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Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung
cancer cases and remains one of the leading causes of cancer-related mortality
worldwide. The high mortality rate is primarily driven by delayed diagnosis, rapid
metastasis, and frequent recurrence. Tumor-derived exosomes (TEXs) have
emerged as critical mediators in NSCLC progression, offering valuable insights
into the tumor microenvironment. Exosomes are small membrane vesicles that
facilitate intercellular communication and transport bioactive molecules,
including proteins, RNAs, and DNAs, thereby reflecting the genetic complexity
of tumors. These exosomes play a key role in promoting tumor metastasis,
epithelial-mesenchymal transition (EMT), neovascularization, drug resistance,
and immune evasion, all of which are pivotal in the development of NSCLC.
This review explores the diverse roles of TEXs in NSCLC progression, focusing on
their involvement in pre-metastatic niche formation, tissue metastasis, and
immune modulation. Specifically, we discuss the roles of exosome-associated
RNAs and proteins in NSCLC, and their contribute to tumor growth and
metastasis. Furthermore, we explore the potential of TEXs as biomarkers for
NSCLC, emphasizing their application in diagnosis, prognosis, and prediction of
resistance to targeted therapies and immunotherapies.
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1 Introduction

NSCLC is the most common type of lung malignancy, accounting for approximately
80%–85% of all diagnosed lung cancer cases (Reck et al., 2022). Over the past decade, the
incidence of NSCLC has declined from 46.4 to 40.9 per 100,000 cases, while the incidence in
patients under 65 years old has shown an upward trend. Moreover, over 60% of patients are
diagnosed at an advanced stage, with a 5-year survival rate falling below 15% (Siegel et al.,
2022). Epidemiological studies have shown that approximately 40% of NSCLC patients
experience recurrence after surgery (Han B. et al., 2022), and the 5-year survival rate for
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metastatic NSCLC patients is 7% (Rizwan et al., 2022). These
statistics emphasize the urgent need for improved early
diagnostic accuracy and enhanced treatment monitoring to
improve prognosis and survival outcomes. Hence, identifying
critical molecular players in NSCLC progression and metastasis,
as well as discovering highly sensitive and specific biomarkers, is
crucial for early diagnosis, prognostic assessment, and predicting
treatment responses.

Approximately 20% of cancer patients are unable to undergo
tissue biopsy due to patient conditions, technical limitations, or the
inherent heterogeneity of tumor tissues, which hampers diagnostic
accuracy (Rolfo et al., 2021; Shields et al., 2022). Non-invasive
diagnostic methods, especially liquid biopsy, may become
powerful tools for tumor diagnosis and identifying tumor
biomarkers (Bertoli et al., 2023; Ma et al., 2024). Liquid biopsy
enables the isolation and analysis of circulating cell-free DNA, RNA,
and proteins from blood or other body fluids in cancer patients,
offering a simplified, more convenient, and better-tolerated
diagnostic method (Levy et al., 2016; Molina-Vila et al., 2016).

Exosomes, classified as members of the extracellular vesicle
family, were firstly recognized in the early 1980s as vesicles
(Nazarenko, 2020; Zhang Y. et al., 2019). These vesicles are
released by a wide variety of normal and malignant cells
(Whiteside TheresaL., 2016; Zhang et al., 2015). Exosomes have
been successfully isolated and purified from various bodily fluids,
including blood, encompassing urine, saliva, pleural effusion, ascites,
breast milk, and bronchoalveolar lavage fluid, which have potential
application prospects in liquid biopsy (Conde-Vancells et al., 2008).
Recent research has primarily focused on the roles of exosomes in
tumor diagnosis, disease monitoring, and evaluating treatment
efficacy (Padinharayil and George, 2024; Ren et al., 2024).
Exosomes also play pivotal roles in carcinogenesis and tumor
progression, including intercellular signaling, metastasis, drug
resistance, and immune suppression (Ren et al., 2024; Hamid
et al., 2025; Li Dongqi et al., 2024). Our review highlights the
critical role of exosomes in NSCLC progression and metastasis,
while exploring their potential as non-invasive biomarkers for early
detection and disease monitoring.

2 The functions of TEXs

Exosomes are active nanovesicles, composed of lipid bilayers,
with diameters ranging from 40 to 150 nm. They originate from
multivesicular bodies and are released into the extracellular space
through fusion with the plasma membrane of various normal and
tumor cells (Gurung et al., 2021; Liu et al., 2020; Daßler-Plenker
et al., 2020). Initially, exosomes were believed to function solely as
cellular waste disposal units, responsible for eliminating unwanted
molecules within cells (Pan et al., 1985). However, recent studies
have demonstrated that these vesicles play more complex roles,
including transmitting biological information to neighboring cells
and significantly contributing to carcinogenesis and tumor
progression (Li Junshu et al., 2024; Agrawal et al., 2024; Oh
et al., 2024). Exosomes facilitate the exchange of genetic material
via autocrine, paracrine, and endocrine pathways within the cellular
environment (Krylova and Feng, 2023; Arya et al., 2024). They
deliver their contents through three primary mechanisms: fusion

with the plasma membrane, resulting in the release of their internal
contents; endocytosis; and interaction with cell surface receptors
(Krylova and Feng, 2023). Thus, exosomes are considered a novel
mode of cellular signaling. Exosomes can be identified using
techniques such as nanoparticle tracking analysis (NTA),
resistance pulse sensing (RPS), transmission electron microscopy
(TEM), and flow cytometry (FCM) (Yuana et al., 2013; Xie et al.,
2019). Methods for isolating and purifying exosomes include
ultrafiltration, ultracentrifugation, immunoprecipitation,
precipitation, and density gradient centrifugation (Xie et al.,
2019; Mortezaee et al., 2022). The contents of exosomes vary
depending on the type of secreting cell and include DNA, RNA,
proteins, metabolic products, lipids, and cell membrane proteins
(Kalluri and LeBleu, 2020; van der Pol et al., 2012; Najafi, 2022).

In normal human blood, approximately 200 trillion exosomes
can be identified, whereas the blood of cancer patients contains
approximately 400 trillion exosomes (Kalluri, 2016). TEXs have
been successfully isolated from various bodily fluids, including
urine, saliva, pleural effusion, ascites, breast milk, and
bronchoalveolar lavage fluid (Conde-Vancells et al., 2008),
highlighting the propensity of cancer cells to produce exosomes
in higher concentrations. This suggests their potential as innovative
tumor biomarkers. Furthermore, TEXs play a crucial role in the
progression of malignant tumors and the development of distant
metastases. TEXs regulate the tumor microenvironment, promote
angiogenesis and EMT, enhance intercellular signaling, increase
tumor cell invasiveness, and foster the establishment of a pre-
metastatic niche that promotes distant metastasis (Ren et al.,
2024; Hamid et al., 2025). Notably, TEXs influence immune
regulation by affecting intercellular communication, immune
activation, immune surveillance, antigen expression, and immune
suppression (Greening et al., 2015; Dong et al., 2025). TEXs can also
carry tumor-associated antigens, potentially impairing the efficacy
of immunotherapy (Whiteside TheresaL., 2016). In addition,
exosomes serve as key mediators in the resistance signaling
pathways of malignant tumor cells, facilitating the transmission
of resistance signals in response to targeted therapies (Zhang et al.,
2015). Thus, TEXs may hold significant clinical potential for guiding
diagnosis, predicting metastasis, evaluating treatment response, and
understanding resistance mechanisms in malignant tumors.

3 Related exosome factors involved in
NSCLC progression and metastasis

In malignant tumors, exosomes play a pivotal role in tumor
progression and metastasis by modulating immune responses,
promoting angiogenesis and influencing EMT (Ridder et al.,
2015; Can et al., 2025). TEXs facilitate the evasion of immune
surveillance by transferring specific proteins to recipient cells,
thereby altering the functional behavior of immune cells and
promoting tumor progression (Whiteside TheresaL., 2016). For
instance, heat shock protein 72 (HSP72) carried by TEXs
enhances the immunosuppressive capability of myeloid-derived
suppressor cells (MDSCs) via a STAT3-dependent pathway,
contributing to immune tolerance of tumor cells (Chalmin et al.,
2010). TEXs also inhibit T cell proliferation and induce apoptosis by
activating the FAS/FASL signaling pathway, exerting an

Frontiers in Pharmacology frontiersin.org02

Gao et al. 10.3389/fphar.2025.1485661

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1485661


immunosuppressive effect (Kim et al., 2005). Additionally, TEXs
suppress natural killer (NK) cell activity and interfere with
monocyte differentiation (Whiteside T. L., 2016). Tumor
exosomes can also deliver epidermal growth factor receptor
(EGFR) to host macrophages, inhibiting the production of type I
interferons and thereby reducing the overall immune response in
cancer patients (Gao et al., 2018).

Angiogenesis is critical for providing the blood supply necessary
for tumor growth and metastasis (Goudar and Vlahovic, 2008). In
the peripheral tissues surrounding malignant tumors, an
equilibrium exists between pro-angiogenic and anti-angiogenic
factors, which regulate the angiogenesis process. However,
malignant tumors are characterized by a predominance of pro-
angiogenic proteins, leading to the promotion of neovascularization
(Olejarz et al., 2020; Liu et al., 2023). Tumor-derived angiogenic
factors, along with other components in the tumor
microenvironment, stimulate the proliferation and migration of
endothelial cells, thereby facilitating new blood vessel formation
tomeet the tumor’s nutritional demands (Gasparics and Sebe, 2022).

EMT involves biochemical changes in epithelial cells, leading to
the acquisition of mesenchymal phenotypes characterized by
increased migratory and invasive capacities, as well as elevated
production of extracellular matrix (ECM) components (Gasparics
and Sebe, 2022; Greco et al., 2022; Zhang et al., 2022). EMT
facilitates tumor metastasis by reducing intercellular adhesion
among differentiated epithelial cells, allowing tumor cells to
move either individually or collectively (Zhang et al., 2022; Han
J. et al., 2022; Kim, 2022). Exosomes have been shown to contribute
to both neovascularization and EMT in tumor cells (Lin et al., 2022;
Song et al., 2022; Amicone et al., 2022). Here, we summarize the
exosomal signaling factors involved in regulating the progression
and metastasis of NSCLC.

3.1 Role of exosomal RNA in promoting
cancer progression in NSCLC

Exosomal RNA is produced via the endocytosis process within
the cell and primarily consists of three distinct classes of non-coding
RNA: microRNAs (miRNAs) (Kogure et al., 2011), long non-coding
RNAs (lncRNAs) (Lee et al., 2017; Min et al., 2018), and circular
RNAs (circRNAs) (Andrey et al., 2011). Notably, studies have
shown significantly higher expression levels of exosomal RNA in
cancer patients compared to healthy individuals (Tang et al., 2024;
Yi et al., 2024; Yue et al., 2024). These exosomal RNAs play pivotal
roles in regulating key processes involved in tumor progression,
including immune modulation, angiogenesis, metastasis, and drug
resistance, contributing to the overall dynamics of the tumor
microenvironment.

MiRNAs are a class of non-coding RNA (ncRNA) molecules,
approximately 22 nucleotides in length, that regulate gene
expression by binding to the 3′untranslated region or open
reading frame of target messenger RNA (mRNA) (Saliminejad
et al., 2019). In NSCLC, specific miRNA profiles are closely
associated with tumor behavior and treatment response, and
these miRNAs can be clinically detected by extracting exosomes
from body fluids (Shanehbandi et al., 2023; Janpipatkul et al., 2021).
Tumor cells release distinct miRNAs into the extracellular space,

which are transported via exosomes circulating in the bloodstream
(Du et al., 2018). Moreover, tumor cells produce exosomes in
particularly high quantities under hypoxic conditions, where they
play a crucial role in angiogenesis (Sandúa et al., 2021; Meng et al.,
2019). Under hypoxic conditions, exosomes released by lung cancer
cells show a significant upregulation of miR-23a, leading to the
accumulation of hypoxia-inducible factor-1α (HIF-1α) in
endothelial cells. This, in turn, increases tumor angiogenesis and
vascular permeability, thereby promoting metastasis (Hsu et al.,
2017). Another study also found that miR-619-5p is transferred to
exosomes from NSCLC cells under hypoxic conditions, promoting
tumor angiogenesis by inhibiting RCAN1.4 (Kim et al., 2020).
Additionally, miR-3157-3p is transported from NSCLC cells to
vascular endothelial cells through exosomes, targeting the
vascular endothelial growth factor (VEGF)/matrix
metalloproteinase 2 (MMP2)/MMP9 pathway to enhance the
formation of new blood vessels (Ma et al., 2021). Additionally,
miR-3157-3p is transported from NSCLC cells to vascular
endothelial cells through exosomes, targeting the VEGF/MMP2/
MMP9 pathway to enhance the formation of new blood vessels (Gu
et al., 2021). Exosomal miR-34c-3p upregulates integrin α2β1,
enhancing the invasive and migratory capacities of NSCLC cells
(Huang et al., 2020).

LncRNAs are a class of RNA molecules that exceed
200 nucleotides in length (Bridges et al., 2021). Exosome-
associated lncRNAs play key roles in tumor progression by
regulating metastasis, stem cell maintenance, drug resistance, and
the tumor microenvironment (Lin et al., 2023). One of the most
studied lncRNAs in NSCLC is the metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1), which is highly
expressed in the serum of NSCLC patients and promotes tumor
migration by inhibiting apoptosis and shortening the cell cycle
(Zhang et al., 2017). Elevated levels of lnc-UFC1 have been
detected in the exosomes of NSCLC patient serum, and the
increase in UFC1 levels is associated with NSCLC invasion (Zang
et al., 2020). Another study found that exosomes in the plasma of
metastatic NSCLC patients show elevated levels of the lncRNAstem
cell inhibitory RNA transcript (SCIRT), which is linked to survival in
metastatic NSCLC (Wang et al., 2021). Interestingly, lncRNA SCIRT
does not directly promote cancer progression but selectively sorts
miR-665 into TEXs in a hnRNAPA1-dependent manner.
Subsequently, exosomes enriched with miR-665 directly impact
the enhancement of NSCLC invasion and migration capabilities
by targeting the Notch downstream transcription factor HEYL.
Furthermore, exosomal lncRNAs such as HOTAIR (Chen L.
et al., 2021) and NEAT1 (Hussain et al., 2024), frequently
upregulated in NSCLC, regulate cellular responses to external
stimuli like hypoxia and oxidative stress, common in the tumor
microenvironment. By acting as scaffolds for chromatin-modifying
complexes, these lncRNAs promote tumor progression and
chemoresistance. Targeting these lncRNAs in exosomes could
provide a novel strategy to prevent metastasis and improve
treatment outcomes in NSCLC.

CircRNAs are formed by back-splicing and have a unique
covalent closed-loop structure, providing stability within cells and
enabling them to regulate gene expression and affect biological
functions (Zhou et al., 2020). circSATB2 promotes the
progression of NSCLC and is upregulated in serum exosomes
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derived from cancer patients. Serum exosomal circSATB2 in patients
with metastatic cancer suggests its potential role as a tumor
biomarker for NSCLC (Zhang N. et al., 2020). Exosomes secreted
by NSCLC repress the function of CD8+ T cells and contribute to
resistance to anti-programmed cell death protein-1 (anti-PD1)
immunotherapy (Chen et al., 2021b). In addition to circSATB2,
other circRNAs, such as circ_0001946 (Zhang et al., 2021), circPVT1
(Huang et al., 2021), and circHIPK3 (Siedlecki et al., 2024), have also
been associated with NSCLC. These circRNAs contribute to the
initiation and progression of lung cancer by modulating various
signaling pathways and gene expressions. They show promise as
potential biomarkers for early diagnosis, prognosis assessment, and
targeted therapies.

3.2 The functional proteins exosomes
in NSCLC

In addition to ncRNAs, exosome proteins have also been
considered as key molecules mediating the metastatic phenotype
of NSCLC cells. Exosome proteins are mainly membrane transport
and fusion proteins, such as annexins, RAB5/RAB7, and TSG101
(Théry et al., 2002). Among the most widely recognized exosome
membrane proteins are the tetraspanins, including CD9, CD63, and
CD81 (Rana and Zöller, 2011), which are overexpressed on the
surface of exosomes and regulates cell-cell interactions, thereby
influencing tumor behavior and progression (Zhang W. et al.,
2019). These proteins facilitate the exchange of cellular
information between the tumor and the surrounding
microenvironment, aiding in metastasis and immune evasion.

A key protein involved in NSCLC metastasis is hepatocyte
growth factor (HGF), which is enriched in exosomes derived from
highly metastatic tumor cells. Exosomal HGF plays a pivotal role in
promoting EMT and facilitating cancer cell migration and
invasion. It achieves this by activating the c-Met receptor on
non-metastatic cells, thereby triggering downstream signaling
pathways that drive metastasis (Qiao et al., 2019). Similarly,
exosomal proteins derived from the serum of patients with
advanced malignancies have been shown to increase the
expression of vimentin (VIM) and enhance the metastatic
phenotype in recipient cells. This suggests that exosome-
mediated protein transfer plays a significant role in promoting
the EMT process, which is essential for metastasis (Rahman
et al., 2016).

Exosomal proteins also contribute to tumor progression by
modulating the immune response. For instance, exosomes secreted
by NSCLC cells can interfere with CD8+ T cell function, promoting
immune evasion (Chen et al., 2021c). These exosomes carry
proteins that inhibit T cell activation and cytotoxicity, allowing
the tumor to escape immune surveillance. This mechanism
contributes to the resistance of NSCLC to immunotherapy, such
as anti-PD1 treatments, by dampening the immune response
against tumor cells (Rahman et al., 2016). In addition,
exosomes facilitate tumor angiogenesis by delivering pro-
angiogenic factors such as VEGF and MMPs to endothelial
cells. The transfer of EGFR via exosomes to endothelial cells
activates the mitogen-activated protein kinases (MAPK) and
protein kinase B (AKT) signaling pathways, which, in turn,

upregulate VEGF expression and enhance blood vessel
formation (Al-Nedawi et al., 2009).

In conclusion, exosomal proteins in NSCLC play a central role in
facilitating tumor progression, metastasis, and immune evasion. By
influencing various signaling pathways, these proteins promote the
transition from localized tumor growth to widespread metastatic
disease. As such, exosomal proteins have significant potential as
biomarkers for NSCLC diagnosis and prognosis, as well as
therapeutic targets for inhibiting metastasis and enhancing the
effectiveness of immunotherapies.

4 Exosome-mediated pre-metastatic
niche formation and tissue metastasis

The target organs for malignant tumor metastasis are not
selected randomly. In 1889, the “seed and soil” hypothesis was
proposed, suggesting that certain tumor cells, referred to as “seeds,”
have a propensity to metastasize to specific organs, termed as “soil.”
Tumor cells can only successfully metastasize when the
environment, or “soil,” is conducive to their growth (Paget,
1889). Despite extensive research, the specificity of organ
targeting in tumor metastasis remains one of the most profound
mysteries in the field. Recent studies have shown that exosomes play
a crucial role in this process, facilitating the establishment of pre-
metastatic niches before direct contact between the primary tumor
and the distant organ (Milane et al., 2015; Su et al., 2021).

Exosomes facilitate tumor metastasis through various
mechanisms. They contribute to the establishment of pre-
metastatic niches by transferring molecular signals that prime
distant organs for tumor cell colonization. Additionally,
exosomes promote EMT, enhancing tumor cell motility and
invasiveness. They also play a crucial role in angiogenesis and
increase vascular permeability, facilitating tumor cell
dissemination via the bloodstream. Moreover, exosomes
contribute to immune modulation by suppressing antitumor
immune responses, thus enabling immune evasion (Luo et al.,
2023; Zhao et al., 2021). These coordinated actions enhance the
metastatic potential of tumor cells, supporting their colonization in
secondary sites (Figure 1).

The organotropism of different types of metastatic tumor cells
showed significant differences (Obenauf and Massagué, 2015),
which are related to the integration of TEXs (Hoshino et al.,
2015a). Proteomic analysis reveals that exosomes isolated from
tumor cells originating from distinct organs exhibit distinct
integrin expression patterns. Specifically, integrin α6β4 and α6β1
are associated with lung metastasis, whereas integrin αvβ5 is
correlated with liver metastasis. The disruption of integrin α6β4
and αvβ5 expression has been shown to diminish the uptake of
exosomes by recipient organ cells, thereby reducing lung and liver
metastasis, respectively (Hoshino et al., 2015b).

The main sites of NSCLC metastasis are the bone, brain, and
liver (Wood et al., 2014). Recent research has conclusively
demonstrated the pivotal role that exosomes play in establishing
a pre-metastatic immune microenvironment conducive to brain
metastasis. The biological distribution of exosomes secreted by
tumors was analyzed, found a tissue-specific fusion of integrins
with T cells, which in turn facilitates organ-specific colonization and
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the formulation of a pre-metastatic niche tailored specifically for brain
metastasis (Xu et al., 2020). In addition, CEMIP + exosomes secreted by
tumors are absorbed by brain cells andmicroglia, leading to the enhanced
expression of pro-inflammatory cytokines, which are encoded by genes
such as PTGS2, TNF, and CCL/CXCL, thereby promoting
cerebrovascular remodeling and metastasis (Rodrigues et al., 2019).

Additionally, exosomes derived from NSCLC cells treated with
transforming growth factor (TGF-β) contain high levels of lnc-
MMP2-2. This lncRNA stimulates MMP2 expression, positively
correlating with tumor cell invasiveness and vascular
permeability, further promoting metastasis (Wu et al., 2018;
Valadi et al., 2007; Liao et al., 2015; Chen et al., 2013; Tang
et al., 2016). A recent investigation has revealed that lnc-MMP1-2
disrupts the tight junctions present between human brain
microvascular endothelial cells. Additionally, it has been observed
to induce EMT and enhance the permeability of the blood-brain
barrier, allowing tumor cells to penetrate the brain in the circulatory
system (Wu et al., 2021).

Except for brain metastasis, bone metastasis is also a prevalent
form of distant metastasis observed in NSCLC. Exosomes extracted
from peripheral blood of NSCLC patients with bone metastasis
exhibit a significant upregulation of SOX2 overlapping transcript
(SOX2-OT), which is closely associated with lower overall survival
rates. SOX2-OT increases RAC1 expression by targetingmiR-194-5p
to promote bone metastasis of NSCLC (Ni et al., 2021).

5 Exosomes as biomarkers of NSCLC

Conventional biomarkers, such as carcinoembryonic antigen
(CEA), epithelial cell adhesion molecules (EPCAM), and EGFR, can
be found in lung tissue, tumor-draining pulmonary blood, and bone
marrow samples used for diagnosing NSCLC. However, these
techniques are challenging to samples and cause much
discomfort to patients (Rehulkova et al., 2023; Mederer et al.,
2022). “Liquid biopsy” represents a non-invasive or minimally

FIGURE 1
Exosome-mediated tumor progression and metastasis in NSCLC. Exosomes secreted by tumor cells influence various components of the tumor
microenvironment, including fibroblasts (CAFs), immune cells, endothelial cells, and blood vessels. Exosomes facilitate tumor cell proliferation, immune
suppression, EMT, and angiogenesis. These processes contribute to the formation of a pre-metastatic niche, ultimately leading to tumor metastasis to
distant organs such as the brain, liver, and bone. The figure highlights the critical role of exosomes in promoting NSCLC progression and
metastatic spread.
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invasive approach to disease detection, utilizing molecular
diagnostic techniques as its foundation (Ma et al., 2024).
Recently this technology, which has become a research hotspot,
utilizes bodily fluids such as blood, bronchial alveolar fluid, urine,
pleural effusion, ascites, breast milk, and saliva from cancer patients
to detect circulating biomarkers of tumors and obtain relevant
genetic information about the disease (Buszka et al., 2022). It
possesses the capability to identify tumors at an earlier stage than
imaging techniques, rendering it a suitable tool for the early
diagnosis of tumors.

In the era of liquid biopsy, using exosomes as biomarkers for
NSCLC is a promising approach. Exosomes, which are directly
secreted into bodily fluids by tumor cells, encompass components
such as ncRNAs and protein alterations (including EGFR
mutations), thereby rendering highly distinctive and
representative information (Casagrande et al., 2023; Vasu et al.,
2025). Exosomes exhibit a ubiquitous distribution, possess
remarkable permeability, are easily accessible, and are
encapsulated by different lipid bilayers and are not easily
degraded (Cheng et al., 2022; Boukouris and Mathivanan, 2015).
The identification of exosomes with differential expression patterns
in liquid biopsy exhibits promising applications in various medical
domains, including the diagnosis of cancer, prognostic evaluation,
monitoring of disease progression, and assessment of chemotherapy
resistance (Figure 2) (Rezaie et al., 2022). We have conducted a
comprehensive summary of extracellular vesicle RNA and protein as

potential biomarkers for the diagnosis, prognosis, and prediction of
treatment response in NSCLC, as presented in Tables 1–4.

5.1 TEXs as biomarkers for NSCLC diagnosis

Owing to the enhanced production of exosomes by tumor cells,
exosomes present a promising role as novel diagnostic biomarkers.
The diagnostic potential of exosomes in plasma or serum of NSCLC
patients can be determined by analyzing the area under the gene
expression curve (AUC). Exosomal miR-3182 (Visan et al., 2022),
miR-1290, and miR-29c-3p (Zhang et al., 2023) have been shown to
be useful in the early detection of lung cancer. In comparison to
conventional tumor biomarkers, exosomal miR-1290 and miR-29c-
3p exhibit superior diagnostic efficacy in discerning benign lung
diseases from lung cancer, achieving AUC values of 0.934 and
0.868 respectively. These miRNAs demonstrate higher diagnostic
accuracy for early-stage lung cancer, with AUC values of 0.947 and
0.895, compared to traditional markers (Zhang et al., 2023).
Circulating exosomal miR-342-5p and miR-574-5p were
significantly elevated in early-stage lung adenocarcinoma (LA)
patients compared to healthy controls and decreased after tumor
resection. The combination of these miRNAs achieved an AUC of
0.813, with 80% sensitivity and 73.2% specificity, underscoring their
potential as novel biomarkers for early stage LA diagnosis (Han
et al., 2020).

FIGURE 2
The release and role of TEXs in NSCLC. TEXs in NSCLC are released from tumor cells via the endocytic pathway, involving the formation of early
endosomes, which mature into multivesicular bodies. These MVBs then fuse with the plasma membrane, releasing exosomes into the extracellular
environment. The exosomes contribute to various processes in NSCLC, including EMT, angiogenesis, drug resistance, immune regulation, and they serve
as biomarkers for diagnosis, prognosis, and treatment response prediction.
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miR-1169 and miR-260 can effectively distinguish between
EGFR wild-type and mutant NSCLC patients (Xia et al., 2021).
Additionally, miR-181-5p, miR-30a-3p, miR-30e-3p, and miR-320b
have emerged as key biomarkers for differentiating LA from
squamous cell carcinoma (SCC) in NSCLC, with a diagnostic
accuracy demonstrated by an AUC value of 0.936 for detecting
SCC (Jin et al., 2017). Furthermore, the combined application of
multiple exosomal miRNAs improves the accuracy of NSCLC
diagnosis. Specifically, the combination of exosomal miR-382 and
CEA in serum (AUC: 0.953) (Luo et al., 2021) and plasma exosomal
miR-let-7f-5p combined with CEA and CYFRA21-1 (AUC: 0.981),
have notable advantages in the diagnosis of NSCLC (Wang
et al., 2020).

LINC00917 in exosomes showed stronger predictive ability for
stage III/IV NSCLC (AUC: 0.907) compared to stage I/II (IUC:
0.773) (Xiong et al., 2021). LASSO regression analysis was used to
screen biomarkers from exosomal lncRNAs in a large clinical
population through exosomes in plasma. Then, a multi-marker
diagnostic model was constructed using logistic regression, which
integrates specific exosomal lncRNAs (PGM5-AS1, SFTA1P, and
CTA-384D8.35), achieving a high prediction accuracy with an AUC
of 0.97 (Wang et al., 2023). Similarly, a ncRNA profile consisting of
five specific lncRNAs was found to improve the diagnosis of NSCLC
with an AUC of 0.947 (Talebi et al., 2022), indicating that exosomal

lncRNA patterns constructed through histological research and data
analysis techniques have higher diagnostic value compared to
previous single biomarkers.

One proteomic analysis revealed that plasma exosomal MFGE8
has a high diagnostic effect in distinguishing between squamous cell
carcinoma and lung adenocarcinoma, with an AUC of 0.812 (Bao
et al., 2022). Another identical methodology was employed, and
discovered that the concurrent utilization of AHSG, ECM1, and
CEA substantially increased the diagnostic accuracy for NSCLC.
Specifically, the AUC values for distinguishing NSCLC from healthy
individuals were 0.938 for overall NSCLC and 0.911 for early-stage
NSCLC (Niu et al., 2019).

5.2 TEXs as prognostic markers for NSCLC

Increasing research has shown that exosomal proteins and
miRNAs are closely related with tumor progression, highlighting
that exosome can be utilized as prognostic markers to enhance the
treatment options available for NSCLC patients (Niloufar et al.,
2024). For instance, phenotypic analysis of exosomes from the
plasma of 276 NSCLC patients revealed that exosomal
membrane-bound proteins, such as EGFR, NY-ESO-1, ALIX,
PLAP and EPCAM, are significantly associated with overall

TABLE 1 Exosomal miRNAs as biomarkers for NSCLC.

Exosomal
miRNAs

Source Expression Clinical value AUC References

miR-3182 serum upregulation differentiating early-stage NSCLC patients from those with benign
pulmonary diseases

0.785 Visan et al. (2022)

miR-1290 plasma upregulation early lung cancer diagnosis, distinguishing between NSCLC and
SCLC

0.947 Zhang et al. (2023)

miR-29c-3p downregulation 0.895

miR-1169 serum upregulation differentiating NSCLC carrying wild-type EGFR 1.000 Han et al. (2020)

miR-260 differentiating NSCLC patients carrying mutant EGFR 0.997

miR-let-7f-5p plasma downregulation diagnosing NSCLC with a combination of CEA and Cyfra 21-1 0.981 Wang et al. (2020)

miR-128-3p serum downregulation NSCLC diagnosis combined with miR-128-3p 0.855 Li et al. (2023)

miR-1260b plasma upregulation associated with poorer survival Kim et al. (2021)

miR-320 plasma upregulation predicting disease progression with PD-1/PD-L1 inhibitor
treatment

Peng et al. (2020b)

miR-125b-5p

miR-125a-3p serum upregulation predicting disease progression with PD-1/PD-L1 inhibitor
treatment

Hisakane et al. (2023)

miR-433 plasma downregulation low expression in the plasma of resistant NSCLC patients,
negatively correlated with tumor size, distant metastasis, advanced
TNM staging, and poor prognosis

Liu et al. (2021)

miR-4497 serum downregulation identifying tumor size, TNM staging, and distant metastasis 0.895 Zheng et al. (2023)

miR-1258-3p
miR-17-5p
miR-184
miR-3913-5p
miR-323-3p
miR-1468-3p
miR-5189-5p
miR-6513-5p
miR-494-3p

plasma upregulation discerning osimertinib-resistant from osimertinib-sensitive NSCLC
patients

Janpipatkul et al. (2021), Han et al.
(2023), Kaźmierczak et al. (2022)
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survival (OS) in patients, suggesting that exosomal membrane-
bound proteins can be used as prognostic biomarkers for NSCLC
(Sandfeld-Paulsen et al., 2016).

In addition, the downregulation of miR-503 in NSCLC tissues,
compared to non-malignant lung tissue, has been linked to advanced
tumor stages and poor prognosis. Kaplan-Meier analysis further
indicated worse survival outcomes in patients with lower miR-503
expression, suggesting that miR-503 could be a valuable prognostic
biomarker for survival in NSCLC patients (Liu et al., 2015). Another
study found that deregulated expression of miR-21, miR-143, and
miR-181a in NSCLC is associated with clinicopathological
characteristics and poor prognosis, with elevated miR-21
expression being linked to worse survival outcomes (Gao et al., 2010).

Additionally, studies have demonstrated the potential of exosomal
biomarkers such as PLA2G10 mRNA and RP5-977B1 lncRNA for
both diagnostic and prognostic purposes in NSCLC, enhancing tumor
detection, prognosis assessment, and early-stage diagnosis (Chen
Yinfeng et al., 2022; Min Ling et al., 2022). Moreover, a study
found that 84 plasma exosomal miRNAs from patients with LA
and healthy controls and found that elevated levels of exosomal miR-
10b-5p, miR-21-5p and miR-23b-3p are associated with worse overall
survival, indicating that exosomal miRNAs can also be used as
prognostic biomarkers for NSCLC (Liu et al., 2017). In recurrent
cases of NSCLC patients, elevated levels of exosomal miR-203-3a-3p
(Han B. et al., 2022) andmiR-124 (Sanchez-Cabrero et al., 2023) reveal
the potential for exosomal miRNAs to predict disease progression.

TABLE 2 Exosomal lncRNAs as biomarkers for NSCLC.

Exosomal lncRNAs Source Expression Clinical value AUC References

linc01125 serum upregulation diagnosing early-stage lung cancer 0.662 Xian et al. (2021)

RP5-977B1 serum upregulation diagnosis and prognostic assessment of early-stage NSCLC 0.889 Min et al. (2022b)

LINC00917 serum upregulation diagnosing patients with stage III/IV NSCLC 0.907 Xiong et al. (2021)

lncCRLA plasma upregulation diagnosing early-stage lung adenocarcinoma Lin et al. (2024b)

SNHG15 serum upregulation distinguishing NSCLC patients from healthy individuals 0.856 Han et al. (2021)

diagnosing stage I/II NSCLC patients 0.838

diagnosing stage III/IV NSCLC patients 0.870

NSCLC diagnosis combined with CEA 0.915

PGM5-AS1, SFTA1P, CTA-
384D8.35D8.35

plasma upregulation NSCLC diagnostic model 0.97 Wang et al. (2023)

lncRNA-GHSROS, lncRNA-HNF1A-
AS1, lncRNA-HOTAIR

serum upregulation diagnosis of NSCLC 0.947 Talebi et al. (2022)

lncRNA-P21, lncRNA-
HMlincRNA717

downregulation

SOX2OT plasma upregulation enriched in peripheral blood exosomes of NSCLC patients with
bone metastasis, associated with shorter overall survival

Ni et al. (2021)

HOTAIR serum upregulation significantly correlated with lymph node metastasis and TNM
staging

0.821 Chen et al. (2021a)

lnc-SNAPC5-3:4 plasma downregulation monitoring resistance to anlotinib treatment Liu et al. (2022)

TABLE 3 Exosomal circRNAs as biomarkers for NSCLC.

Exosomal
circRNAs

Source Expression Clinical value AUC References

circ_0069313 serum upregulation differentiating benign pulmonary tumors from NSCLC, associated with stage III-
IV NSCLC, lymph node metastasis, and distant metastasis

0.749 Chen et al.
(2022b)

circ_ERBB2IP serum upregulation related to TNM staging, lymph nodemetastasis, and tumor size in NSCLC patients 0.917 Peng et al. (2023)

circ_102481 serum upregulation significantly upregulated in NSCLC with resistance to EGFR-TKIs, associated with
TNM staging, tumor differentiation status, brain metastasis, and survival

Yang et al. (2021)

circ_0008928 serum upregulation upregulation in the serum exosomes of cisplatin-resistant NSCLC patients Shi et al. (2023)

circ_VMP1 serum upregulation upregulation in the serum exosomes of cisplatin-resistant NSCLC patients Xie et al. (2022)

circ_KIF20B serum downregulation low expression in NSCLC patients resistant to Gefitinib, negatively correlated with
tumor size and staging

Wei et al. (2023)
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Furthermore, studies have reported significant associations
between exosomal lncRNA and the prognosis, lymph node
metastasis, TNM stage, and tumor invasion (Lin Shuai et al.,
2024; Yin Cunli et al., 2024; Zhang et al., 2025) in NSCLC
patients. In summary, exosomes offer a promising, non-invasive
approach for prognostic biomarker development in NSCLC.

5.3 TEXs as markers of targeted therapy
resistance in NSCLC

In recent years, targeted therapy has garnered significant
attention and yielded remarkable outcomes in the treatment of
NSCLC patients. Nonetheless, despite an initial positive response
to targeted therapy, the eventual development of acquired resistance
is inevitable, resulting in deteriorated treatment outcomes and
prognosis. Consequently, it is imperative to unravel the
fundamental mechanisms underlying targeted resistance and
identify potential biomarkers and targets that contribute to the
resistance to tumor-specific targeted therapy. Increasing research
suggests that exosomes can promote resistance through various
mechanisms. Exosomes exhibit the ability to convey miRNA,
lncRNAs, and proteins to targeted cells, facilitating the
transmission of signals between resistant and sensitive cells, as
well as between stromal and tumor cells, ultimately leading to
the induction of drug resistance in tumor cells (Shedden et al.,
2003; Bach et al., 2017; Yu et al., 2015).

Exosomal miRNAs have been shown to play a significant role in
drug resistance, particularly in EGFR-TKIs. TEXs contribute to
EGFR-TKI resistance by transferring active cargoes, including
miRNAs. Research has demonstrated that exosomal RNA can
detect EGFR-T790M and activated EGFR mutations with
sensitivities of 90% and 98%, respectively (Krug et al., 2018). In
addition, Nano-LC-MS/MS analysis of gefitinib-resistant
PC9R cells, due to the EGFR-T790M mutation, revealed the
enrichment of specific exosomal proteins (Choi et al., 2014).
Extensive research has demonstrated that the level of expression
of lncRNA H19 is elevated in gefitinib-resistant NSCLC. Specifically,

lncRNA H19 is encapsulated within exosomes, facilitated by the
mediation of hnRNPA2B1, and transmitted to non-resistant NSCLC
cells to induce gefitinib resistance (Lei et al., 2018). Moreover, nine
exosomal miRNAs were found to be upregulated in patients
resistant to Osimertinib, providing a predicting basis for
treatment response (Janpipatkul et al., 2021; Han et al., 2023;
Kaźmierczak et al., 2022).

Additionally, exosomal circRNAs, such ascirc0008928 (Shi et al.,
2023) and circVMP1 (Xie et al., 2022),are upregulated in the serum
of cisplatin-resistant NSCLC patients, suggesting a potential role in
resistance to chemotherapy (Pérez-Ruiz et al., 2020). Furthermore,
exosomes from an ALK-TKI-resistant NSCLC subclone have been
shown to induce drug resistance in a previously sensitive subclone.
Differential expressions of miRNAs, including miR-21-5p and miR-
486-3p, and lncRNAs like MEG3 and XIST were identified in
exosomes secreted by resistant subclones (Kwok et al., 2019).

These findings underscore the potential of TEXs as biomarkers
for assessing the efficacy of targeted therapies through liquid biopsy.
TEXs could also serve as indicators of resistance to targeted therapy
in NSCLC, providing valuable insights for monitoring treatment
response and predicting resistance.

5.4 TEXs as markers for immunotherapy
in NSCLC

Immunotherapy has significantly transformed the treatment of
NSCLC with immune checkpoint inhibitors (ICIs) playing a central
role (Addeo et al., 2021; Li et al., 2011; Sharma and Allison, 2015).
These therapies, including antibodies targeting the PD-1/PD-
L1 pathway and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), have significantly improved patient outcomes,
especially when combined with chemotherapy (Yu et al., 2016).
These therapies, including antibodies targeting the PD-1/PD-
L1 pathway and CTLA-4, have significantly improved patient
outcomes, especially when combined with chemotherapy.

However, beyond PD-1/PD-L1 and CTLA-4, other immune
checkpoints are emerging as important therapeutic targets. These

TABLE 4 Exosomal proteins as biomarkers for NSCLC.

Exosomal proteins Source Clinical value AUC References

lipopolysaccharide-binding protein serum differentiating metastatic from non-metastatic NSCLC
patients

0.803 Wang et al. (2018)

multifunctional glycoproteins plasma predicting the genesis of NSCLC, diagnosing NSCLC 0.732 Chang et al. (2023)

utilizing a mix of plasma and plasma exosomes’
multifunctional glycoproteins to diagnose NSCLC

0.804

IGHV4-4, IGLV1-40 plasma diagnosis of NSCLC 0.93 Yang et al. (2023)

differentiating between metastatic and non-metastatic
NSCLC

0.88

AHSG, ECM1 serum combining with CEA for the diagnosis of early-stage NSCLC 0.938 Niu et al. (2019)

PD-L1 serum associated with a poorer prognosis Shimada et al. (2021)

DOK3 plasma associated with favorable prognosis in Gefitinib treatment Ochiai et al. (2022)

MFGE8 plasma differentiating between lung squamous cell carcinoma and
lung adenocarcinoma

Bao et al. (2022)
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include lymphocyte activation gene-3 (LAG-3), T cell
immunoglobulin and mucin domain-containing protein 3 (TIM-
3), T cell immunoreceptor with Ig and ITIM domains (TIGIT),
V-type immunoglobulin domain-containing suppressor of T cell
activation (VISTA), and CD276, each playing distinct roles in
immune regulation and contributing to tumor immune evasion
(Yin Nanhao et al., 2024). Currently, these checkpoints are under
active investigation for their potential in enhancing immunotherapy
responses, often in combination with existing PD-1/PD-
L1 therapies. Exosome-based biomarker research in NSCLC has
primarily focused on the PD-1/PD-L1 pathway, with exosomal PD-
L1 demonstrating significant potential as a non-invasive marker for
monitoring immunotherapy responses. While studies on exosomal
PD-L1 have shown a correlation with treatment outcomes, research
into other immune checkpoint markers, such as CTLA-4, is
still limited.

PD-L1 is a key protein in tumor cells that binds to the PD-1
receptor on T cells, inhibiting their activation and promoting
immune evasion by suppressing T cell activity. This interaction
allows tumor cells to escape immune surveillance, making it harder
for the immune system to attack them (Xia et al., 2019). PD-L1 is
present not only on the surface of numerous tumor cell types, but
also on the surface of exosomes, known as exosomal programmed
death-ligand 1 (exo-PD-L1) (Ayala-Mar et al., 2021). Tumor-
derived Exo-PD-L1 has the capability to competitively interact

with PD-1 receptors present on the surface of T cells, inhibiting
T cell activity and cytokine release, thereby mediating immune
escape of tumor cells and the efficacy of immunotherapy
(Figure 3). A study involving 85 patients with NSCLC
demonstrated a significant correlation between the expression of
exo-PD-L1 in serum and key clinical parameters, including tumor
size, lymph node status, metastasis, and disease progression,
highlighting its potential as a clinically relevant biomarker for
NSCLC management (Li et al., 2019). Additionally, Peng et al.
suggested that high levels of exosomal miR-320d, miR-320c, and
miR-320b were associated with poor response to anti-PD-
1 treatment in NSCLC patients, while exosomal miR-125b-5p was
identified as a potential target for improving the effectiveness of
anti-PD-1 therapy (Peng et al., 2020a).

CTLA-4, a negative regulatory receptor on effector and
regulatory T cells, suppresses T cell activity and allows tumor
cells to evade immune detection. The CheckMate-227 trial
showed that simultaneous blockade of PD-1 and CTLA-4
significantly improved overall survival in NSCLC patients (Théry
et al., 2018). In addition, a study aimed at elucidating the prognostic
relevance of exo-PD-L1 and CD28 in NSCLC patients subjected to
ICI treatment uncovered that patients with elevated exo-PD-
L1 expression coupled with reduced CD28 levels displayed a
shorter progression-free survival, underscoring the importance of
considering baseline exo-PD-L1 and CD28 levels as potential

FIGURE 3
Exosomal PD-L1 caused failure of immune check-point therapy. Exosomal PD-L1 released by tumor cells causes the failure of immune checkpoint
therapy by binding to PD-1 receptors on T cells, leading to suppressed T-cell activity and inhibited cytokine production. This prevents T-cell
reinvigoration despite the use of anti-PD-1/PD-L1 therapies, allowing the tumor to evade immune detection.
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prognostic indicators for the outcomes of PD-1-based therapeutic
interventions (Zhang C. et al., 2020).

6 Conclusion

Exosomes function as pivotal “messengers” among cells,
efficiently facilitating the transfer of critical signals and
substances, thus enhancing intercellular communication. TEXs
play a crucial role in almost every step of the invasion and
metastasis process in NSCLC, such as immune regulation,
angiogenesis, drug resistance, EMT, and pre-metastatic niche
formation. By coordinating these complex interactions,
exosomes significantly influence the progression and distant
metastasis of NSCLC, highlighting their importance in the
biology and dynamics of the tumor microenvironment.
Moreover, the structural integrity of their lipid bilayer ensures
stability both in vivo and in vitro, while protecting enclosed
bioactive molecules, further supporting their potential as
clinical diagnostic and prognostic tools (Kimiz-Gebologlu and
Oncel, 2022).

Despite these promising attributes, the clinical translation of
exosome-based liquid biopsies and therapeutics faces several key
challenges. The lack of standardized and scalable isolation methods
results in inconsistent purity and recovery, necessitating the
development of cost-effective, high-throughput technologies with
robust quality control measures. Additionally, the heterogeneity of
exosomes and the complexity of their cargo complicate the
identification of tumor-specific biomarkers, emphasizing the need
for advanced single-vesicle analysis and omics-driven approaches.
Furthermore, the limited sensitivity and specificity of exosome-
based assays for early cancer detection require large-scale
validation studies to establish reliable biomarker panels. The
current infrastructure of conventional clinical laboratories is
insufficient to handle the analytical demands of exosomal data,
highlighting the need for automated and user-friendly platforms.
Lastly, regulatory and logistical barriers, such as the lack of clear
guidelines and extensive approval processes, delay the widespread
adoption of exosome-based applications. Currently, the utilization
of exosomes in the diagnostic and therapeutic of NSCLC remains in
its nascent stage. Anticipated advancements in exosome research
encompassing their biosynthesis, secretion processes, interactions

with targeted cells, and the functional significance of exosomal
constituents, have the potential to enhance their application in
medical practice and elevate the survival prospects for patients
afflicted with NSCLC.
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