-κB pathway activation, and inhibiting oxidative stress and inflammatory reaction. This study contributes scientific evidence that can inform the development of preventive therapeutic approaches for diabetic nephropathy.

    Keywords: diabetic nephropathy, Tripdiolide, Oxidative Stress, Inflammation, intestinal microbiota

    Received: 08 Sep 2024; Accepted: 03 Mar 2025.

    Copyright: © 2025 Yuan, Jia and Gao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Bo Yuan, Department of Urology, First Affiliated Hospital of Jilin University, Changchun, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more