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The recent advancement of sequencing technologies marks a significant shift in
the character and complexity of the digital genomic data universe, encompassing
diverse types of molecular data, screened through manifold technological
platforms. As a result, a plethora of fully assembled genomes are generated
that span vertically the evolutionary scale. Notwithstanding the tsunami of
thriving innovations that accomplish unprecedented, nucleotide-level,
structural and functional annotation, an exhaustive, systemic, massive
genome-wide functional annotation remains elusive, particularly when the
criterion is automation and efficiency in data-agnostic interpretation. The
latter is of paramount importance for the elaboration of strategies for
sophisticated, data-driven genome-wide annotation, which aim to impart a
sustainable and comprehensive systemic approach to addressing whole
genome variation. Therefore, it is essential to develop methods and tools that
promote systematic functional genomic annotation, with emphasis on
mechanistic information exceeding the limits of coding regions, and exploiting
the chunks of pertinent information residing in non-coding regions, including
promoter and enhancer sequences, non-coding RNAs, DNA methylation sites,
transcription factor binding sites, transposable elements and more. This review
provides an overview of the current state-of-the-art in genome-wide functional
annotation of genetic variation, including existing bioinformatic tools, resources,
databases and platforms currently available or reported in the literature. Particular
emphasis is placed on the functional annotation of variants that lie outside
protein-coding genomic regions (intronic or intergenic), their potential co-
localization with regulatory element areas, such as putative non-coding RNA
regions, and the assessment of their functional impact on the investigated
phenotype. In addition, state-of-the-art tools that leverage data obtained
from WGS and GWAS-based analyses are discussed, along with future
bioinformatics directions and developments. These future directions
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emphasize efficient, comprehensive, and largely automated functional annotation
of both coding and non-coding genomic variants, as well as their optimal
evaluation.
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intergenic, GWAS, genotyping, whole-exome sequencing

1 Introduction

Despite the rapidly increasing number of Whole Genome
Sequencing (WGS), Whole Exome Sequencing (WES)
(Lappalainen et al., 2019), and Genome-Wide Association Studies
(GWAS) (Uffelmann et al., 2021; Visscher et al., 2017), as well as
significant advancements in processing of diverse types of molecular
data provided by powerful sequencing technologies, their exhaustive
and massive genome-wide annotation remains far from optimal and
automated (Salzberg, 2019; Zerbino et al., 2020). Still, the efforts
committed to systematic genomic annotation thus far have been
substantial, providing an unprecedented volume of mechanistic
information about a wide range of functional elements, including
promoter and enhancer sequences, non-coding RNAs, DNA
methylation sites, transcription factor binding sites (TFBS),
transposable elements and other.

Functional annotation of genetic variants is a critical step in
genomics research, enabling the translation of sequencing data into
meaningful biological insights. The major types of genetic variation
include Single Nucleotide Variants (SNVs) and small insertions or
deletions (indels) of two or more nucleotides, often detected through
WES or WGS at the individual level. Single Nucleotide
Polymorphisms (SNPs) also refer to changes in a single
nucleotide in a DNA sequence, although they represent frequent
variations in the genome shared across a population, typically
identified through GWAS. While the concept of variant
identification involves the detection of the precise location of
variants on the reference genome and determining the alternate
alleles, functional annotation specifically refers to predicting the
potential impact of these variants on protein structure, gene
expression, cellular functions, and biological processes. This
process involves several key stages, each leveraging advanced
computational tools and integrative approaches to elucidate the
roles of genetic variants in health and disease.

Nonetheless, the ability of WGS/WES and GWAS in causally
associating genetic variation with disease is hindered by a number of
significant limitations and challenges. For instance, Linkage
Disequilibrium (LD), referring to the non-random association of
alleles at two or more loci in a population, causes certain
combinations of SNP genotypes to occur together more or less
frequently than would be expected by chance. As a result, true causal
variants may be found among numerous confounding variants that
are irrelevant to the disease but they are just colocalized in the
genome. This limitation is evenmore crucial for polygenic disorders,
caused by the combined effect of multiple variants, as each single
causal variant is expected to have a small contribution. High-
resolution, fine-mapping techniques help to narrow down the set
of candidate variants and determine which variants in a genomic
region are most likely to be causally related to a complex trait after

accounting for how the variants in the region are correlated reviewed
in (Schaid et al., 2018).

Another major challenge lies in the fact that the majority of
human genetic variation resides in non-protein coding regions of the
genome. The challenge of exploring non-coding regions (intergenic,
intronic) and providing exhaustive functional annotation of these
unknown regions remains substantial, despite the critical role that
non-coding regions play in human disease (Zhang and Lupski,
2015). Nonetheless, the crux of a mechanistically insightful
genome annotation lies in the functional interpretation at the
gene level, rendering the interpretation of intergenic and non-
coding variants particularly difficult. The expanding collection of
human WGS data, combined with the understanding of regulatory
elements such as promoters, enhancers, TFBS, non-coding RNAs,
and transposable elements, has the potential to transform our
limited knowledge of the functional importance of these regions
into a wealth of information. In addition, genomic regulation studies
benefit from advanced sequencing techniques such as Hi-C
(Lieberman-Aiden et al., 2009), which give insights to the three-
dimensional (3D) organization of the genome and maps global
physical interactions between different genomic regions. Thus. Hi-C
is able to map long-range interactions by identifying physical
contacts between regulatory elements and gene promoters in 3D
space. These advancements will enable researchers to explore non-
coding regions of the human genome, unearthing valuable insights
with significant implications for various diseases and pathologies.

By providing methods and resources for comprehensive functional
annotation of both coding and non-coding regions, we can enhance our
understanding of the relationship between non-coding variation and
clinical disease. This, in turn, will provide a more thorough
understanding of disease biology. Additionally, it could reveal
opportunities for developing novel therapeutic targets, generating
novel druggable biomarkers, and identifying new drug candidates.

This review discusses the state-of-the-art tools that can leverage
WGS and GWAS-based analyses (Mortezaei and Tavallaei, 2021). It
provides insights into the specific regulatory elements involved in
the functional annotations of non-coding regions and offers
guidance on existing data resources that can be utilized to
achieve comprehensive, largely automated functional annotation
of intergenic or intronic genomic variants.

2 Methodology

2.1 Search strategy

A systematic literature search was conducted to identify articles
focusing on primary publications on tools and resources for
genome-wide functional annotation of variants. The search was
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performed in PubMed, up to June 2024, including only papers in
English language. Keywords used in the search included “genome-
wide annotation,” “functional annotation,” “genetic variants,”
“GWAS, “Whole Genome Sequencing,” and “bioinformatic
tools.” The search strategy was designed to include both broad
and specific terms to ensure comprehensive coverage.

2.2 Inclusion and exclusion criteria

Articles were included if they met the following criteria:

1. Focused on functional annotation of genetic variants.
2. Introducing novel bioinformatics tools ormethods for annotation,

or comprehensive resources with functional information.
3. Published in the last 10 years or cited more than 50 times.

Exclusion criteria:

1. Articles not providing original data (e.g., reviews, editorials).
2. Articles focused on statistical analysis of variants, rather than

functional annotation.
3. Articles published more than 10 years ago or cited less

than 50 times.

The restriction on the time frame and number of citations is
justified by this review’s scope, which is not to be exhaustive but to

highlight the most recent and most commonly used state-of-the-art
tools and resources.

The PRISMA (Page et al., 2021) flowchart in Figure 1 describes
the systematic methodology followed in the selection of studies/
articles for the literature review. The PRISMA flowchart ensures
transparency and reproducibility in the selection process.

The selection process, as depicted in the flowchart, includes the
following steps:

1. Identification: Relevant articles related to the functional
annotation of genomic variants were identified from two
primary sources: 96 articles focused on variant annotation
and 130 articles on databases, amounting to a total of
226 articles for further screening.

2. Screening: The initial screening was conducted based on
publication year, resulting in the exclusion of 70 articles
that did not meet the temporal criteria. In the second phase
of screening the remaining 156 articles were assessed based on
their citation counts, with a threshold set at fewer than
50 citations. This phase excluded 30 articles, thereby
ensuring the inclusion of more influential and widely
recognized studies.

3. Eligibility: The final 126 articles underwent a rigorous
evaluation to ensure they met the predefined inclusion
criteria for the review. After a comprehensive review and
assessment, 56 studies were included in the final review.
These studies provide significant insights into the functional

FIGURE 1
PRISMA flowchart that shows the step-by-step process of the application of inclusion and exclusion criteria to generate a final number of articles for
analysis in the literature review.
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annotation of genomic variation and meet all the eligibility
criteria established for the review process.

Figure 2 presents the number of publications initially found and
after selection, attributed to three distinct categories, namely major
computational approaches, aggregator tools and platforms, and
databases and repositories.

3 Computational resources for
functional annotation of
genetic variants

Variant calling is the process of identifying genetic variants
from sequencing data, resulting in an unannotated file, typically
in Variant Calling Format (VCF), that contains raw variant
positions and allele changes. The initial annotation step
involves processing this file with tools that map these variants
to genomic features such as genes, promoters, and intergenic
regions. This procedure is commonly performed using tools like
Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2016)
and ANNOVAR (Wang et al., 2010), which can directly handle
raw VCF files and are well-suited for large-scale annotation
tasks, such as whole-genome and whole-exome
sequencing projects.

The landscape of variant annotation tools is quite complex, as
different tools target different genomic regions and perform
different types of analyses. Some tools specialize in annotating
exonic (protein-coding) regions, focusing on variants that may
alter amino acid sequences and affect protein function or
structure. These tools provide insights into the potential
pathogenicity of missense mutations and other coding variants.
Other tools concentrate on non-exonic intragenic regions, such
as introns and untranslated regions (UTRs), as well as intergenic
regions located between genes. These tools often emphasize the

identification of regulatory elements, TFBS, and other features that
can influence gene expression and regulation. Additionally, there are
comprehensive tools that annotate variants across all genomic
regions, providing a wide array of annotations including
functional impact predictions, conservation scores, regulatory
annotations, and disease associations.

A less represented category includes tools that are designed to
assess the cumulative impact of multiple variants, analyzing their
collective effect on genes, pathways, or biological processes, which is
particularly important for understanding complex traits and
polygenic diseases. These tools may perform gene-set or pathway
analyses, integrating genetic data with functional genomics or
GWAS data, to elucidate the broader biological significance of
variant combinations.

Additionally, a key distinction exists between tools that use
fundamental methodologies to predict the impact of individual
variants and aggregator tools, which rely on these foundational
tools to perform large-scale variant annotations. For this purpose,
Table 1 provides a summary of major computational approaches for
predicting the impact of variants, while Table 2 summarizes the
main aggregator tools and platforms and their genomic regions of
application.

3.1 Gene-level annotation

Polymorphism Phenotyping v2 (Polyphen-2) (Adzhubei et al.,
2010) and Sorting Intolerant From Tolerant (SIFT) (Kumar et al.,
2009) predict the impact of amino acid substitutions on structural
features of the protein and assess whether protein-coding variants
are likely to be damaging or deleterious. Meta-Support Vector
Machine (MetaSVM) (Dong et al., 2015) is a computational tool
designed to predict the deleteriousness of genetic variants,
particularly those in coding regions. It employs Support Vector
Machine models to prioritize potentially pathogenic variants, by

FIGURE 2
Selection of publications attributed to three distinct categories, namelymajor computational approaches (fundamental annotation tools), databases
and repositories (annotation resources) and aggregator tools and platforms.
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integrating various functional annotation datasets, including
sequence conservation scores, protein domain information, and
physicochemical properties of amino acids. Rare Exome Variant
Ensemble Learner (REVEL) (Ioannidis et al., 2016) is also focused
on coding regions and integrates individual variant effect prediction

tools such as SIFT and Polyphen-2, providing a consensus
prediction.

MutationTaster2 and MutationTaster 2021 (Schwarz et al.,
2014) are tools designed to predict the disease-causing potential
of genetic variants. They analyze both coding and intragenic

TABLE 1 Summary of major computational approaches for functional variant annotation.

Tool Genomic regions Description Relevant aggregator
tool

Citations

PolyPhen-2 (Adzhubei et al., 2010) Exonic Predicts impact of amino acid
substitutions on structural features of
protein (Protein-coding)

ANNOVAR, VEP, SnpEff, ShAn >6000

SIFT (Kumar et al., 2009) Exonic Predicts deleterious AASs based on
sequence homology and the physical
properties of amino acids (Protein-
coding)

ANNOVAR, VEP, SnpEff, ShAn >6000

GERP++ (Davydov et al., 2010) Intergenic; Exonic; Non-
Exonic Intragenic

Uses maximum likelihood evolutionary
rate estimation, to identify nucleotide- and
element-level scores from multiple
sequence alignments

VEP, ANNOVAR >2000

MutationTaster2/MutationTaster 2021
(Steinhaus et al., 2021)

Exonic; Non-Exonic
Intragenic

Machine-Learning classifier to predict
disease-causing scores of genomic variants

VEP, ANNOVAR, SnpEff >2000

CADD (Combined Annotation
Dependent Depletion) (Kircher et al.,
2014)

Intergenic; Exonic; Non-
Exonic Intragenic

Integrates multiple annotations to provide
a single score (C-score) indicating the
deleteriousness of variants. (Protein-
coding)

ANNOVAR, VEP, OpenCRAVAT,
ShAn, FUMA

>1,500

RegulomeDB (Boyle et al., 2012) Intergenic; Non-Exonic
Intragenic

Scores variants in non-coding regions
based on the existence/overlap of
regulatory elements (TFBS, DNase
hypersensitivity sites, and histone
modifications)

ANNOVAR, VEP, FUMA >700

REVEL (Ioannidis et al., 2016) Exonic Integrates ensemble methods to predict
the pathogenicity of rare missense variants
by combining multiple scores (PolyPhen-
2, SIFT, etc.). (Protein-coding)

VEP, ANNOVAR >500

FATHMM (Shihab et al., 2013) Exonic; Non-Exonic
Intragenic; Intergenic

Predicts the functional consequences of
both coding and non-coding variants in
the human genome based on Hidden
Markov Models. - Predicts deleterious
AASs

ANNOVAR, VEP, SNPnexus >500

MetaSVM (Dong et al., 2015) Exonic A scoring system that Combines the
output of multiple individual methods
(PolyPhen-2, SIFT, etc.) to predict
pathogenicity- High performance in
benchmarks. (Protein-coding)

ANNOVAR >400

DANN (Quang et al., 2015) Intergenic; Exonic; Non-
Exonic Intragenic

Similar to CADD, but with a different
‘nonlinear’ machine learning approach
(deep neural networks). Provides
D-Scores to predict deleteriousness

VEP, ANNOVAR >300

Eigen (Ionita-Laza et al., 2016) Intergenic; Exonic; Non-
Exonic Intragenic

Integrates functional genomic annotations
into an eigenvector to predict
deleteriousness based on a spectral
approach (unsupervised learning).
(Protein-coding)

Custom Pipelines and Workflows >200

GenoCanyon (Lu et al., 2015) Intergenic; Exonic; Non-
Exonic Intragenic

Scores and evaluates the functional
significance of genomic variants based on
Bayesian hierarchical model

Custom Pipelines and Workflows >200

LINSIGHT (Huang et al., 2017) Intergenic; Non-Exonic
Intragenic

A linear model for estimating negative
selection, scoring and identifying non-
coding variants indicating functional
importance

Custom Pipelines and Workflows >100
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non-coding changes by integrating various data sources,
including evolutionary conservation, splice-site alterations,
protein features, and regulatory elements, to assess the impact
of variants on gene function and pathogenicity. The updated
MutationTaster2021 version incorporates various improvements

to enhance user-friendliness and processing speed, as well as
more recent genomic data for enhanced prediction accuracy.

The above-mentioned tools offer a range of functionalities for
predicting the impact of genetic variants, each with distinct
strengths and weaknesses. They are primarily focused on coding

TABLE 2 Summary of aggregator tools and platforms.

Tool Description Application Resolution of
functional
annotation

Functional
annotation focus

Citations

ANNOVAR (Wang et al.,
2010)

Functional annotation of variants,
identification of regulatory elements

Command-line,
Limited online plugin

Gene level, Region level,
Regulatory elements

Exonic, UTR, Intronic,
Intergenic

>3000

VEP (McLaren et al., 2016) Comprehensive genomic variant
annotation

Web-based,
command-line,
REST API

Gene level, Transcript
level, Protein function

Exonic, UTR, Intronic >2000

SnpEff & SnpSift (Cingolani
et al., 2012b; Cingolani
et al., 2012a)

Annotation of variants on genes and
proteins, filtering annotation results

command line Gene level, Transcript
level, Regulatory elements

Exonic, limited in Intronic,
UTR, Intergenic

>1,000

MAGMA (de Leeuw et al.,
2015)

Gene-based and gene-set analysis of
variants

Open-source
command line tool

Gene level, Pathway level Exonic, Intronic, UTR >800

HaploReg (Ward and Kellis,
2012)

Annotation for variations in non-
coding regions. Explores chromatin
states, conservation, and regulatory
motif alterations within sets of variants

User interface Regulatory element level,
Chromatin state, Protein
binding

Intronic, UTR >500

OpenTargets Genetics
(Ghoussaini et al., 2021)

Integrates genetic, genomic, and
chemical publicly available data,
identifies and prioritizes therapeutic
targets for diseases

User interface,
REST API

Gene level, Pathway level,
Regulatory elements

Exonic, UTR, Intronic,
Intergenic

>300

GWAVA (Ritchie et al.,
2014)

Predicts the functional impact of non-
coding genetic variants and prioritizes
them based on their potential
functional impact

Web-based Regulatory elements,
Chromatin state, Protein
binding

Exonic, Intronic, UTR >300

VarSome (Kopanos et al.,
2019)

A community driven variant
annotation platform with extensive
database cross-references that
empowers variant functional
knowledge sharing

Web-based, user
interface

Gene level, Pathway level,
Regulatory elements

Exonic, Intronic >300

InterVar (Li and Wang,
2017)

Interprets the clinical significance of
genetic variants based on ACMG-
AMP guidelines

Command-line, user
interface

Gene level, Clinical
significance, Protein
function

Exonic >200

FUMA (Watanabe et al.,
2017)

Annotation, prioritization and
visualization of GWAS variants
integrating multiple biological data
sources

Web-based, user
interface

Gene level, Pathway level,
Regulatory elements,
eQTL analysis

Exonic, UTR, Intronic,
Intergenic (based on
annotations obtained from
ANNOVAR)

>200

VAT (Habegger et al., 2012) Functional annotation of variants,
integrates data from multiple sources

Command-line, cloud
computing
environment

Gene level, Region level,
Regulatory elements

Exonic, limited in Intronic >100

VAAST 2.0 (Hu et al., 2013) Annotation of WGS variants,
identification and prioritization of
disease-causing variants

Command line Gene level, Pathway level,
Regulatory elements

Exonic, Intronic (limited) >100

VPMBench (Ruscheinski
et al., 2021)

Benchmarking tool for variant
pathogenicity predictors

Web-based,
Command-line

Pathway level, Variant
level

Protein-coding, intergenic >100

OpenCRAVAT (Pagel et al.,
2020)

Variant annotation, prioritization, and
analysis integrating multiple data
sources and tools

Web-based,
Command-line

Gene level, Pathway level,
Regulatory elements

Exonic, UTR, Intronic, limited
in intergenic

>80

FAVORannotator (Zhou
et al., 2023)

Online portal integrating functional
information from multiple sources,
prioritizing causal variants in coding
and non-coding regions

Web-based Variant level, Regulatory
elements, non-coding
variants

Protein-coding, intergenic >50
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and intragenic regions, specifically predicting the effects of missense
variants (amino acid substitutions) on protein function
and structure.

3.2 Genome-wide annotation

VEP (McLaren et al., 2016), provides predictions of the impact
of variants on gene function, including coding changes (e.g.,
missense, nonsense, synonymous), splicing effects, and regulatory
region impacts, such as promoters, enhancers, and untranslated
regions (UTRs). It also provides information on the known clinical
significance of variants, by integrating data from clinical databases
such as ClinVar (Landrum et al., 2014) and COSMIC (Tate et al.,
2019). VEP also incorporates data from functional genomics
resources such as the ENCODE project, Roadmap Epigenomics
and GTEx, as well as population data and allele frequencies from
large-scale population studies such as the 1000 Genomes Project
(Genomes et al., 2015), ExAC browser (Karczewski et al., 2017) and
gnomAD (Karczewski et al., 2020). VEP is optimized for high-
throughput analysis and can rapidly process large volumes of data
using parallel processing and distributed computing techniques.

ANNOVAR (Wang et al., 2010) is a widely used tool for the
large-scale functional annotation of variants. It integrates data from
multiple databases such as RefSeq (Pruitt et al., 2014), ENCODE,
1000 Genomes Project, dbSNP (Sherry et al., 2001), ClinVar
(Landrum et al., 2014), and provides functional annotations
related to gene function, regulatory regions, evolutionary
conservation, pathogenicity, and allele frequencies. ANNOVAR
also provides variant prioritization in terms of clinical
significance and association with diseases and pathogenic
phenotypes. Like VEP, ANNOVAR is also focused on large-scale
annotation but without attempting systems-level characterization of
assessment of the cumulative impact of variants in the context of
pathways. As previously discussed, VEP and ANNOVAR are the
most commonly used tools for large-scale annotation of VCF files in
WGS/WES pipelines. However, it is worth mentioning that the
choice between these tools, as well as the choice in regard to the
transcripts reference set (Ensembl/Refseq) may significantly impact
the results, as substantial differences between annotations have been
reported, highlighting the importance of cross-referencing results
for critical applications (McCarthy et al., 2014).GERP++ (Davydov
et al., 2010) is a powerful tool for identifying evolutionarily
conserved elements in the genome, providing valuable insights
into the functional significance of genomic regions. Its
conservation scores are widely used in the functional annotation
of genetic variants, helping to prioritize variants for further study
based on their potential impact on biological functions. GERP++ is
particularly useful for identifying conserved non-coding elements,
whichmay include regulatory regions such as enhancers or silencers.
While GERP++ provides nucleotide-level constraint metrics, gene-
level constraint metrics are typically derived from population
genomic data. For instance, the Genome Aggregation Database
(gnomAD) (Karczewski et al., 2020) offers gene-level constraint
metrics by comparing the observed number of loss-of-function
(LoF) variants in a gene to the expected number, based on a
mutational model that accounts for sequence context, coverage,
and methylation.

Other tools capable of annotating non-coding variants, include
Combined Annotation Dependent Depletion (CADD) and
RegulomeDB. CADD (Kircher et al., 2014) is a widely used
computational tool designed to assess the deleteriousness of
genetic variants by integrating diverse annotations into a single
score. CADD is particularly valuable for prioritizing variants in both
coding and non-coding regions of the genome. Deleterious
Annotation of genetic variants using Neural Networks (DANN)
(Quang et al., 2015) is based on the same training data as CADD but
it employs a different, non-linear Machine Learning approach,
namely a deep neural network (DNN) to provide robust
predictions on the deleteriousness of both coding and non-
coding variants. LINSIGHT (Huang et al., 2017) is a
computational tool that predicts the functional importance of
noncoding genomic regions by integrating evolutionary
conservation with functional genomic data, providing nucleotide-
level scores that indicate the likelihood of functional significance.

RegulomeDB (Boyle et al., 2012) is a comprehensive resource
designed to annotate and interpret regulatory variants in the human
genome. It integrates various types of functional genomics data to
provide insights into the potential regulatory roles of genetic
variants, particularly those located in non-coding regions. It
comprises a variant scoring system, where each variant is
assigned a score, based on the evidence supporting its regulatory
role. The functional data sources include ENCODE (ENCODE
Project Consortium, 2012), Roadmap Epigenomics (Bernstein
et al., 2010), and GTEx (GTEx Consortium, 2013), which provide
information on regulation such as promoters and enhancers, TFBS,
chromatin states, and expression quantitative trait loci (eQTL).
Eigen (Ionita-Laza et al., 2016) uses a similar approach based on
statistical learning.

Functional Analysis through Hidden Markov Models
(FATHMM) (Shihab et al., 2013) integrates various functional
annotations, including protein domains, sequence conservation
data, and known pathogenic variants from databases such as
ClinVar (Landrum et al., 2014) and HGMD (Stenson et al.,
2003). It uses Hidden Markov Models to provide a probability
score for both coding and non-coding variants, indicating the
likelihood that a variant is pathogenic.

GenoCanyon (Lu et al., 2015) is a computational tool designed
to predict the functional significance of non-coding genetic variants,
with a particular focus on intergenic regions. It combines
information from various genomic annotations and employs a
probabilistic framework to assess the potential regulatory impact
of genetic variants. It aims to integrate diverse functional
annotations into a single, continuous score. SnpEff (Cingolani
et al., 2012b) and SnpSift (Cingolani et al., 2012a) are companion
tools for variant annotation, filtering, and interpretation. SnpEff
annotates variants based on their impact on genes, including coding
changes (missense, nonsense, synonymous), splicing effects, and
regulatory region impacts, whereas SnpSift provides additional
functionalities for filtering, manipulating and annotating VCF files.

HaploReg (Ward and Kellis, 2012) is a tool for exploring
annotations of the non-coding genome, particularly focusing on
variants within haplotype blocks, such as candidate regulatory SNPs
at disease-associated loci. It utilizes linkage disequilibrium (LD)
(Slatkin, 2008) information from the 1000 Genomes Project to
visualize linked single nucleotide polymorphisms (SNPs) and

Frontiers in Pharmacology frontiersin.org07

Pilalis et al. 10.3389/fphar.2025.1474026

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1474026


small indels. The tool integrates chromatin state and protein binding
data from the Roadmap Epigenomics and ENCODE projects,
sequence conservation across mammals, and the effects of SNPs
on regulatory motifs and gene expression from eQTL studies.

Open Targets Genetics (Ghoussaini et al., 2021) is a
comprehensive resource that integrates human GWAS and
functional genomics data, including gene expression, protein
abundance, chromatin interaction, and conformation data from
various cell types and tissues, to establish robust connections
between GWAS-associated loci, variants, and likely causal genes
(Ghoussaini et al., 2021). Thus, Open Targets Genetics incorporates
GWAS, eQTL, pQTL and epigenetics data resources to enable robust
statistical associations and prioritization of genes underlying
disease causation.

GWAVA (Ritchie et al., 2014) utilizes machine learning
algorithms to classify non-coding genetic variants and prioritizes
them based on their potential functional impact, incorporating data
from resources such as ENCODE and GENCODE (Harrow
et al., 2012).

Other useful tools aiming at the functional and clinical
interpretation of variants, include InterVar (Li and Wang, 2017),
VAT (Habegger et al., 2012), VAAST 2.0 (Hu et al., 2013),
OpenCRAVAT (Pagel et al., 2020), FAVORannotator (Zhou
et al., 2023), ShAn (Rathinakannan et al., 2020), and platforms
that can be used for aggregation of annotations such as VarSome
(Kopanos et al., 2019). VPMBench (Ruscheinski et al., 2021) is a
benchmarking tool for variant prioritization methods.

Overall, the aforementioned genome-wide annotation tools have
overlapping functionalities but diversities in algorithms, reference
databases, prediction models and area of focus, making particularly
challenging a direct comparison. ANNOVAR and VEP are
comprehensive annotation tools designed for high-throughput
variant annotation. They integrate a wide array of resources to
provide gene-based, region-based, and filter-based annotations,
making them ideal for large-scale genomic studies. GERP++,
CADD, DANN, Eigen, GenoCanyon, and LINSIGHT generate
scores estimating the deleteriousness or functional significance of
variants by integrating evolutionary conservation and functional
genomic data. Thus, they are particularly useful for prioritizing
variants in whole-genome sequencing data but may lack detailed
functional annotations. RegulomeDB, HaploReg, and
FAVORannotator specialize in annotating non-coding and
intergenic variants with regulatory information, which is valuable
for studies exploring regulatory elements but may not extensively
cover coding regions. SnpEff & SnpSift offer flexible variant effect
prediction and filtering capabilities, suitable for incorporating
custom annotations, though they may require bioinformatics
expertise to use effectively. OpenTargets Genetics causally links
genetic variants to traits and diseases, aiding in identifying
potential therapeutic targets, but its reliance on existing GWAS
and eQTL datasets may limit its applicability to certain studies.
GWAVA and FATHMM use machine learning models to predict
the functional impact of non-coding variants, helpful for non-
coding variant analysis but potentially less interpretable due to
the complexity of the models. OpenCRAVAT is a modular,
extensible platform that allows for customized annotation
workflows, enhancing flexibility but interpretation is subject to
user customization. VarSome and InterVar provide clinical

interpretation of variants following ACMG guidelines, aiding in
clinical decision-making but necessitating cautious interpretation to
avoid over-reliance on automated classifications.

3.3 Functional annotation combined with
pathway analysis

Another category of functional variant annotation tools focuses
on evaluating the combined effects of multiple genetic variants,
analyzing how they collectively influence genes, pathways, or
biological processes. These tools assess the cumulative impact of
variant combinations rather than considering each variant
in isolation.

Multi-marker Analysis of GenoMic Annotation (MAGMA) (de
Leeuw et al., 2015) is designed for the analysis of genome-wide
association study (GWAS) data, featuring gene and pathway-based
analysis. MAGMA aggregates the effects of SNPs within a gene to assess
the overall contribution of that gene to the trait of interest. It computes
gene-level p-values by considering the association signals of all SNPs
within each gene, considering linkage disequilibrium (LD) between
SNPs. Then, it evaluates the enrichment of significant genes within
predefined biological pathways, such as MSigDB and KEGG.MAGMA
functionality is basically gene-based but it can partially incorporate
intergenic annotations through extended gene boundaries, custom
region definitions, and the integration of functional genomic data
that comprise regulatory region-to-gene mappings.

Functional Mapping and Annotation of GWAS (FUMA)
(Watanabe et al., 2017) is an integrative web-based platform using
information from multiple biological resources to facilitate functional
annotation of GWAS results, gene prioritization and interactive
visualization. It accommodates positional, expression quantitative
trait loci (eQTL) and chromatin interaction mappings, and provides
gene-based, pathway and tissue enrichment results. It enables pathway
analysis by linking the variants identified in GWAS to biological
pathways, thereby providing insights into the underlying biological
mechanisms of complex traits and diseases. Gene set and pathway
enrichment analyses is performed on prioritized genes identified
through its core SNP2GENE process. This process includes mapping
SNPs to genes based on positional, eQTL, and chromatin interaction
data. FUMA implements MAGMA gene-based analysis and gene-set
analysis on the full GWAS input data. Genes prioritized by SNP2GENE
or by the user are also tested for overrepresentation in various gene sets
in GENE2FUNC process. FUMA incorporates variants located at
intergenic regions, by integrating annotations from functional
genomic resources. MAGMA and FUMA leverage genome-wide
studies which typically evaluate associations of common variants.
However, low-frequency and rare variants are known to play an
important role in human disease. Thus, a comprehensive tool would
ideally combine additional statistical methodologies and strategies in
order to account for also rare variants (reviewed in Lee et al., 2012).

4 Comprehensive resources of
genomic variation

Several key resources and databases facilitate the aggregation,
exploration, annotation, and interpretation of variants, providing
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TABLE 3 Summary of existing databases and resources employed for the functional annotation of variants.

Database/Resource Description Type Genome wide tools Citations

ENCODE (ENCODE Project
Consortium, 2012)

The Encyclopedia of DNA Elements, a project
to identify all functional elements in the human
genome

Functional
genomics database

VEP, ANNOVAR, SnpEff & SnpSift, FUMA,
OpenTargets Genetics, GWAVA

16000+

1000 Genomes Project (Genomes
et al., 2015)

A project to develop and provide a
comprehensive resource on human genetic
variation

Genetic variation
database

VEP, ANNOVAR, SnpEff & SnpSift, InterVar,
VarSome

6000+

RefSeq (Pruitt et al., 2014) A comprehensive, integrated, non-redundant
set of sequences, including genomic DNA,
transcripts, and proteins

Reference sequences
database

VEP, ANNOVAR, SnpEff & SnpSift, InterVar,
VAT, VarSome

5000+

GENCODE (Harrow et al., 2012) A comprehensive database to provide high-
quality annotation of gene features on the
human and mouse genomes

Gene annotation
database

VEP, ANNOVAR, SnpEff & SnpSift, InterVar,
VarSome, GWAVA

4000+

NONCODE (Zhao, Y., et al.,
2016)

A dedicated database to non-coding RNAs in
17 species

Non-coding RNA
database

VEP, ANNOVAR, SnpEff & SnpSift, VarSome 1000+

TCGA (The Cancer Genome
Atlas Research Network, 2019)

A comprehensive atlas that maps key genomic
changes in various types of cancer

Cancer genomics VEP, ANNOVAR, SnpEff & SnpSift, VarSome 10000+

GTEx (Genotype-Tissue
Expression) (GTEx Consortium,
2015)

A comprehensive public resource for tissue and
cell-specific gene expression and regulation

Gene expression VEP, ANNOVAR, SnpEff & SnpSift, FUMA,
OpenTargets Genetics, OpenCRAVAT

5000+

dbSNP (Sherry et al., 2001) Largest public archive for genetic variation
within and across different species

Variant database-
SNP database

VEP, ANNOVAR, SnpEff, SeattleSeq, ShAn,
InterVar, VAT, VAAST 2.0, FUMA, HaploReg,
OpenCRAVAT, GWAVA, VarSome

7000+

COSMIC (Tate et al., 2019) The most detailed and comprehensive resource
for exploring the effect of somatic mutations in
human cancer

Cancer Variant
database

VEP, ANNOVAR, SnpEff, InterVar,
OpenCRAVAT, VarSome

4000+

ClinVar (Landrum et al., 2014) An archive with reports and annotations of the
relationship between important variants and
clinical phenotypes

Clinical Variant
database

VEP, ANNOVAR, SnpEff, InterVar,
OpenCRAVAT, VarSome

4000+

GWAS Catalog (Buniello et al.,
2019)

A comprehensive and highly curated collection
of all published GWAS studies

GWAS database VEP, ANNOVAR, MAGMA, FUMA,
OpenTargets Genetics

3,000+

HGMD (Stenson et al., 2003) A public disease and gene-specific database to
obtain both functional and clinical validation of
genetic variants

Inherited disease
database

VEP, ANNOVAR, SnpEff, InterVar,
OpenCRAVAT, VarSome

3000+

ExAC browser (Karczewski et al.,
2017) -gnomAD (Karczewski
et al., 2020)

A resource developed with the goal to aggregate
and harmonize exome and genome sequencing
data from a wide variety of large-scale
sequencing projects

Population Variant
database

VEP, ANNOVAR, SnpEff, OpenCRAVAT,
VarSome

2000+

NCI60 (Shoemaker, 2006) A panel of allele frequency information from
60 cell lines based on their exome sequencing
data

Cancer Research
database

VEP, OpenCRAVAT 1500+

dbNSFP (Liu et al., 2020) A repository with all potential non-synonymous
single-nucleotide variants (nsSNVs) in the
human genome

Variant - Functional
Annotation
database

VEP, ANNOVAR, SnpEff, OpenCRAVAT,
VarSome

1000+

Clingen (Rehm et al., 2015) A database developed to improve
understanding of genomic variation and its use
in clinical care

Clinical Variant
database

InterVar 1000+

GWAS Atlas (Watanabe et al.,
2019)

A database of publicly available GWAS
summary statistics

GWAS database FUMA 500+

FANTOM-FANTOM6
(Ramilowski et al., 2020)

A global project that aims to identify functional
elements in mammalian genomes, focusing on
non-coding RNAs (especially lncRNAs) in
humans. It also provides atlases of mammalian
promoters, enhancers, lncRNAs, and miRNAs

Functional
Genomics

FUMA, HaploReg 500+

(Continued on following page)
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essential tools for research and clinical applications. These resources
are often used as the main reference for variant annotation tools,
such as the aforementioned in the previous section. Table 3
summarizes the main databases and resources for large-scale
functional annotation of variants.

4.1 Resources of functional genomics

The Encyclopedia of DNA Elements (ENCODE project)
(ENCODE Project Consortium, 2012) is the largest and most
comprehensive resource for functional genomics, providing
extensive information on regulatory elements across the human
genome. ENCODE data encompasses TFBS, histone modifications,
chromatin accessibility, and RNA transcripts, which are crucial for
understanding gene regulation. Popular variant annotation tools
such as VEP, ANNOVAR, SnpEff & SnpSift, FUMA, OpenTargets
Genetics, and GWAVA integrate ENCODE data to enhance the
functional annotation of genetic variants. This integration allows
these tools to predict the impact of variants on gene expression and
regulatory mechanisms, offering valuable insights into their
potential roles in health and disease. By leveraging ENCODE rich
dataset, these tools provide more accurate and context-specific
variant annotations, facilitating the identification of disease-
associated variants and aiding in the interpretation of complex
genomic data.

Other useful resources and projects, with comprehensive
functional annotations for variants from both protein coding and
non-coding regions are the GENCODE (Harrow et al., 2012), TCGA
(Cancer Genome Atlas Research Network et al., 2013), GTEx (GTEx
Consortium, 2013) and RefSeq (Pruitt et al., 2014), GWAS Atlas
(Watanabe et al., 2019).

GENCODE offers high-quality gene annotations, including
protein-coding genes, non-coding RNAs, and pseudogenes. Its
extensive gene models are essential for variant annotation tools
such as VEP, ANNOVAR, and SnpEff, which utilize GENCODE
data to forecast the impact of variants on gene function and
structure, especially within non-coding regions and
regulatory elements.

TCGA is a cancer genomic project that incorporates genomic
datasets on different cancer types, including somatic mutations,
gene expression, and epigenetic modifications. It is widely used by
tools such as VEP, ANNOVAR, and OpenCRAVAT for functional
annotation of cancer-related variants and identification of potential
biomarkers and therapeutic targets related to TCGA data.

GTEx offers data on tissue-specific gene expression and
regulatory variants, enabling researchers to understand how
genetic variation influences gene expression across different
tissues. Annotation tools like VEP, ANNOVAR, FUMA,
OpenTargets Genetics or HaploReg use GTEx data to link
variants with expression quantitative trait loci (eQTLs), aiding in
the functional interpretation of non-coding variants and their tissue-
specific effects.

RefSeq is a comprehensive database that provides a curated
collection of reference sequences for the human genome, including
genes, transcripts, and proteins. It serves as a foundational database
for annotating variants and understanding gene function.
Annotation tools like ANNOVAR, VEP, and SnpEff utilize
RefSeq data to predict the functional impact of genetic variants,
ensuring accurate and standardized variant interpretation
across studies.

GWAS Atlas is a comprehensive collection of GWAS results
integrating data from multiple studies. It is widely applied by tools
such as VEP, FUMA orMAGMA to prioritize and annotate variants
associated with complex traits, facilitating the identification of
potential causal variants and genes.

4.2 Resources of population and allele
frequency data

Population and allele frequency data are critical resources for
understanding genetic diversity, identifying rare and common
variants, and interpreting the clinical significance of genetic
variants. A number of large-scale genomic databases and projects
provide comprehensive data on allele frequencies across different
populations, playing a crucial role in elucidating the genetic
architecture of populations. Genetic architecture refers to the

TABLE 3 (Continued) Summary of existing databases and resources employed for the functional annotation of variants.

Database/Resource Description Type Genome wide tools Citations

LncRNA2Target v3.0 (Cheng
et al., 2019)

A database that contains the most complete
lncRNA-Target relationships to date, by
reviewing all published lncRNA papers

lncRNA Target
database

- 300+

dbscSNV (Jian et al., 2014) A database of all human SNVs within splicing
consensus regions and their functional
annotations

Splice Site Variant
database

VEP, ANNOVAR, SnpEff 200+

ncVarDB (Biggs et al., 2020) An open-source, manually curated database of
well characterized non-coding human genome
variants based on published evidence

Non-coding Variant
database

VEP, FUMA, HaploReg 100+

Gene4Denovo (Zhao et al., 2020) A database focused on de novo mutations
(DNMs) from WES and WGS data and
prioritization of candidate genes

de Novo Mutation
database

VEP, ANNOVAR 100+

lncRNASNPv3 (Yang et al., 2023) A comprehensive database for functional
annotation of variants in long non-coding
RNAs

lncRNA Variant
database

- 50+
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characteristics of genetic variation that are responsible for broad-
sense phenotypic heritability, such as the variants influencing a
phenotype, the magnitude of their effects, their population
frequency and their interactions with each other and the
environment (Timpson et al., 2018). The population frequency of
variants is important for assessing their potential impact, as rare
variants are more likely to have a larger contribution to disease,
whereas common variants are expected to have lower effect sizes.
Therefore, the allele frequency information helps in identifying
population-specific rare variants that may have significant
functional impact and thus reducing spurious and non-causal
associations by filtering out the multitude of low-impact variants.
Nevertheless, genetic architecture information must be used
holistically for proper population stratification, as spurious
associations may arise from other confounding effects. For
instance, if a particular variant is more common in a
subpopulation that also has a higher prevalence of a certain
phenotype, statistical analyses may incorrectly infer a causal
relationship between the variant and the phenotype, especially if
the study is underpowered. Consequently, proper adjustment is
often needed for population structure, such as using principal
component analysis or mixed models (Sul et al., 2018).

The 1000 Genomes Project Project (Genomes et al., 2015),
provides an extensive catalog of human genetic variation by
sequencing genomes from a diverse array of individuals. This
repository includes allele frequency data, which aids in
identifying both rare and common variants across different
populations. Annotation tools such as VEP, ANNOVAR, and
SnpEff utilize this dataset to provide insights into population-
specific variant effects, thereby facilitating research into the
genetic foundations of complex traits and diseases.

ExAC browser (Karczewski et al., 2017) and its successor
gnomAD (Karczewski et al., 2020) provide extensive allele
frequency data from diverse populations, facilitating the
assessment of pathogenicity of rare variants within populations.
Annotation tools like VEP, ANNOVAR, and SnpEff integrate
gnomAD data to assess the population frequency of variants,
helping researchers distinguish between benign and potentially
pathogenic variants.

4.3 Clinical and disease-related databases

Clinical and disease-related variant databases are essential
resources for understanding the clinical significance of genetic
variants and their associations with various diseases.

ClinVar (Landrum et al., 2014) and dbSNP (Sherry et al., 2001)
include extensive collections of clinically relevant variants and single
nucleotide polymorphisms, respectively, contributing to the
understanding of variant pathogenicity and population
frequencies. ClinVar is a premier database for variant-clinical
significance, providing annotations on the relationship between
genetic variants and clinical conditions.

dbSNP (Sherry et al., 2001) is a public archive particularly suited
for SNPs and large-scale functional annotation of variants within
and across different species. It provides essential data for variant
annotation tools such as VEP, ANNOVAR, SnpEff, and FUMA,
enabling them to annotate known polymorphisms and assess their

potential impact based on population frequency and functional
predictions.

Other useful databases aiming to provide clinical or disease
variant information: COSMIC (Tate et al., 2019), Human Gene
Mutation Database (HGMD) (Stenson et al., 2003), GWAS Catalog
(Buniello et al., 2019), NCI60 (Shoemaker, 2006), Clingen (Rehm
et al., 2015), dbscSNV (Jian et al., 2014), dbNSFP (Liu et al., 2020),
Gene4Denovo (Zhao et al., 2020).

COSMIC (Tate et al., 2019) focuses on somatic mutations in
cancer, providing detailed mutation data across various cancer
types. A variety of functional annotation tools such as VEP,
ANNOVAR, SnpEff, InterVar utilize COSMIC data to annotate
cancer-related variants.

HGMD (Stenson et al., 2003) is a comprehensive gene mutation
database associated with human diseases, providing a valuable
resource for clinical variant interpretation. Functional annotation
tools such as VEP, ANNOVAR, InterVar use HGMD data to
annotate pathogenic variants and discover novel disease
target genes.

GWAS Catalog (Buniello et al., 2019) a widely used genome-
wide association studies resource, linking genetic variants to
complex traits and diseases. It is used by different genome wide
annotation tools such as VEP, ANNOVAR, FUMA, MAGMA and
Open Targets Genetics to prioritize variants based on their
association with traits, facilitating the identification of disease-
associated loci and the exploration of their functional consequences.

NCI60 (Shoemaker, 2006) a database for genomic and
pharmacological data on 60 different human tumor cell lines
aiding in the exploration and study of cancer biology and
drug response.

Clingen (Rehm et al., 2015) curates clinically relevant genes and
variants providing annotation for clinical variants interpretation. It
is widely applied by tools such as VEP, ANNOVAR, SnpEff,
InterVar, VarSome to classify variants according to their clinical
significance, by translating genomic into clinical data.

dbscSNV (Jian et al., 2014) includes all potential human SNVs
within splicing consensus regions, providing functional annotations
for splicing variants. It is used by VEP, ANNOVAR, and SnpEff.

dbNSFP (Liu et al., 2020) is a comprehensive database for
functional predictions and annotations of non-synonymous and
splicing variants. It aggregates data from multiple prediction tools,
which are used by VEP, ANNOVAR, and SnpEff to provide detailed
functional impact assessments for coding variants, enhancing the
accuracy of variant interpretation.

Gene4Denovo (Zhao et al., 2020) database focuses on de novo
mutations and their association with diseases, providing
comprehensive variant-level and gene-level annotation and
information regarding the DNMs and candidate genes.
ANNOVAR uses Gene4Denovo data to annotate de novo
variants, aiding in the discovery of novel disease-causing mutations.

Each database has a different focus and is therefore best suited
for specific research or clinical applications. For instance, ClinVar
and Clingen are intended for clinically-oriented interpretation of
variants. However, ClinVar serves as a central repository for variant
data, often including details on phenotype associations, submission
evidence, and any conflicting classifications. Because multiple
laboratories contribute to ClinVar, the database can contain
varying levels of evidence and sometimes conflicting
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interpretations for the same variant. ClinGen on the other hand is an
expert-driven initiative focused on improving the quality and
consistency of variant and gene interpretations. dbSNP offers
broad coverage of known variants and is often used as a first
check to see if a variant has been reported, though it offers
limited clinical details. COSMIC specializes in somatic mutations
in cancer and is appropriate for oncology research, identifying
tumor-specific variants, and understanding cancer mutation
spectra. NCI60 is used for pharmacogenomics applications in
oncology. dbscSNV and dbNSFP are research-oriented, as they
both aggregate in silico predictions of functional impact of
splicing and non-synonymous variants, respectively.

4.4 Non-coding variation resources

NONCODE (Zhao et al., 2016) is a widely cited and
comprehensive resource focusing on non-coding variants. It is
integrated by popular variant annotation tools such as VEP,
ANNOVAR, SnpEff & SnpSift, VarSome to enhance functional
annotations for non-coding variants. NONCODE specializes in
cataloging non-coding RNAs (ncRNAs), including lncRNAs,
microRNAs, and small nuclear RNAs, providing extensive
information on their sequences, structures, and functional
annotations. The database integrates data from various sources to
offer a detailed overview of ncRNA biology, including expression
patterns, interactions, and regulatory roles.

Other useful databases and resources for the annotation of
variants in non-coding regions are FANTOM-FANTOM6
(FANTOM Consortium and the RIKEN PMI and CLST DGT
et al., 2014; Ramilowski et al., 2020), lncRNASNPv3 (Yang et al.,
2023), ncVarDB (Biggs et al., 2020), LncRNA2Target v3.0 (Cheng
et al., 2019).

FANTOM provides data on gene expression and functional
regulatory elements, particularly focusing on enhancer activity.
FANTOM6 ((FANTOM Consortium and the RIKEN PMI and
CLST DGT et al., 2014; Ramilowski et al., 2020)) aims to
systematically clarify the roles of long non-coding RNAs
(lncRNAs) in human genome.

lncRNASNPv3 (Yang et al., 2023) is a novel database for
comprehensive annotation of variants in long non-coding RNAs
(lncRNAs), including their potential functional impacts and their
roles in disease.

ncVarDB (Biggs et al., 2020) is a manually curated repository for
non-coding variants that provides functional annotations and
predictions. Tools such as VEP, FUMA and HaploReg utilize
ncVarDB data to interpret the effects of non-coding variants,
aiding in the understanding of their roles in gene regulation
and disease.

LncRNA2Target v3.0 (Cheng et al., 2019) is a novel database for
long non-coding RNAs (lncRNAs) including their potential
functional impacts. It contains the most complete lncRNA-Target
relationships by manually reviewing all published lncRNA articles.
Various tools are using it to annotate lncRNA variants and predict
their functional impact.

Each resource serves a distinct purpose in the area of non-coding
RNA research. NONCODE is a broad repository for non-coding
RNA data, while FANTOM provides large-scale transcriptome and

functional annotation data, with particular emphasis on genome-
wide promoter and enhancer elements crucial for non-coding RNA
expression. On the variant-centric side, ncVarDB specializes in
annotating and interpreting the functional impact of non-coding
variants, while ncRNASNP focuses on SNPs that affect binding sites
and secondary structures of non-coding RNAs. Finally,
LncRNA2Target focuses on elucidating the relationships between
long non-coding RNAs and their target genes, offering curated
insights into lncRNA-mediated regulatory pathways.

5 Challenges and future directions

5.1 Harmonization of functional annotation
diversity at the genome-wide level

Overall, a wide range of tools and resources is available, each
with its own methods, strengths, and areas of focus. However, this
variety creates a fragmented landscape where different tools may
offer differing predictions for the same variant, complicating the
integration and interpretation of results. Integrating heterogeneous
tools and resources for functional variant annotation presents
significant challenges, especially when accounting for non-coding
and intergenic regions. Several resources rely their functional
annotation methods on protein coding regions and focus on
exons which are only the 1% of the genome (Sun et al., 2024).

The Venn diagrams in Figure 3 illustrate the classification of
functional annotation tools and aggregators based on their target
genomic regions: exonic, intragenic non-exonic, and intergenic.
Regarding foundational tools (Figure 3A), 5 tools (35.7%) are
classified as genome-wide, as they cover all three genomic
regions, reflecting a significant effort towards whole-genome
variant interpretation. This trend is even more pronounced
among aggregators (Figure 3B), with 9 of them (60%)
encompassing the genome in its entirety. Genome-wide coverage
is expected to rise, as with the advent of whole-genome studies such
as GWAS, it has become evident that non-coding regions play a
significant role in many diseases. Deriving biological insight from
GWAS is hindered by the fact that the signal mainly lies in intergenic
and intronic regions (Giral et al., 2018) and gene causality cannot be
inferred with confidence. However, most genetic variation is found
in these non-coding areas, highlighting their importance in
genomics (Zhang and Lupski, 2015; Giral et al., 2018).

Valuable functional insights for these intergenic regions come
from comprehensive functional genomics resources (Table 3).
Regulatory elements, such as non-coding RNAs, chromatin
regulators and modifiers, enhancers and silencers, play vital roles
in the functional annotation of these regions. These elements are
integral to the complex regulatory networks that govern gene
expression, chromatin structure, and overall genomic function.
Grasping these regulatory components is essential for elucidating
how genetic variation affects phenotypic diversity and disease
susceptibility, making the functional annotation of intergenic
regions a pivotal focus in genomics research. Resources such as
ENCODE, GENCODE, NONCODE, GTEx, FANTOM,
LncRNA2Target, ncVarDB, and lncRNASNPv3 are particularly
valuable for this purpose. They provide extensive data and tools
for annotating and understanding the functional implications of
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genetic variants in intergenic and non-coding regions, thereby
supporting a deeper comprehension of the genome’s
regulatory landscape.

A significant challenge lies in the integration of various
functional genomics resources, each of which often focuses on
specific aspects of genomic function, such as chromatin
accessibility, transcription factor binding, histone modifications,
gene expression, and regulatory motifs. Combining these diverse
datasets enables a comprehensive view of the genome, capturing a
broad range of functional elements and interactions that might be
overlooked when relying on a single resource. For instance,
ENCODE provides extensive data on transcription factor binding
and chromatin states, while GTEx offers valuable information on
tissue-specific gene expression and expression quantitative trait loci
(eQTLs). FANTOM contributes data on active enhancers and
promoters, and NONCODE focuses on non-coding RNAs.
Integrating these resources enables researchers to piece together
complex regulatory networks and understand how various elements
interact to regulate gene function. Genetic variants, especially those
in non-coding regions, can have subtle but significant effects on gene
regulation. Integrating multiple functional genomics datasets
enhances the ability to interpret these variants’ functional
impacts. For example, a variant might disrupt a TFBS identified

by ENCODE, alter a histone modification state from Roadmap
Epigenomics data, or affect gene expression as shown by GTEx
eQTL data. By considering all these aspects, researchers could better
predict the potential phenotypic consequences of genetic variants.

Consequently, the integration of diverse functional genomics
resources requires novel advanced bioinformatic methodologies,
such as network-based approaches and systems biology
frameworks. These sophisticated analyses require rich, multi-
dimensional and harmonized data to generate accurate and
meaningful predictions. It also entails developing interoperable
tools capable of seamlessly integrating multiple data sources,
ensuring that the functional impacts of variants across all
genomic regions are comprehensively captured and interpreted.
This level of integration is vital for enhancing our understanding
of the genome and propelling research into complex genetic traits
and diseases.

5.2 Systemic and cumulative impact of
genetic variants

Understanding the cumulative impact of genetic variants and
polygenic associations presents a significant challenge in genomics

FIGURE 3
Classification of functional annotation tools (A) Venn diagram of annotation tools, classified by genomic region of focus (B) Venn diagram of
aggregator platforms, classified by genomic region of focus (C) Proportions of aggregator tools based on the prediction of the systemic impact
of variants.
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(Lewis and Vassos, 2020). Most variants identified through GWAS
individually have small effect sizes, making it difficult to discern
their impact on phenotypes. Unlike rare variants with large
effects that can be more straightforwardly linked to
monogenic traits or diseases, common variants require large
sample sizes to detect significant associations with complex
diseases. Moreover, the effects of individual variants may be
influenced by interactions with other genetic variants
(epistasis) and with environmental factors. These interactions
can either amplify or mitigate the effects of individual variants,
adding another layer of complexity to understanding their
cumulative impact. However, evidence of epistasis at the level
of variants remains limited (Balvert et al., 2024).

Furthermore, molecular pathways and complex interactions
at the gene or protein level are critical components of cellular and
organismal function, and they offer a compelling framework for
understanding how genetic variants can cumulatively impact
phenotypes. The integration of genetic variation with
molecular interaction networks and biological pathways helps
elucidate the mechanisms through which multiple variants
collectively influence complex traits and diseases. Functional
analysis at the pathway level, leveraging functional gene
annotation (Maleki et al., 2020), is a promising approach to
understand the biological significance of genetic variants by
examining their collective impact on predefined sets of genes,
directly (protein-coding regions) or indirectly (colocalization
with intergenic regulatory regions).

As shown in Table 1 and Figure 3C, currently, a number of
tools are available that integrate gene set enrichment and pathway
analysis with genome-wide variant annotation, including
MAGMA (de Leeuw et al., 2015) and FUMA (Watanabe et al.,
2017). MAGMA is a stand-alone tool that performs gene-set
analysis by first aggregating SNP-level associations into gene-
level statistics and then assessing the enrichment of association
signals within predefined gene sets. These gene sets can be
collected by the MSigDB database (Subramanian et al., 2005) or
defined by the user using any gene-to-pathway mappings, e.g.,
from (Kanehisa and Goto, 2000), Reactome (Milacic et al., 2024) or
Gene Ontology (GO) (Ashburner et al., 2000; The Gene Ontology
Consortium, 2019), thus depending on static, literature-curated
collections of biological pathways as a major input. FUMA is a
web-based platform that incorporates MAGMA to perform gene-
based tests and aggregating SNP-level associations to identify
significant genes, integrating multiple biological repositories and
tools to process GWAS summary data, offering a comprehensive
platform for post-GWAS analysis. Therefore, FUMA also
incorporates variants located at intergenic regions, by leveraging
functional genomic resources. A limitation to the MAGMA
method is that it relies on gene sets, without performing
semantic analysis in order to leverage the topological properties
of semantic graphs such as the biomedical ontologies.

The category of tools specifically designed to assess the
cumulative impact of multiple variants on pathways or biological
processes was found under-represented under our review criteria.
Nevertheless, as stated before, this review focuses on most recently
published and highly cited tools, representing most common
practices and current trends. Examples of additional pathway-
based approaches include INRICH (Lee et al., 2012; Wang et al.,

2007), both leveraging GSEA (Subramanian et al., 2005). Methods
capable of evaluating variant collective effects are essential to fully
understand the genetic architecture of polygenic diseases. Pathway-
level functional interpretation is essential not only for the
harmonization of the annotations, but also for their
prioritization, especially since each genome contains thousands of
variants that differently influence phenotypes. Enhancing and
expanding this category of tools is essential for advancing our
comprehension of how combinations of variants contribute to
complex phenotypes and for facilitating the development of
targeted therapeutic strategies.

5.3 Towards genome-wide, standardized,
systems-level interpretation and
prioritization

It is essential to develop novel approaches that enhance
confidence in identifying causal genes affected by genomic
variation and elucidate the pathways underlying genetic
association signals. These approaches should be capable of
leveraging genome-wide functional annotations for intronic and
intergenic variants and pinpointing causal genes that directly impact
non-coding regulatory elements. (Uffelmann et al., 2021). Until now
enhancers and promoters are the most studied regulatory elements
but there is plenty of space in other elements such as non-coding
RNAs or transposable elements (Hadjiargyrou and Delihas, 2013).

A primary challenge lies in developing robust pipelines,
workflows, and tools that ensure reproducible results and remain
robust despite minor changes in parameterization. Existing tools,
while leveraging a vast array of databases for annotation, often
retrieve substantial amounts of false or noisy information, which
limits both the accuracy and effectiveness of the annotation process.
Therefore, reproducibility and standardization are of paramount
importance to minimize unavoidable noise and extract meaningful
information. An additional limitation regarding scalability includes
the management and storage of the resulting data (Zhou et al., 2023).

On this scope, semantic and network-based processing is a
promising direction towards standardized interpretation of
whole-genome and genome-wide association studies. Semantic
processing using biomedical ontologies, such as the Gene
Ontology (GO), offers significant advantages for the
standardization of the interpretation, enhancing the reliability,
reproducibility, and depth of insights.

Semantic processing frameworks may facilitate the systemic
understanding of the overall impact that vectors of genomic
variants have on their hosts. This includes understanding how
these variants relate to the risk of manifesting distinct
phenotypes or pathologies. Digital solutions that can analyze
these variant vectors holistically, leveraging various semantic
sources such as ontological vocabularies, gene set mappings, and
interaction graphs, could provide a rational basis for data-agnostic,
systems-level comparative evaluations across different hosts. Such
approaches would pave the way for precise, data-driven diagnostic
and therapeutic stratification. They may also facilitate the selection
of animal models, such as mice and rats, that functionally align with
specific phenotypic aspects of human diseases by enabling
comparisons at the functional and pathway levels, as individual
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gene expression responses have been shown to poorly translate
between the two species (Seok et al., 2013).

6 Conclusion

The development of analytical pipelines that standardize multi-
layered genome-wide functional annotation and biological
interpretation, including the intergenic regions of the human
genome, may enable the optimal utilization of the rapidly
growing volume of high-throughput genomic data.

Functional annotation of intergenic regions is crucial for
understanding the regulatory roles and impact of genetic
variants outside protein-coding regions. For instance, complex
traits, in contrast to Mendelian diseases, are driven by non-
coding variants that affect gene regulation (Welter et al., 2014; Li
et al., 2016). Various functional genomics resources provide
crucial data for annotating these regions, aiding in
comprehending gene regulation and phenotypic diversity.
Integrating these diverse resources offers a comprehensive
view of the genome, which is vital for systematically
interpreting the cumulative, synergistic or antagonistic, effects
of non-coding variants on complex diseases and phenotypes.
However, a standardized and universal framework for
integrating, interpreting and prioritizing all variants across the
genome is still lacking.

Whole-Genome and GWAS studies, which provide
significant amounts of data and genetic associations to
diseases, have attracted criticism for their limited utility when
it comes to their meaningful interpretation into real-life clinical
applications (Tam et al., 2019; Boyle et al., 2017). However,
GWAS remains an effective tool and a valuable source of data
the utility of which is further enhanced with the exploitation of
various techniques and approaches, such as fine mapping and
pathway or gene-set level interpretation, aiming at narrowing
down the set of candidate variants.

In addition, advanced pathway-level analysis provides a
means to address annotation discrepancies, another common
issue in variant interpretation. Divergence, variation and even
conflicting data have been observed in virtually all aspects of
genomic analysis: sequencing technologies and technical
variation, variant calling algorithms, annotation tools and
algorithms for variant effect prediction (e.g., ANNOVAR,
VEP), reference genome assemblies (GRCh37 vs. GRCh38),
gene annotation resources (e.g., RefSeq, Ensembl) and variant
databases (e.g., ClinVar, ClinGen, dbSNP). Standardized,
systems-level approaches that integrate functional and
regulatory information with semantic-based biological
interpretation may offer a rigorous foundation for data-driven
comparative analysis of genetic fingerprints and further support
precise diagnostic, epidemiological, and therapeutic strategies.
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