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Background: Disulfiram (DSF) is an anti-alcoholic drug that has been reported to
inhibit the epithelial-to-mesenchymal transition and crosslinking during fibrosis,
pyroptosis, and inflammatory NF-κB and Nrf-2 signaling pathways. However,
there is insufficient evidence to support the mechanisms of DSF in preventing
renal fibrosis (RF). Therefore, the current study aimed to elucidate the DSF-
modulated targets and pathways in renal fibrosis.

Methods: The common proteins between DSF and RF were screened for
protein–protein interaction, pathway enrichment, cluster, and gene ontology
analysis. Molecular docking was executed for core genes using AutoDock Vina
through the POAP pipeline. Molecular dynamics (MD) simulation (100 ns) was
performed to infer protein–ligand stability, and conformational changes were
analyzed by free energy landscape (FEL).

Results: A total of 78 targets were found to be common between DSF and RF, of
which NFKB, PIK3CA/R1, MTOR, PTGS2, and MMP9 were the core genes. PI3K-
Akt signaling followed by JAK-STAT, TNF, Ras, ErbB, p53, phospholipase D,
mTOR, IL-17, NF-κB, AMPK, VEGF, and MAPK signaling pathways were
modulated by DSF in RF. DSF showed a direct binding affinity with active site
residues of core genes, and except for DSF with NF-κB, all other complexes,
including the standard, were found to be stable during 100 ns MD simulation with
minimal protein–ligand root mean squared deviation and residual fluctuations
and higher compactness with broad conformational changes.

Conclusion: DSF protects against renal fibrosis, and this study paves the way for
experimental investigation to repurpose DSF for treating RF.
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1 Introduction

Chronic kidney disease (CKD) is characterized by long-term
structural and functional issues pertaining to the kidneys, lasting for
at least 3 months and resulting in deterioration of health
(Romagnani et al., 2017). The estimated worldwide prevalence of
CKD is around 10%–14% of the population, and numerous people
with the condition may not have symptoms until it progresses to
end-stage renal fibrosis (ESRF) (Kovesdy, 2022). The main
consequences of CKD include the irreversible and progressive
loss of nephrons, tubular atrophy, chronic inflammatory changes,
decreased regeneration capacity, renal microvascular impairment,
and metabolic abnormalities, finally resulting in ESRF (Panizo et al.,
2021). CKD contributes to global morbidity and mortality rates,
emphasizing the demand for a variety of treatment approaches to
address CKD and its development into fibrotic changes
(O’Callaghan-Gordo et al., 2019). In CKD, the damage to the
kidneys prompts the nearby fibroblasts and pericytes to release
inflammatory substances and initiate the development of the
extracellular matrix (ECM) as a means of repairing the injury.
The recurrent renal injuries result in the formation of excessive
ECM, which disrupts the structure of the kidneys and has a negative
impact on their function, ultimately leading to renal failure (Rayego-
Mateos et al., 2021).

Kidney disease affects more than 850 million people worldwide,
and by 2040, it is expected to be the fifth leading cause of years of life
lost (YLL) globally. The Global Burden of Disease (GBD) reports
indicate that the prevalence of CKD increased by 33% worldwide
between 1990 and 2017 (Francis et al., 2024). Most CKD patients live
outside of middle- and high-income countries (HICs) (in India and
China alone), accounting for approximately one-third of the global
increase in CKD burden (prevalence and mortality) (Lameire
et al., 2021).

The Indian Council of Medical Research (ICMR) has established
a standardized workflow for the treatment of CKD (ICD-10-N-18.3)
(Fenton and Benigni, 2014). In addition to non-pharmacological
measures (diet, physical activity, lifestyle behavior, etc.), the therapy
options for CKD and fibrosis include angiotensin-converting
enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs),
etc., and dialysis for severe cases (Fried et al., 2021). There are
currently no medications that directly focus on addressing fibrosis
associated with CKD, and the available drugs are for the
management of cardiovascular disorders, urolithiasis, etc.
Currently, only two antifibrotic drugs, pirfenidone and
nintedanib, are particularly marketed for the treatment of
pulmonary fibrosis (Okano et al., 2020; Hadda and Guleria,
2020). Hence, there is an urgent need for drugs for the treatment
of RF; however, the discovery and development process of NCE is
expensive and time-consuming. Therefore, alternate approaches like
drug repurposing can be used, which take less time and money due
to the known behavior of these drugs in large populations (Okano
et al., 2020; Hadda and Guleria, 2020).

Renal fibrosis (RF) is a complex process driven by several key
signaling pathways that contribute to the transformation of renal
cells and the accumulation of ECM. The TGF-β signaling pathway is
central to fibrogenesis, promoting epithelial-mesenchymal
transition (EMT) and myofibroblast activation, leading to ECM
deposition in response to renal injury (Zeisberg et al., 2008; Meng

et al., 2015). TheWnt and Notch signaling pathways are also critical;
while transient activation aids in tissue repair, sustained activation
exacerbates fibrosis by inhibiting epithelial differentiation and
promoting fibroblast proliferation (Edeling et al., 2016; Huang
et al., 2023). Additionally, FGFR1 signaling influences cell
proliferation and ECM production, linking it to fibrogenesis (Xu
et al., 2022). The Hedgehog signaling pathway plays a role in
regulating myofibroblast differentiation and maintaining kidney
development, with dysregulation contributing to fibrosis (Edeling
et al., 2016; Zhou et al., 2016). Furthermore, DPP-4 and Angptl4 are
recognized as key fibrogenic molecules that promote ECM
accumulation and myofibroblast activation, underscoring their
significance in renal fibrotic processes (Daza-Arnedo et al., 2021;
Li et al., 2024).

EMT and endothelial-to-mesenchymal transition (EndMT) are
critical mechanisms in the development of RF, where renal epithelial
and endothelial cells transform into myofibroblasts, contributing to
the excessive accumulation of ECM and kidney scarring (He et al.,
2013; Cruz-Solbes and Youker, 2017). In EMT, renal tubular
epithelial cells lose their epithelial characteristics, such as
E-cadherin expression, and acquire mesenchymal properties,
including α-SMA, vimentin, and fibronectin expression, often
triggered by factors like TGF-β1, oxidative stress, and
inflammation (Singh and Mathew, 2022). This transformation
leads to enhanced production of ECM components, promoting
fibrosis. Similarly, EndMT involves the conversion of endothelial
cells into mesenchymal-like cells, driven by signals like TGF-β1 and
mechanical stress (e.g., increased blood pressure, and altered
hemodynamics) (Pardali et al., 2017; Jacobs et al., 2024). These
cells lose their endothelial markers, such as vascular endothelial
(VE)-cadherin, and gain mesenchymal markers like α-SMA and
fibroblast-specific protein 1 (FSP-1) (Zeisberg et al., 2008). Both
EMT and EndMT play pivotal roles in the progression of renal
fibrosis, driving the formation of myofibroblasts that fuel ECM
production, inflammation, and tissue remodeling, thus offering
potential targets for therapeutic intervention in kidney fibrosis
(Zeisberg et al., 2008; Pardali et al., 2017; Jacobs et al., 2024).

The management of RF has been the focus of extensive research,
with several therapeutic agents being evaluated for their efficacy in
preclinical models. Empagliflozin, a sodium-glucose cotransporter 2
(SGLT2) inhibitor, has shown significant antifibrotic effects in
diabetic mouse models by inhibiting the EMT and restoring
kidney histology and function (Li J. et al., 2020). Empagliflozin
has been shown to normalize levels of SIRT3, a protein involved in
mitochondrial function and metabolism, which is often suppressed
in diabetic conditions. This restoration helps inhibit the abnormal
glycolysis associated with kidney fibrosis (Abbas et al., 2018). Studies
indicate that SIRT3 knockout mice exhibit exacerbated RF when
subjected to chronic AngII infusion, while SIRT3-overexpressing
mice show reduced kidney injury (Li et al., 2017). Compounds like
honokiol have been identified as activators of SIRT3, demonstrating
protective effects against RF (Quan et al., 2020; Wei et al., 2023).
Linagliptin (Lina), a DPP-4 inhibitor, exhibits renoprotective effects
(Kanasaki, 2018; Nady et al., 2024) beyond diabetes. In a rat model,
Lina reduced renal dysfunction, ECM deposition, and fibrosis
markers, including TGF-β1, Smad4, p-ERK1/2, and p-P38
MAPK. Additionally, it inhibited EMT by suppressing vimentin
and α-SMA while upregulating E-cadherin. Lina also reduced
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hypoxia-related proteins, downregulating Snail and Twist. Targeting
the ROCK2-TGF-β1-EMT and ROCK2-Nrf2 pathways may offer a
novel therapeutic strategy for CKD (You et al., 2020). Ac-SDKP, a
naturally occurring peptide, has shown potential to protect against
RF by inhibiting fibroblast proliferation and collagen deposition. A
study investigating RF in a unilateral ureteral obstruction (UUO)
model using wild-type and PAI-1 knockout mice assessed the effects
of thymosin β4 (Tβ4) and its degradation product N-acetyl-seryl-
aspartyl-lysyl-proline (Ac-SDKP). Ac-SDKP consistently reduced
fibrosis, while Tβ4 exhibited profibrotic effects when combined with
a prolyl oligopeptidase inhibitor but promoted repair in late-stage
fibrosis (Zuo et al., 2013; Nitta et al., 2016).

Disulfiram (DSF), a well-known drug used to treat chronic
alcohol dependence, has been identified as a nephroprotective
medication that decreases epithelial–mesenchymal transition
(EMT) and prevents the accumulation of collagen by regulating
many molecular pathways implicated in renal fibrosis (Liu et al.,
2021). It is also reported to possess anti-inflammatory (Kanai et al.,
2010) and anti-cancer effects (Ekinci et al., 2019; Jiao et al., 2016).
Owing to the broad therapeutic potential of DSF, repurposing of
DSF has garnered interest recently. Clinical trials on the use of DSF
for various diseases, such as COVID-19 (Fillmore et al., 2021),
human immunodeficiency virus infection, and refractory multiple
myeloma, have been conducted or are ongoing (Elliott et al., 2015;
Weiser et al., 2021). DSF, as a novel proteasome inhibitor, is studied
to inhibit nuclear translocation and DNA binding activity of NF-κB
in certain cancers (Zha et al., 2014). DSF reversed the TGF-β-
induced EMT program in a dose-dependent manner in the MCF-7
cell line and the mice model (Han et al., 2015). Combined with
copper-inhibited transforming growth factor β1, TGF-β1 induced α-
smooth muscle actin (α-SMA) expression and suppressed fibroblast
activation (Li Y. et al., 2020). It decreased the expression of GSDMD
and downregulated the level of α-SMA in renal tissues, inhibiting
pyroptosis and improving renal fibrosis in rats (Zhang et al., 2021).
Based on these studies, we intended to extensively explore the overall
possible mechanisms of DSF that corroborate its repurposability in
the management of renal failure.

In this study, we predicted the overall possible interactions
between DSF (ligand) and its modulated genes through target
identification, gene set enrichment analysis, and network analysis.
As a result, we identified NFKB (p65/p50), PIK3R1/PIK3CA
(p85 regulatory subunit/p110α catalytic subunit), MTOR, PTGS2,
and MMP9 as core nodes in RF. We further aimed to evaluate the
binding affinity of DSF with core protein targets using molecular
docking, assess complex stability by molecular dynamics simulation,
and explore conformational changes using principal component
analysis and free energy landscape.

2 Materials and methods

2.1 DSF and RF targets

Canonical SMILES of DSF was retrieved from the PubChem
(Kim et al., 2019) database (https://pubchem.ncbi.nlm.nih.gov/;
CID: 3,117) and queried for the target prediction in BindingDB
(Liu et al., 2007) with probability ≥70%, SuperPred (p ≥ 50%) (Gallo
et al., 2022), STITCH (Kuhn et al., 2007), probable mRNA-based

gene expression using DIGEP-Pred (Lagunin et al., 2013) servers
expressed genes (up and downregulated) with pharmacological
activity (Pa) greater than pharmacological inactivity (Pi)), and
from the peer review of literature. Similarly, disease genes were
retrieved from the therapeutic target database (TTD) (Chen et al.,
2002) and the GeneCards (Stelzer et al., 2016) database using the
keywords “chronic kidney disease,” “end-stage renal failure,” and
“kidney fibrosis.” The relevance score was set to ≥20 to get an
optimum number of genes for pathway enrichment analysis. The
commonly shared genes between DSF and RF were obtained and
subjected to pathway enrichment analysis.

2.2 DSF-modulated RF pathways

The common genes were queried in STRING (Mering et al., 2003)
ver 12.0 to visualize and construct the protein–protein interaction (PPI)
network for the same. The high-confidence target protein interaction
data was set with a score level greater than 0.4. Within the PPIs,
k-means clustering was applied to find a defined number of clusters
based on their centroids. Centroid value is the most complex node
centrality index and considers couples of nodes (i, j). The centroid value
of a node “i” is the number of nodes with the minimum shortest path
that are closer to “i” than “j.” The highest centroid node has the highest
number of neighbors separated by the shortest path to it (Lu et al.,
2016). Afterward, the pathwaysmodulated by a set of genes with respect
to Homo sapiens were obtained from the Kyoto Encyclopedia of Genes
and Genomes (KEGG; https://www.genome.jp/kegg/pathway.html)
(Kanehisa et al., 2017). Pathways with p-values less than 0.05 were
considered statistically significant. To control for the potential false
positives arising from multiple hypothesis testing, we applied a false
discovery rate (FDR) correction. This approach ensures that the
findings reported as significant are more likely to represent true
discoveries rather than being the result of random chance. The
pathways related to the RF were identified from published literature.
The clusters, biological processes, molecular function, and cellular
components were identified through gene ontology (GO) analysis.

2.3 Network analysis

The combined network of DSF, regulated proteins, and
modulated pathways was constructed using Cytoscape ver. 3.9.1
(https://cytoscape.org/) (Shannon et al., 2003). The duplicate nodes/
edges were removed during the network construction to avoid false
hits. The whole network was then treated as directed before analysis.
The final network was analyzed based on the edge count topological
parameter. In addition, the node size and color were set as “low
values to small size” and “low values to blue colors (high values to
green),” respectively (Patil et al., 2023a; Khanal et al., 2023).

2.4 Molecular docking to assess the binding
affinity of DSF with macromolecules

2.4.1 Macromolecule preparation
Based on the network analysis, NFκB (p65/p50) PIK3R1/

PIK3CA (p85/p110α), mTOR, PTGS2, and MMP9 were chosen
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for molecular docking. The X-ray crystallographic structures of the
protein molecules were retrieved from the RCSB PDB database with
PDB IDs 1NFI (Jacobs and Harrison, 1998), 4JPS (Furet et al., 2013),
4JSX (Yang et al., 2013), 5IKQ (Orlando and Malkowski, 2016), and
1GKC (Rowsell et al., 2002), respectively. The missing amino acid
residues in the PIK3R1/PIK3CA (PDB ID: 4JPS) were filled through
template-based modeling via the SwissModel server (Schwede et al.,
2003), validated using the SAVES v6.1 server (https://saves.mbi.ucla.
edu/) by considering Ramachandran plot analysis, VERIFY3D, and
ERRAT quality checks. The amino acids were renumbered using
PDB-Editor (Lee and Kim, 2009).

2.4.2 Identification of ligand binding sites
The active site and functional domain information of the protein

residues were obtained through the CASTp (Tian et al., 2018) and
P2Rank (Krivák and Hoksza, 2018) servers.

2.4.3 Ligand preparation
The structure of DSF (CID: 3117) and standard compounds

from the co-crystal structures, except for NFκB, were obtained from
the PDB. The standard compound for NF-κB was sulfasalazine
(CID: 5339; targeting p65/p50) retrieved from the PubChem
database. The standard compound for PIK3R1/PIK3CA was
Alpelisib (CID: 56649450); for mTOR: Torin-2 (CID: 51358113);
for PTGS2: meclofenamic acid (CID: 4037); and for MMP9: N~2~-
[(2R)-2-{[formyl (hydroxy)amino]methyl}-4-methylpentanoyl]-N,
3-dimethyl-L-valinamide (NFH; CID: 5287851). The structures of
standards were used from the PDB file. The compound energies
were minimized through the POAP pipeline (Samdani and Vetrivel,
2018) ligand preparation script “POAP_lig.bash” by applying the
mmff94 force field via the conjugate gradient method.

2.4.4 Ligand–protein docking
Molecular docking of DSF and standard compounds with the

prioritized protein targets was performed using AutoDock Vina
(Trott and Olson, 2010) through the POAP pipeline employing the
‘POAP_vs.bash’ script (Samdani and Vetrivel, 2018; Patil et al.,
2023b). The system exhaustiveness was set to the default value of 8.
The docking procedure generated nine docked conformations, from
which the best ligand conformation was selected based on a
combination of the lowest docking energy (docking, kcal/mol)
and the lowest root-mean-square deviation (RMSD). The
resulting complex with the lowest RMSD and binding energy was
then visualized for intermolecular interactions using Discovery
Studio Visualizer version 2019. The docking validation was
performed by analyzing the overlay similarity between the
docked conformation of the standard drug and its experimentally
determined X-ray PDB conformation. The root-mean-square
deviation (RMSD) was calculated using the PyMOL tool
(DeLano, 2002).

2.5 Molecular dynamics

The protein complexes formed with DSF and the standard drug
underwent all-atom explicit molecular dynamics (MD) simulations
for 100 ns in an explicit solvent using the ff99SBildn force field in
xleap tool of Amber antechamber (Wang et al., 2001) with

GROMACS software (Lindahl et al., 2001). The docked
complexes were solvated in a cubic box using the TIP3P water
model, with periodic boundary conditions applied at a distance of
10 Å from all protein edges. To neutralize the system, Na+/Cl−

counter ions were added wherever necessary. Energy minimization
was performed using the steepest descent method followed by the
conjugate gradient method to achieve near-global minimum energy
conformations. The systems were equilibrated using canonical
(NVT) and isobaric (NPT) ensembles for 1 ns each. During NVT
equilibration, a modified Berendsen thermostat maintained a
constant volume and temperature at 300 K, while during NPT
equilibration, the Parrinello–Rahman barostat maintained a
constant pressure of 1 bar. The particle mesh Ewald (PME)
method, with a cutoff of 1 nm, was used to compute coulomb,
van derWaals, and long-range electrostatic interactions. The LINear
Constraint Solver (LINCS) algorithm was employed to constrain
bond lengths. The complexes were then subjected to a 100 ns
production run, with coordinates recorded every 2 fs. The
resulting trajectories were analyzed using built-in GROMACS
utilities and additional software tools as needed. The stability of
the docked complexes was assessed by examining the RMSD of
backbone and complex atoms, root-mean-square fluctuation
(RMSF) of C-alpha atoms, radius of gyration (Rg) of ligand and
protein atoms, solvent-accessible surface area (SASA) of protein,
and hydrogen bonds (H-bonds) between ligand and protein.

2.6 MMPBSA and decomposition energy

The MMPBSA approach was employed to estimate binding
affinity, utilizing 50 frames for energy calculation. In typical
scenarios, where comparing states with similar entropies, such as
two ligands binding to the same protein, entropy contributions were
excluded. The relative binding energy and its contribution to single
residues were calculated using the g_mmpbsa module. Equations
specific to the MMPBSA methods for calculating binding energy
(Kumari et al., 2014; Shivankar et al., 2024) are as follows:

ΔGbind � Gcomplex − Greceptor + Gligand( ),

� ΔH –TΔS,
� ΔEMM + ΔSsolv − TΔS,

ΔGMM � ΔEbonded + ΔEele + ΔEvdw ,

ΔGsolv � ΔGpolar + ΔGnonpolar,

ΔGnonpolar � γ × ΔSASA + β,

where the ΔGbind is the total binding free energy. It represents the
free energy difference between the bound state (Gcomplex) and the
free state (Greceptor + Gligand) and can be represented by the sum of
the enthalpy part (ΔH) and the entropy part (−TΔS). The enthalpy
part can be further broken into molecular mechanical energy
(ΔEMM) and solvation-free energy (ΔGsolv). The ΔEMM term
undertakes the intra-molecular (ΔEbonded), the electrostatic
(ΔEele), and the van der Waals (ΔEvdW) energies. The ΔGsolv

term contains both polar (ΔGpolar) and nonpolar (ΔGnonpolar)
contributions, where the polar contributions are accounted for by
the Poisson Boltzmann (PB) model and the nonpolar contributions
are assumed to be proportional to the solvent-accessible surface area
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(SASA). γ links the extent of this surface area to the free energy. γ ×
ΔSASA models the energetic cost of solvent interactions with the
hydrophobic regions of the molecule. The larger the exposed surface
area, the greater the solvation-free energy. β is an additive constant
that accounts for contributions to the nonpolar solvation-free
energy that is not directly dependent on SASA.

2.7 Principal component analysis (PCA)-
based free energy landscape (FEL) of
protein–ligand complexes

Principal component analysis (PCA) was employed to analyze the
diverse molecular motions of amino acids using molecular dynamics
trajectories (Bhandare and Ramaswamy, 2018; Amadei et al., 1996). This
method involved aligning the trajectory to a reference structure using
“least square fit” to eliminate translational and rotational mobility. A
covariance matrix was then generated through a linear transformation of
Cartesian coordinate space. This matrix was diagonalized to yield
eigenvectors, each representing a direction of molecular motion and
associated eigenvalues, indicating the energy contribution of eachmotion
component. The trajectory was projected onto these eigenvectors to
illustrate time-dependent motions, revealing specific vibrational modes.
The temporal average of these projections quantified the contribution of
atomic vibrations to coordinated motions. Finally, the conformational
and transitional states of complexes were visualized and analyzed over the
trajectory by extracting different conformations using the FEL graph.
GROMACS utilities “g_covar,” and covariance matrices were utilized to
compute and diagonalize eigenvectors and eigenvalues from the
trajectory data. Additionally, the “g_anaeig” program facilitated the
analysis and visualization of these eigenvectors (Bhandare and
Ramaswamy, 2018; Amadei et al., 1996).

3 Results

3.1 DSF and RF targets

DSF was predicted to target 113 protein molecules in SuperPred,
10 in STITCH, 99 in DIGEP-Pred (51 were downregulated and
48 were upregulated), 13 in BindingDB, and 52 from published
literature. Overall, DSF was identified to target 265 protein
molecules after removing duplicates (22). Renal fibrosis-
associated genes were retrieved from the gene cards database
(relevance score ≥20) using different keywords: kidney fibrosis
(1), chronic kidney diseases (1707), aZend-stage renal failure
(719), and nine genes were retrieved from the TTD database.
Overall, 1803 protein targets were identified for RF. The
common targets between DSF and RF were analyzed, and
78 were identified (Figure 1). The list of DSF-modulated targets
is provided in Supplementary Table 1, and a list of RF targets is
provided in Supplementary Table 2.

3.2 DSF-targeted protein interactions

In order to enhance visualization and understand the
mechanism of the targets, it is important to study the PPI of

the target genes. The interactions among the target proteins are
depicted in Figure 2, which comprises 78 nodes and 500 edges;
each edge represents PPIs. The other parameter is the average
node degree, which is valued at 12.8, and the local clustering co-
efficient: 0.551 corresponds to the number of targets that are
connected to the network. Within the PPIs, k-means clustering
of 78 nodes, 58 nodes fell within Cluster 1, 17 in Cluster 2, and
2 in Cluster 3 (Supplementary Table 3; Figure 2), indicating
genes within Cluster 1 have a potential role in the
pathogenesis of RF.

3.3 DSF-targeted pathways involved in RF

To study the signaling pathway and function of the selected
target genes, the data were imported to Cytoscape to construct the
compound-target network. Figure 3 shows the compound-target-
disease interaction network, which elucidates the mechanisms of
DSF action in RF treatment. DSF was found to modulate
138 molecular pathways, of which 21 are associated with the RF
(Table 1). In the pathway enrichment analysis, the PI3K-Akt
signaling pathway was identified as the enriched pathway that
scored a gene count of 14 and the lowest FDR of 5.70 × 10⁻⁹.
The JAK-STAT, TNF, Ras, ErbB, p53, phospholipase D, mTOR, IL-
17, NF-κB, AMPK, VEGF, and MAPK signaling pathways were also
modulated by the 78 targets. Furthermore, cellular senescence,
apoptosis, inflammatory mediator regulation of TRP channels,
renal cell carcinoma, arachidonic acid metabolism, epithelial cell
signaling in Helicobacter pylori infection, necroptosis, and Th1 and
Th2 cell differentiation mechanisms were also modulated by DSF
targets. PIK3R1, MAPK3, NFκB1, mTOR, etc., were identified as hub
genes within the network and are represented through the higher
node size. Alongside, therapeutic targets of RF, mainly PTGS2,
MMP9, MMP2, SMAD4, etc., were also modulated by DSF. This
fact inferred that the DSF might influence these targets
synergistically; it has therapeutic effects on other diseases and
disorders in addition to RF. The details of the network between
DSF, its targets, and modulated pathways are represented in
Figure 3. Supplementary Table 4 gives overall pathways
modulated by the 78 targets.

3.4 GO analysis of DSF-targeted genes

3.4.1 Molecular functions
A total of 47 different molecular function GO terms were

identified via the PPI with protein catalytic activity. GO:
0003824 had the lowest false discovery rate, that is, 9.84 × 10⁻6,
to trigger 46 genes against 5,522 background genes at 0.32 strength.
Herein, a total of 15 functions were associated with RF pathogenesis,
viz., C-C chemokine receptor activity, C-C chemokine binding,
oxidoreductase activity, protein kinase binding, antioxidant
activity, cyclin-dependent protein serine/threonine kinase
inhibitor activity, monooxygenase activity, nuclear receptor
activity, prostaglandin-endoperoxide synthase activity, collagen
binding, aromatase activity, kinase inhibitor activity, superoxide
dismutase activity, and protein kinase activity (Supplementary
Table 5; Figure 4A).
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3.4.2 Biological processes
A total of 804 biological processes were involved in the PPIs, in

which programmed cell death, cellular response to stimulus,

regulation of developmental process, response to oxidative stress,
cytokine, tumor necrosis factor, regulation of cell communication,
signaling, protein phosphorylation, inflammatory response, kinase

FIGURE 1
(A)Common genes of DSF from SuperPred, STITCH, DIGEP-Pred, BindingDB, and the literature. (B)Common genes between DSF and renal fibrosis.

FIGURE 2
(A) Protein–protein interaction of the DSF-triggered protein. Node color; colored nodes: query proteins and first shell of interactions, white
nodes: second shell of interactors, Node content; empty nodes: proteins of unknown 3D structure, filled nodes: some 3D structure is known or
predicted, Known Interactions; from curated databases, experimentally determined, Predicted Interactions; gene neighborhood,
gene fusions, gene co-occurrence and others; text mining, co-expression, protein homology. (B) k-means cluster
analysis based on their centroids. Centroid value is the most complex node centrality index and considers couples of nodes (i, j). The centroid value of a
node i is the number of nodes with the minimum shortest path that are closer to “i” than “j.” The highest centroid node has the highest number of
neighbors separated by the shortest path to it.
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activity, tissue development, catalytic activity, positive regulation of
ROS metabolic process, ERK1 and ERK2 cascade, regulation of
MAPK cascade, tissue remodeling, mesenchyme development,
collagen catabolic process, epithelial cell differentiation,
mesenchyme morphogenesis, and metanephric mesenchyme
development were traced to be involved in the pathogenesis of
RF (Supplementary Table 6; Figure 4B).

3.4.3 Cellular components
GO analysis identified 58 GO terms for cellular components in

which cytoplasm GO:0005737 had the lowest false discovery rate,
that is, 3.54 × 10⁻6, to regulate 71 genes against 12,056 genes at
0.17 strength. In addition, 41 genes were triggered in
endomembrane system components with an FDR score of 2.69 ×
10⁻5 (Supplementary Table 7; Figure 4C).

3.4.4 Cluster analysis
Nine clusters were generated for 78 genes (Supplementary

Table 8). Among them, six clusters were associated with RF
(Figure 5). Cluster 1 contains six genes (CCND1, CDKN1B,
MDM2, CDKN2B, CDKN1A), is identified as mixed for
glutathione metabolism and detoxification of ROS, and scored
the lowest FDR of 6.3 × 10⁻³. Cluster 2 contains four genes
(CCR7, CCR2, CCR1, CXCR4) and is identified as mixed for
chemokine receptors binding chemokines, and scored the lowest
FDR of 1.34 × 10⁻2. Cluster 3 includes PTGS1, PTGS2, and ALOX5

involved in prostaglandin metabolism and leukotriene receptor
activity, whereas Cluster 4 (MMP9, MMP2, ITGB8, LOX, TIMP2,
and VCAM1) and Cluster 5 (MMP9, MMP2, LOX, TIMP2) were
found to trigger extracellular matrix organization, elastic fiber
formation, and matrix metalloproteinases activity. Likewise,
Cluster 6 contains four genes (GUSB, CYP19A1, CYP2E1,
CYP3A4) that were found to be involved in the steroid hormone
biosynthesis and arachidonic acid monooxygenase activity.

3.5 Molecular docking

Among the selected targets, PIK3R1/PIK3CA (PDB ID: 4JPS)
contained missing residues and were remodeled using the Swiss
Model. The model passed the Varify3D with an 82.33% score and
showed an ERRAT2 quality factor of 95.45% (Supplementary
Figures S1A–E). Furthermore, the Ramachandran plot revealed
around 98.9% of the residues in the most favored and
additionally allowed region, indicating a good quality model.
Supplementary Table 9 provides active site residues and the grid
box information of each target. In molecular docking, all targets
except NFKB were validated by redocking with their native ligands.
The redocking results confirmed that the ligands remained within
the active site, and their interactions closely matched those observed
in the co-crystal structures (Table 2). From the docking, nine
conformations were generated for each ligand, and

FIGURE 3
Network representation of DSF, its modulated targets, and pathways involved in RF. Nodes shown in blue are DSF-modulated targets involved in the
RF but are not enriched to be involved in the molecular pathways. The provided figure represents a network map showing the interactions and pathways
associated with disulfiram. The central green node labeled “disulfiram” indicates the drug around which the interactions are mapped. Edges between
nodes are color-coded based on edge betweenness and edge count, with blue, green, and red representing low, medium, and high values,
respectively. The color gradient from blue to red represents an increasing edge count.
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conformations with the lowest docking energy and zero RMSD were
chosen (Supplementary Table 10). DSF scored the lowest energy
with PTGS2 (−5.0 kcal/mol), followed by PIK3 (−4.6 kcal/mol) and
MMP9 (−4.5 kcal/mol). DSF showed docking scores
of −4.2 and −3.5 kcal/mol with mTOR and NFKB, respectively.
With PTGS2, DSF formed 13 hydrophobic bonds with Val116 (2),
Tyr355, Leu359, Leu531, Val349 (2), Tyr348, Tyr385 (2), Trp387,
Phe381, and Leu384, whereas meclofenamic acid formed two H-
bonds with Ser530 and Tyr385 and 11 hydrophobic bonds with
Leu531 (2), Val341 (2), Ala527 (2), Val116, Val523 (2), and Leu352
(2). With PIK3, DSF formed 11 hydrophobic bonds with Pro778,
Lys802, Met772, Ile800, Trp780, Phe930, Val850, Ile932, Val851,
Glu849, and Tyr836, whereas Alpelisib formed five H-bonds with
Val851 (2), Ser854, and Gln859 (2) and 11 hydrophobic bonds with
His855, Val851 (4), Ile932, Met922, Val850, Tyr836 (2), and
Met772. Likewise, with MMP9, DSF formed one H-bond with
Ala189, 11 hydrophobic bonds with His411 (3), His405, Tyr423,
Leu188 (2), Val398, His401, His190, and Phe110. NFH formed
five H-bonds with Glu402, Leu188, Tyr423, Gly186, and Pro421 and
five hydrophobic bonds with Leu188, Tyr423, Leu187, Val398, and

His401. DSF formed very poor interactions with NFKB, that is, one
H-bond with Ile224 and one hydrophobic bond with Lys221,
whereas sulfasalazine formed four H-bonds with Ala243, His245,
Gln220, and Gln247, and six hydrophobic bonds with Val254,
Arg255, Leu272, His245 (2), and Lys221. While in complex with
MTOR, DSF formed 10 hydrophobic bonds with Leu2185 (2),
Trp2239 (2), Val2240, Met2345, Ile2237, Pro2169 (2), and
Ile2163, whereas Torin-2 formed one H-bond with Glu2190 and
14 hydrophobic bonds with Ile2237, Ile2356 (2), Tyr2225, Val2240
(2), Met2345 (2), Trp2239 (2), Leu2185 (2), Pro2169, and Ile2163.
The docking scores, H-bonds, hydrophobic interactions, and
interactions with active site residues of DSF and standard
molecules with their respective targets are provided in Table 2.
Supplementary Figures S2–S6 represent the 2D and 3D
representations of the interaction of DSF and standard molecules
with their respective targets.

To validate the docking protocol, the overlays between the
docked conformations and the experimental (X-ray) PDB
conformations of the standard molecules were analyzed
(Table 2). The RMSD values for Alpelisib (PIK3R1/PIK3CA),

TABLE 1 Pathways involved in RF modulated by DSF.

KEGG ID Pathway description Gene
count

False discovery
rate

Set of genes within the network

hsa04151 PI3K-Akt signaling pathway 14 5.70 × 10⁻9 ITGB8, NFKB1, CCND1, CDKN1B, MDM2, PDGFRB, MAPK3, FOXO3,
MTOR, PTEN, JAK2, CDKN1A, PIK3R1, and NTRK1

hsa04218 Cellular senescence 10 1.70 × 10⁻6 NFKB1, CCND1, MDM2, MAPK3, CDKN2B, FOXO3, MTOR, PTEN,
CDKN1A, and PIK3R1

hsa04210 Apoptosis 8 1.01 × 10⁻6 NFKB1, CTSD, RIPK1, MAPK3, CTSB, LMNA, PIK3R1, and NTRK1

hsa00590 Arachidonic acid metabolism 6 2.61 × 10⁻6 PLA2G6, PTGS1, PTGS2, ALOX5, PLA2G2A, and CYP2E1

hsa04630 JAK-STAT signaling pathway 8 3.11 × 10⁻6 CCND1, PDGFRB, MTOR, JAK2, CDKN1A, PIK3R1, PTPN11, and THPO

hsa04668 TNF signaling pathway 7 4.26 × 10⁻6 NFKB1, RIPK1, MAPK3, VCAM1, PTGS2, MMP9, and PIK3R1

hsa04014 Ras signaling pathway 8 2.90 × 10⁻5 NFKB1, PDGFRB, MAPK3, PLA2G6, PLA2G2A, PIK3R1, NTRK1, and
PTPN11

hsa04012 ErbB signaling pathway 5 1.30 × 10⁻4 CDKN1B, MAPK3, MTOR, CDKN1A, and PIK3R1

hsa04750 Inflammatory mediator regulation of
TRP channels

5 2.30 × 10⁻4 PRKCD, PLA2G6, PIK3R1, NTRK1, and HTR2A

hsa05211 Renal cell carcinoma 4 7.40 × 10⁻4 MAPK3, CDKN1A, PIK3R1, and PTPN11

hsa04115 p53 signaling pathway 4 1.00 × 10⁻3 CCND1, MDM2, PTEN, and CDKN1A

hsa04072 Phospholipase D signaling pathway 5 1.40 × 10⁻3 PDGFRB, MAPK3, MTOR, PIK3R1, and PTPN11

hsa04150 mTOR signaling pathway 5 1.50 × 10⁻3 LRP6, MAPK3, MTOR, PTEN, and PIK3R1

hsa04657 IL-17 signaling pathway 4 2.10 × 10⁻3 NFKB1, MAPK3, PTGS2, and MMP9

hsa04064 NF-kappa B signaling pathway 4 2.90 × 10⁻3 NFKB1, RIPK1, VCAM1, and PTGS2

hsa04152 AMPK signaling pathway 4 5.10 × 10⁻3 CCND1, FOXO3, MTOR, and PIK3R1

hsa04370 VEGF signaling pathway 3 5.50 × 10⁻3 MAPK3, PTGS2, and PIK3R1

hsa05120 Epithelial cell signaling in
Helicobacter pylori infection

3 7.80 × 10⁻3 NFKB1, ADAM10, and PTPN11

hsa04217 Necroptosis 4 9.10 × 10⁻3 RIPK1, NLRP3, FTL, and JAK2

hsa04658 Th1 and Th2 cell differentiation 3 1.46 × 10⁻2 NFKB1, MAPK3, and JAK2

hsa04010 MAPK signaling pathway 5 1.63 × 10⁻2 NFKB1, PDGFRB, MAPK3, MAPT, and NTRK1
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Torin-2 (mTOR), meclofenamic acid (PTGS2), and NFH (MMP9)
were calculated as 0.498 Å, 0.657 Å, 0.625 Å, and 1.336 Å,
respectively. These low RMSD values indicate the accuracy of the
docking protocol in predicting binding poses closely aligned with
experimental structures (Supplementary Figure S7).

3.6 Molecular dynamics

The RMSD parameter was used to calculate the average change
in atom displacement of frames over 100 ns simulation with respect
to a reference frame (0 ns). All the simulated complexes except
NFKB in complex with DSF exhibited stable dynamics during the
100 ns simulation. The backbone and complex atoms RMSD value
for DSF and sulfasalazine with NFKB ranged between ~10 and 14 Å
with fluctuation throughout the simulation. Whereas DSF in
complex with PIK3 showed very stable dynamics with a
backbone and complex atoms RMSD value ranging at ~3 Å and
was comparable with the standard molecule Alpelisib. A similar
trend was observed in complexes with MTOR, PTGS2, and MMP9.

DSF and Torin-2 in complex with MTOR showed an average
backbone and complex atoms RMSD value of ~3.5 Å and 4.0 Å,
respectively. Likewise, DSF and meclofenamic acid in complex with
PTGS2 showed RMSDs ranges from 3 Å to 3.5 Å for DSF and 2 Å to
2.5 Å for meclofenamic acid, respectively. DSF and NFH in complex
with MMP showed a similar trend in RMSD with average RMSDs of
~3 Å and ~1.5 Å for backbone and ~3.5 Å and ~2 Å for complex
atoms, respectively (refer Figure 6).

Furthermore, C-α atom RMSF values were calculated to know
the local changes within the protein structure. In DSF and
sulfasalazine with NFκB complexes, the NFκB p50 subunit
C-terminal residues showed larger fluctuations up to 17 Å and
12 Å, respectively. The residues from Arg174 to Lys195 with the
longest loop showed larger fluctuation up to 8 Å, and the residues
participating in the ligand contact showed minimal fluctuation. Due
to a smaller number of interactions, that is, one H-bond with
Ile224 and one hydrophobic bond with Lys221, DSF could not
form a stable complex, and it jumped out of the binding site during
the equilibration period (Movie 1). In contrast, sulfasalazine was
found to be stable at the binding pocket (Movie 2), but a residual

FIGURE 4
GO analysis depicting molecular functions, biological processes, and cellular components associated with RF. (A) Chord diagram representing
molecular functions with the lowest FDR scores, highlighting functional interactions. (B) Bar chart showing biological processes associated with RF,
ranked by significance (−log10 (p-value)). The most enriched processes include regulation of cell death, cellular response to stimuli, and inflammatory
pathways. The color gradient represents the significance level, with red indicating the highest and blue indicating the lowest p-values. (C) Top
cellular components from the GO list. Key enriched components include cytoplasmic vesicles, mitochondria, and intracellular membrane-bounded
organelles. The bar length represents the frequency of occurrences, while the color gradient corresponds to −log10 (p-value).
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fluctuation up to 5 Å at the binding site was observed. In the DSF-
and Alpelisib- PIK3 complex, residues from PIK3R1 showed larger
fluctuations up to 9 Å, and the residues of PIK3CA involved in
ligand binding (Met772, Pro778, Trp780, Ile800, Lys802, Tyr836,
Glu849, Val850, Val851, Phe930, and Ile932) for both DSF and
Alpelisib showed least RMSF of <2 Å. In both mTOR and PTGS2,
the N-terminal residues showed larger fluctuations up to 20 Å and
6 Å, respectively. Whereas the residues involved in ligand binding
(refer to Table 2) showed less fluctuation, <3 Å. In the DSF and NFH
complexes with MMP9, residues participating with DSF showed
larger fluctuations up to 6 Å; however, the ligand was found to be
within the binding pocket throughout the simulation period.
Figure 7 shows the RMSF plot of C-alpha atom protein targets
during a 100 ns MD production run. Supplementary Movies 1–10
show the trajectory visualizations for DSF and standard compounds
with their respective targets.

The radius of gyration (Rg) measures the extendedness of a
ligand (as shown in Figure 8A) and stable folding of the protein (as
shown in Figure 8B) during simulation through the equivalent to its
principal moment of inertia and confirms the stable complex
formation. In the DSF- NFκB complex, an increase in the protein
Rg during the equilibration period indicated an unfolding behavior
and could be the reason for the unstable binding of DSF. However,
sulfasalazine was found to be stable at ~5 Å, and the protein Rg was
stable at ~32 Å, which indicates the ligand is within the binding
pocket until ~80 ns. A steady decrease in the SASA also indicates a
stable complex formation with sulfasalazine until ~80 ns. An

increase in the Rg and fluctuating SASA after 80 ns indicates
unstable complex formation with sulfasalazine (Figure 8C). DSF
formed very stable conformations with PIK3 throughout 100 ns,
which is indicated by stable ligand Rg at 3.5 Å and stable protein Rg
(35.5 Å) and SASA (~610 nm2). The protein Rg and SASA in other
proteins, viz, mTOR (27 Å and 312 nm2), PTGS2 (24.5 Å and
250 nm2), and MMP9 (15.25 Å and 90 nm2) were found to be stable
and maintained steady states throughout the 100 ns MD run.
Meanwhile, the DSF Rg was found to fluctuate in complex with
mTOR, PTGS2, and MMP9, with Rg values ranging from 3 Å to
3.6 Å throughout the 100 ns run. However, DSF was found to be
within the binding pocket, and fluctuation could be due to unstable
hydrogen bond formation and larger conformational changes (refer
to Supplementary Movies).

The number of hydrogen bonds formed between DSF and
standard compounds with selected targets was analyzed over the
100 ns MD trajectory. DSF did not form H-bonds with PIK3,
mTOR, and MMP9. It formed one H-bond with NFκB and
PTGS2; however, these were not consistent throughout the
simulation. All the standard molecules with their respective
protein targets formed >1 H-bond except for PTGS2, which
formed one H-bond. Similarly, we accessed the individual residue
contribution in complex formation with DSF and standard
compounds. NFκB residues Arg50, Arg30, Gln29, and Glu225
(forming a loop at binding pocket) showed energy contribution
of −6.63, −2.44, −0.95, and −0.71 kJ/mol with DSF in stable complex
formation during the equilibration period, however, due to the

FIGURE 5
Cluster analysis for DSF-modulated targets. A total of nine clusters were enriched, of which six were associated with RF. The following were the
associations of clusters in biological pathways of RF. Cluster 1: Mixed, incl. glutathione metabolism and detoxification of reactive oxygen species; Cluster
2: chemokine receptors bind chemokines; Cluster 3: prostaglandin metabolism and leukotriene receptor activity; Cluster 4: extracellular matrix
organization; Cluster 5: elastic fiber formation and matrix metalloproteinases; and Cluster 6: steroid hormone biosynthesis and arachidonic acid
monooxygenase activity.
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larger fluctuation of the loop, the DSF did not form stable
interactions with NFκB, and the residues Glu25, Glu22, Glu49,
and Lys28 (beta-sheet residues at binding pocket) opposed the
interaction with positive energies of 0.81 kJ/mol, 0.93 kJ/mol,
2.20 kJ/mol, and 2.54 kJ/mol. Similarly, sulfasalazine was found
to move to the adjacent binding pocket after 80 ns, and hence, a
larger amino acid residual contribution was observed
(shown in red).

DSF formed a stable complex with PIK3 via forming interaction
with Ile932, Ile800, Ile848, Met772, and Trp780 by scoring energy
contributions of −9.37 kJ/mol, −6.07 kJ/mol, −5.87 kJ/mol, −4.41 kJ/
mol, and −2.75 kJ/mol, while the residues Asp810, Asp933, and
Lys802 opposed the interaction with positive energy of 7.86 kJ/mol,

9.29 kJ/mol, and 10.28 kJ/mol. In contrast, Alpelisib formed stable
contacts with Ile932, Val850, Ile848, Ile800, and Tyr836 of PIK3 via
forming energy contributions of −8.14 kJ/mol, −7.48 kJ/
mol, −6.37 kJ/mol, −6.37 kJ/mol, and −5.53 kJ/mol and opposing
the interaction with Ser854, Lys802, and Asp933. DSF formed stable
complexes with mTOR, PTGS2, and MMP9 through the
hydrophobic interactions, as DSF did not form hydrogen bonds,
and the interactions were consistent at the active site throughout the
100 ns MD simulation as both DSF and standard molecules
interactions were overlapped in the decomposition graph
(Figure 9) and were also confirmed through visualizing the
trajectory (refer to Supplementary Movies for MTOR, PTGS2,
and MMP9).

TABLE 2 Docking score and intermolecular interaction of DSF and standard molecules with the prioritized targets involved in RF.

Target
name
(PDB ID)

Compound name
(PubChem ID)

Docking
score

(kcal/mol)

RMSD
(Å)

HBI Non-HBI (hydrophobic
interactions)

N N′ N″

NFKB (p50/p65-
RelA) (1NFI)

DSF −3.5 -- Ile224 Lys221 1 1 2

Sulfasalazine −7.7 Ala243, His245,
Gln220, and
Gln247

Val254, Arg255, Leu272, His245 (2), and
Lys221

4 6 1

PIK3R1/PIK3CA
(4JPS)

DSF −4.6 Nil Pro778, Lys802, Met772, Ile800, Trp780,
Phe930, Val850, Ile932, Val851, Glu849, and
Tyr836

0 11 11

Alpelisib (redock) −10.2 0.498 Val851 (2),
Ser854, and
Gln859 (2)

His855, Val851 (4), Ile932, Met922, Val850,
Tyr836 (2), and Met772

5 11 15

Alpelisib (from PDB) -- Val851 (2),
Ser854, and
Gln859 (2)

His855, Val851 (2), Ile932 (3), Met922,
Val850, Tyr836 (2), Met772, Lys802, Ile800,
and Ile848 (2)

5 15 19

MTOR (4JSX) DSF −4.2 Nil Leu2185 (2), Trp2239 (2), Val2240,
Met2345, Ile2237, Pro2169 (2), and Ile2163

0 10 10

Torin-2 (redock) −11.2 0.657 Glu2190 Ile2237, Ile2356 (2), Tyr2225, Val2240 (2),
Met2345 (2), Trp2239 (2), Leu2185 (2),
Pro2169, and Ile2163

1 14 12

Torin-2 (from PDB) -- Val2240 Ile2237, Ile2356, Val2240 (2), Met2345 (3),
Trp2239 (2), Leu2185, Pro2169, Ile2163, and
Cys2243

1 13 14

PTGS2 (5IKQ) DSF −5.0 Nil Val116 (2), Tyr355, Leu359, Leu531, Val349
(2), Tyr348, Tyr385 (2), Trp387, Phe381,
and Leu384

0 13 13

Meclofenamic acid
(redock)

−9.1 0.625 Ser530, Tyr385 Leu531 (2), Val341 (2), Ala527 (2), Val116,
Val523 (2), and Leu352 (2)

2 11 11

Meclofenamic acid
(from PDB)

-- Ser530, Tyr385 Leu531, Ala527 (3), Val116, Val523, Val349 2 7 9

MMP9 (1GKC) DSF −4.5 Ala189 His411 (3), His405, Tyr423, Leu188 (2),
Val398, His401, His190, and Phe110

1 11 12

NFH (redock) −6.7 1.336 Glu402, Leu188,
Tyr423, Gly186,
Pro421

Leu188, Tyr423, Leu187, Val398, and
His401

5 5 10

NFH (from PDB) -- Leu188, Tyr423,
Gly186

Leu188 (2), Gly186, Tyr393, and Ala189 3 5 7

BE: binding energy; HBI: conventional hydrogen bond interaction; Non-HBI: van der Waals, Pi–alkyl, CH, Pi–cation, Pi–sigma, Pi–Pi stacked, Pi–Pi T-shaped, etc., interactions, N: Total

number of H-bond interactions; N′: Total number of other (hydrophobic) interactions; N″: Total number of interactions with active site residues. The RMSD represents the deviation between

the docked conformation and the experimentally determined X-ray PDB conformation.and
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FIGURE 6
RMSD plot of backbone atoms (A) and complex atoms (Prot + Lig) (B) for the selected proteins in complex with DSF and their standard molecules
during a 100 ns MD simulation.

FIGURE 7
RMSF Plot of C-alpha atoms for the selected proteins in complex with DSF and their standard molecules during a 100 ns MD simulation.
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3.7 MMPBSA analysis

DSF scored the lowest free binding energies of −29.49 ±
2.37 kcal/mol and −24.34 ± 3.22 kcal/mol with PTGS2 and
MMP9 compared to the standard molecules meclofenamic acid
(−18.14 ± 3.06 kcal/mol) and NFH (−19.86 ± 3.79 kcal/mol),
respectively. DSF also possessed the lowest free binding energies

of −19.01 ± 3.03 kcal/mol and −21.26 ± 3.22 kcal/mol with PIK3 and
mTOR, whereas their standard molecules Alpelisib and Torin-2
scored −27.60 ± 3.33 kcal/mol and −22.23 ± 4.03 kcal/mol,
respectively. During the equilibration period, DSF showed the
lowest free binding energy of −10.48 ± 2.99 kcal/mol with NFκB,
whereas sulfasalazine scored −7.59 ± 9.59 kcal/mol. Table 3 presents
the overall energy contributions: van der Waals electrostatic, polar

FIGURE 8
Rg plot of DSF and standard molecules (A), protein atoms (B), and SASA of protein atoms (C) during a 100 ns MD simulation.

FIGURE 9
Number of hydrogen bond formations (A) and individual residue contribution in stable complex formation (B) of proteins with DSF and standard
molecules during a 100 ns MD simulation.

Frontiers in Pharmacology frontiersin.org13

Patil et al. 10.3389/fphar.2025.1480732

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1480732


solvation solvent-accessible surface area, binding free energy of DSF,
and standard molecules with their targets.

3.8 Principal component analysis (PCA)-
based free energy landscape (FEL) of
protein–ligand complexes

We analyzed the collective motion captured by the first two
principal components (PCs) and plotted 2D projections for PC1 and
PC2 (Figures 10A, B). In addition, enhanced sampling was carried
out by FEL to analyze trajectories (FEL coordinates at different time
intervals are provided in Supplementary Table 11). The DSF and
sulfasalazine complexes with NFκB expressed diverse
conformational spaces that range from −16 to 17 and eigenvalues
of 30 and 61, respectively. As shown in Supplementary Figure S8,
DSF was found to be within the binding pocket during the
equilibration period, and a few of its conformations were
observed until 10 ns. It escaped from the binding pocket at
~25 ns and remained so throughout the simulation. Sulfasalazine
formed two types of conformations (Supplementary Figure S9). At
~33 ns, it was within the active site, and it moved to an adjacent
pocket at ~75 ns, where it was stabilized until 100 ns. In the MD
trajectory of complexes DSF and Alpelisib with PIK3,
conformational spaces ranged from −10 to 10 and an eigenvalue
of 7.5. Both DSF and Alpelisib were stable at the binding pocket
(catalytic region), and diverse conformations of the complexes
(Supplementary Figures S10, S11) were due to the significant
movement of the longest loop (Ser62 to Ile111) of the
p85 regulatory protein. However, the system was stabilized after
50 ns for both complexes.

In the DSF and Torin-2 with mTOR complexes, the DSF
complex showed a smaller conformational space range (−4 to 10;
EV: 7.5) than Torin-2 (−10 to 10; EV: 17). The FEL indicates that
DSF was stabilized from the beginning of MD simulation with slight
fluctuation at ~33 ns, whereas the Torin-2 complex showed three
types of diverse conformations at ~23 ns, 40 ns, and 80 ns and was

stabilized from 80 ns to 100 ns (Supplementary Figures S12, 13). In
complexes of DSF and meclofenamic acid with PTGS2,
meclofenamic acid showed a uniform distribution across the
configurational space and clustered in the range of −3 to
5 compared to DSF (−5 to 6). The DSF-PTGS2 complex formed
two types of diverse conformations, until 50 ns and after 50 ns.
During the equilibration period of 50 ns, the N-terminal residues
“Asn1 to Lys50”were found to be unstable, and as a result, two types
of conformations were seen, and the system stabilized after
50 ns–100 ns (Supplementary Figures S14, 15). Similarly, DSF
and NHF in complexes with MMP9 also showed two types of
conformations (Supplementary Figures S16, 17) with PC1 and
PC2 ranging from −2.5 to 2, respectively. Both the complexes
were stabilized after 50 ns. Herein, we propose that the DSF with
NFκB complex has undergone significant conformational changes in
the secondary structure during the simulation and was unstable
throughout the simulation. However, other complexes, namely, DSF
with PIK3, mTOR, MMP9, and PTGS2, were well stabilized and
underwent comparatively smaller conformational changes in the
secondary structure and hence exhibited compact clusters in the
conformations space after the equilibration period.

4 Discussion

RF and CKD are consequences of long-term conditions such as
diabetes, hypertension, and other polygenic diseases. They have
rapidly increased in recent years due to the progressive increase in
these conditions (Amadei et al., 1996). Although there is a greater
focus on CKD prevention and therapy, many patients ultimately
require kidney transplantation or dialysis, as existing treatments can
only partially prevent the disease’s progression (Romagnani et al.,
2017). Currently, medications for CKD and RF include ACEIs and
ARBs (e.g., lisinopril, losartan, valsartan), diuretics (e.g.,
hydrochlorothiazide), and SGLT2 inhibitors (e.g., empagliflozin)
(Momoniat et al., 2019; Johnson and Spurney, 2015). However,
these drugs are primarily used for cardiovascular diseases and are

TABLE 3 MMPBSA calculations of the binding free energy and interaction energies of DSF and standard molecules with their respective targets.

Complex name MMPBSA (kcal/mol)

ΔEVDW ΔEELE ΔGSol ΔGSurf ΔGbind

NFKB - DSF −18.25 ± 2.87 −10.27 ± 2.24 12.68 ± 3.43 −2.44 ± 0.35 −10.48 ± 2.99

NFKB - Sulfasalazine −21.22 ± 4.47 −10.83 ± 8.84 26.52 ± 13.20 −2.05 ± 0.63 −7.59 ± 9.59

PIK3 - DSF −36.48 ± 3.184 −2.89 ± 1.53 24.49 ± 3.89 −4.129 ± 0.21 −19.01 ± 3.03

PIK3 - Alpelisib −45.92 ± 2.68 −14.39 ± 3.11 37.63 ± 3.96 −4.91 ± 0.17 −27.60 ± 3.33

MTOR - DSF −30.01 ± 2.72 −2.00 ± 1.27 14.25 ± 2.63 −3.50 ± 0.25 −21.26 ± 3.22

MTOR - Torin-2 −48.34 ± 1.93 −15.09 ± 2.57 45.82 ± 4.48 −4.61 ± 0.17 −22.23 ± 4.03

PTGS2 - DSF −42.80 ± 2.12 −1.23 ± 0.78 18.84 ± 1.40 −4.30 ± 0.20 −29.49 ± 2.37

PTGS2 - Meclofenamic acid −38.04 ± 2.72 −19.85 ± 3.20 43.45 ± 2.94 −3.70 ± 0.14 −18.14 ± 3.06

MMP9 - DSF −32.61 ± 3.11 −6.22 ± 1.79 18.23 ± 2.88 −3.74 ± 0.20 −24.34 ± 3.22

MMP9 - NFH −33.33 ± 3.79 −6.53 ± 4.88 23.95 ± 5.17 −3.94 ± 0.12 −19.86 ± 3.79

ΔEVDW, van der Waals contribution; ΔEELE, electrostatic energy; ΔGSol, polar solvation-free energy; ΔGSurf, solvent-accessible surface area; ΔGbind = binding free energy.
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associated with adverse drug reactions such as hyperkalemia,
hyponatremia, hypotension, electrolyte imbalances, and risks of
urinary tract infections, genital infections, and dehydration (Sica,
2005). Therefore, identifying novel compounds with better efficacy
and lower risk profiles becomes a priority. Drug repurposing has
proven to be an effective method for disease management, and
researchers are actively exploring innovative therapeutic uses for
existing drugs to accelerate the development of effective treatments.
Recently, preclinical tests have proven that DSF reduces renal
fibrosis by targeting key genes and molecular pathways involved
in RF. Hence, this study intended to explore the overall possible
mechanisms of DSF and study the intermolecular interactions with
key protein targets. This approach not only saves time and resources
but also offers hope for more effective therapies for RF and CKD.

The current study identified approximately 265 protein targets
for DSF and 1803 genes associated with RF, and the intersection
revealed 78 common proteins, suggesting DSF’s potential role in
influencing pathways relevant to RF. The K-means clustering
analysis of 78 proteins within the PPI network showed that
58 targets are involved in Cluster 1, indicating highly
interconnected proteins in RF.

DSF was found to modulate 138 molecular pathways, of which
21 are directly associated with RF. For instance, the PI3K-Akt
signaling pathway, identified as the most enriched with a gene
count of 14, plays a pivotal role in cell survival, proliferation, and
fibrosis. Studies have shown that PI3K-Akt signaling is often
upregulated in fibrotic diseases, making it a key therapeutic
target (Wang et al., 2022; Liu et al., 2022). Previous studies have
shown that DSF inhibits key components of the PI3K-Akt pathway

and reduces cell survival and proliferation, thereby exerting anti-
tumor and antifibrotic effects. DSF, through its metabolite
diethyldithiocarbamate (DDC), can chelate metal ions such as
copper, which are essential for the activity of various enzymes
involved in the PI3K-Akt pathway (Zhang et al., 2010).
Additionally, by inhibiting the PI3K-Akt pathway, DSF can
downregulate downstream signaling molecules such as mTOR,
which is involved in protein synthesis and can lead to reduced
fibrosis (Dou et al., 2019). In addition, inhibition of these also affects
other downstream targets like GSK-3β and FOXO transcription
factors, contributing to apoptosis and reduced fibrotic responses
(Zheng et al., 2020).

Studies in cancer research have demonstrated that DSF can
reduce the activity of the PI3K-Akt pathway, leading to decreased
tumor growth and increased apoptosis (Zhang et al., 2010). This
provides a mechanistic basis for its potential antifibrotic effects. The
PI3K-Akt pathway is crucial in fibrotic diseases as it promotes the
proliferation and survival of fibroblasts and myofibroblasts, key cells
involved in fibrosis (Wang et al., 2022). By inhibiting this pathway,
DSF can potentially reduce fibroblast activation and extracellular
matrix production, thereby mitigating fibrosis. Figure 11 illustrates
the DSF effect in the PI3K/Akt/mTOR signaling pathway. The
molecular docking and dynamics studies revealed that DSF
formed a stable complex with PIK3 via interactions with residues
Ile932, Ile800, Ile848, Met772, and Trp780, which contributed
significantly to stability.

The partial double-bond character in the N-C=S (thioamide)
and S-C=S (dithioester) groups of DSF plays a crucial role in its
structural and functional behavior during interactions with target

FIGURE 10
Principal component analysis (PCA) of protein–ligand complexes was performed as follows: (A) The collective motion of DSF and standard
molecules with their respective protein targets was analyzed by projecting MD trajectories onto the two eigenvectors corresponding to the first two
principal components. (B) The first 50 eigenvectors were plotted against their eigenvalues for DSF and standard molecules with their respective
protein targets.
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proteins. These groups impart planarity and rigidity to the molecule,
restricting rotational freedom around these bonds. This rigidity
enforces a defined molecular conformation that aligns DSF
favorably within the binding pockets of different proteins,
optimizing hydrophobic and van der Waals interactions. The
rigidity of DSF ensures that its hydrophobic surface aligns
effectively with these residues, contributing to strong binding
affinity during docking. The stability of DSF in the PIK3CA
binding site is further supported by the molecular dynamics
simulation results, which show consistent stabilization over time,
highlighting the importance of rigidity in maintaining these
interactions. Alpelisib, a standard molecule, also formed stable
interactions with PIK3 but with slightly different residue
contributions in the same site, highlighting the specificity of
binding sites and interactions based on the ligand positioning.

DSF is a well-known electrophilic molecule, and its interactions
with nucleophiles such as cysteine (Cys) were observed for covalent
inhibition. Upon cross-checking the molecular docking and
dynamics results, no direct interaction between DSF and cysteine
residues in the target proteins studied was observed. This suggests
that while DSF may not form covalent bonds with cysteine residues

under the docking conditions used, its mechanism of action could
involve other non-covalent interactions.

Other pathways modulated by DSF, such as JAK-STAT, TNF,
Ras, ErbB, p53, mTOR, IL-17, NF-kappa B, AMPK, VEGF, and
MAPK, are well-documented in the literature for their roles in
inflammation, apoptosis, and fibrosis. NF-κB signaling promotes
fibrosis by activating fibroblasts and inducing the expression of
fibrogenic factors like TGF-β, which drives ECM production and
fibroblast activation (Ren et al., 2024; Lan, 2011). By inhibiting NF-
κB, DSF can prevent the upregulation of TGF-β and other fibrotic
mediators. DSF is reported to inhibit NF-κB signaling primarily by
blocking the degradation of IκB proteins. Normally, IκB proteins
bind to NF-κB dimers (such as p65/p50), sequestering them in the
cytoplasm. Upon inflammatory stimuli, IκB is degraded, releasing
NF-κB dimers to translocate to the nucleus and activate target genes.
DSF interferes with this process by chelating zinc, a crucial cofactor
for the activity of various enzymes involved in IκB degradation and
NF-κB activation (Ren et al., 2024; Giridharan and
Srinivasan, 2018).

DSF’s ability to inhibit NF-κB has been demonstrated in several
studies. For instance, DSF has been shown to reduce NF-κB

FIGURE 11
Proposed mechanism of DSF against renal fibrosis via inhibition of PIK3/Akt/mTOR signaling pathway. TGF-β activates the PI3K pathway, leading to
the activation of Akt. Activated Akt then stimulates the mTOR pathway. mTOR signaling is involved in cell growth, proliferation, and survival, and its
activation can contribute to fibrotic processes. TGF-β binding to its receptors leads to the phosphorylation of SMAD proteins. Phosphorylated SMADs
form a complex and translocate to the nucleus, where they regulate the expression of fibrosis-related genes, contributing directly to renal fibrosis.
DSF was found to interact stably with both PIK3CA/PIK3R1 and mTOR during 100 ns MD simulation.
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p65 phosphorylation and nuclear translocation in various cell types,
leading to decreased expression of NF-κB target genes like TNF-α
and IL-6 (Kannappan et al., 2021). In the present study, NFκB
p65 residues Arg50, Arg30, Gln29, and Glu225 contributed
significantly to the binding energy during equilibration with DSF,
indicating stable complex formation. However, after ~25 ns, the DSF
was found to be unstable as it moved out of the binding pocket until
100 ns. Here, the rigidity of DSF helps maintain a defined
conformation during docking. The molecule’s restricted flexibility
may hinder its ability to adapt to conformational changes in the
binding site during molecular dynamics. This is evident in the
simulation results, where DSF moves out of the active site over
time, suggesting that the rigidity, while beneficial for initial binding,
limits its adaptability in this specific protein environment. Hence,
further intermolecular interaction of DSF with IκB proteins needs to
be verified (as represented in Figure 12).

DSF also influences other fibrotic and inflammatory
pathways, such as PI3K-Akt and MAPK, which often interact
with NF-κB signaling. For example, PI3K-Akt signaling can
activate NF-κB by promoting the degradation of IκB proteins,
while MAPK pathways can enhance NF-κB activity. DSF’s effects
on these pathways have been shown to contribute to its
antifibrotic and anti-inflammatory properties. For instance,
DSF-induced inhibition of PI3K-Akt signaling leads to
decreased NF-κB activity, illustrating a broader antifibrotic
effect (Kanai et al., 2010). In animal models of inflammation,

DSF treatment resulted in reduced levels of TNF-α and IL-6,
demonstrating that DSF effectively suppresses NF-κB-driven
inflammatory responses (Huang et al., 2022; Yoshiyasu
et al., 2024).

The JAK-STAT pathway is involved in cytokine signaling and
has been implicated in chronic kidney disease and fibrosis. In RF,
the JAK-STAT pathway mediates the effects of cytokines like IL-
6, IL-11, and others, which are involved in fibroblast activation
and extracellular matrix production (Liu et al., 2023; Malemud
and Pearlman, 2009). Disulfiram has been shown to inhibit the
activation of JAKs, leading to decreased phosphorylation and
activation of STAT proteins, and hence, DSF can reduce the
inflammatory responses that contribute to fibrosis (Kim
et al., 2017).

The network analysis identified the hub genes PIK3R1, MAPK3,
NFKB1, and MTOR, which are central to the regulation of fibrosis
and inflammation. Previous literature on DSF’s modulation of key
RF therapeutic targets such as PTGS2, MMP9, MMP2, and
SMAD4 suggests its potential to influence these targets
synergistically. MMP9 is involved in extracellular matrix
remodeling, and its inhibition has been shown to mitigate
fibrosis (La Russa et al., 2024). DSF has been shown to reduce
MMP9 expression and activity in osteosarcoma cells (Cho et al.,
2007). DSF-induced inhibition of MMP9 activity is accompanied by
changes in other fibrotic markers and pathways. The molecular
docking and dynamic studies revealed that DSF with mTOR,
PTGS2, and MMP9 formed stable complexes through
hydrophobic interactions rather than H-bonds. The mechanistic
effect of DSF in the prevention of renal fibrosis via inhibiting
MMP9 and PTGS2 is illustrated in Figure 13. The consistency of
these interactions throughout the 100 ns MD simulation, as
confirmed by the decomposition graph and trajectory analysis by
FEL, suggests that hydrophobic interactions play a critical role in
DSF’s binding mechanism. The current study suggests that DSF’s
therapeutic effects in RF extend beyond inhibiting PI3K, mTOR,
MMP9, and PTGS2. It can also modulate additional signaling
pathways such as TNF, Ras, ErbB, p53, IL-17, AMPK, and VEGF.

Disulfiram (DSF) and its metabolites have been found to have
various biological activities, including antibacterial and anti-fibrosis
effects. Disulfiram metabolites, including diethyldithiocarbamate
(DDC), carbon disulfide (CS2), S-methyl N,N-
diethylthiocarbamate sulfoxide (DETC-sulfoxide), S-methyl N,N-
diethylthiocarbamate sulfone (DETC-sulfone),
diethylthiomethylcarbamate, S-methyl-DDC, methyl
diethylthiocarbamate sulfoxide, and methyl diethylthiocarbamate
sulfone, play a crucial role in its pharmacological effects
(PharmGKB, 2023). DDC is the primary metabolite and has been
shown to contribute to DSF’s activity through metal chelation and
interaction with cellular pathways (Mays et al., 1996). DETC-
sulfoxide and DETC-sulfone, which are oxidative metabolites of
DDC, may also be involved in DSF’s effects (Shen.et al., 2024;
Sedlacek et al., 2014). Other metabolites, such as S-methyl-DDC
and methylated forms of DDC, might exhibit enhanced biological
activity and influence protein interactions and enzymatic pathways
(Mays et al., 1996).

Studies have investigated the antibacterial activity of
disulfiram and its metabolites, with results indicating that
most DSF metabolites do not possess significant antibacterial

FIGURE 12
Illustrates the inhibition of the canonical NF-κB signaling
pathway by disulfiram in renal fibrosis. TGF-β and other injury factors
activate this pathway, leading to the phosphorylation of IκBα. This
results in the release of NF-κB complex (p65 and p50), which
translocates to the nucleus to promote the expression of genes
related to epithelial-mesenchymal transition (EMT) and inflammatory
cytokines. Disulfiram inhibits this pathway by preventing the
phosphorylation of IκBα (in vitro), thereby blocking the release of the
NF-κB complex. DSF was found to be unstable within the p65-p50
complex, and further investigations need to be carried out.
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activity, except for DDTC in Bacillus anthracis. The
combination of DSF and DDTC with standard antibiotics has
been shown to have synergistic effects (Mays et al., 1996;
Zaldívar-Machorro et al., 2011). In addition, the effects of
DSF metabolites on rat liver mitochondrial low Km ALDH
have been examined, with MeDTC sulfoxide and MeDTC
sulfone found to inhibit ALDH activity (Nagendra et al.,
1994). The mechanism of action of disulfiram involves the
inhibition of hepatic aldehyde dehydrogenase (ALDH), with
the ultimate inhibitor thought to be a metabolite of disulfiram.
MeDTC sulfoxide is considered a better candidate for the
ultimate active metabolite of disulfiram due to its stability
and ability to diffuse from a distant site of formation and
react with ALDH (Mays et al., 1996).

Overall, the metabolites of disulfiram play a significant role in its
pharmacological effects, and understanding their mechanisms of
action is essential for comprehensively evaluating DSF’s therapeutic
and toxic profile. Further studies are needed to investigate the roles
of these metabolites in DSF’s activity and to explore their potential
applications in the treatment of various diseases, including
renal fibrosis.

5 Conclusion

In conclusion, this comprehensive study delves into the intricate
dynamics of DSF with RF-associated protein targets. Notably, NFκB,
PIK3R1/CA, MTOR, PTGS2, and MMP9 have emerged as central
targets of DSF involved in the key signaling cascades crucial to the RF
progression. DSF may showcase diverse pharmacological therapeutic
effects by targetingmultiple enzymes and pathways. DSF binding to the
core genes has been explored using molecular docking, simulation, and
FEL investigations; however, its agonistic or antagonistic properties are
yet unknown. Therefore, additional experimental testing is required to
grasp its true nature in RF. DSF affects the identified genes involved in
inflammation and fibrogenesis associated with CKD, resulting in the
inhibition of pro-inflammatory cytokines and profibrotic factors that
cause chronic inflammation and fibroblast activation. DSF affects renal
fibroblast survival and proliferation, reducing ECM production and
deposition and inhibiting fibrogenic proteins. However, the predicted
complexity of the DSF-RF protein network extends beyond NFκB,
PIK3R1/CA, mTOR, PTGS2, and MMP9 and warrants further
investigations, particularly concerning its true biological activities, via
in vitro and in vivo studies.

FIGURE 13
Illustrate the role of DSF inmitigating renal fibrosis through its interactionwithMMP9 and PTGS2/COX2. This cytokine induces the loss of E-cadherin
and cytokeratin in epithelial cells, promoting the nuclear translocation of β-catenin. This process leads to the upregulation of markers such as α-SMA,
vimentin, and N-cadherin, contributing to EMT and the formation of myofibroblasts, which produce excessive ECM, resulting in renal fibrosis. DSF is
shown to interact stably with MMP9 and PTGS2/COX2. By stabilizing these molecules, DSF inhibits the downstream effects (degradation of
E-cadherin and activation of MMP9), thus reducing ECM deposition and myofibroblast formation. This inhibition of EMT and ECM deposition ultimately
helps to prevent the progression of renal fibrosis.
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