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Organoid culture has emerged as a forefront technology in the life sciences field.
As “in vitromicro-organs”, organoids can faithfully recapitulate the organogenesis
process, and conserve the key structure, physiological function and pathological
state of the original tissue or organ. Consequently, it is widely used in basic and
clinical studies, becoming important preclinical models for studying diseases and
developing therapies. Here, we introduced the definition and advantages of
organoids and described the development and advances in hepatobiliary
organoids research. We focus on applying hepatobiliary organoids in benign
and malignant diseases of the liver and biliary tract, drug research, and
regenerative medicine to provide valuable reference information for the
application of hepatobiliary organoids. Despite advances in research and
treatment, hepatobiliary diseases including carcinoma, viral hepatitis, fatty liver
and bile duct defects have still been conundrums of the hepatobiliary field. It is
necessary and crucial to study disease mechanisms, establish efficient and
accurate research models and find effective treatment strategies. The
organoid culture technology shed new light on solving these issues. However,
the technology is not yet mature, and many hurdles still exist that need to be
overcome. The combination with new technologies such as CRISPR-HOT,
organ-on-a-chip may inject new vitality into future development.
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1 Introduction

1.1 Definition of organoids

Organoids are described as intricate 3-dimensional (3D) structures originating from
human (pluripotent) stem cells, progenitor, and/or differentiated cells. They have the ability
to self-assemble and differentiate into functional clusters of multiple cells, accurately
reproducing the function, organization, and genetic characteristics of the original
organs in vivo (Dutta et al., 2017; Marsee et al., 2021). Traditional 2-dimensional (2D)
cell culture technique is used the most and has the advantages of convenience and
simplicity. However, 2D attachment leads to cells losing their morphology and
influences the organization of the structures inside the cell, proliferation, growth and
differentiation, secretion, signal transduction and drug response (Baker and Chen, 2012;
Scalise et al., 2021), with heterogeneity gradually obliterated, genomics and metabolomics
significantly dissimilated during long-term subculture (Bresnahan et al., 2020). The
organoid technology, as a 3D culture system, is created through suspension culture to
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prevent direct physical contact with the plastic dish, in contrast with
the 2D culture method. The establishment of the 3D environment
mainly relies on biological or synthetic scaffolds similar to the
extracellular matrix. Furthermore, scaffold-free methods (Dituri
et al., 2021), “air-liquid-interface” methods (Scalise et al., 2021;
Neal et al., 2018; Lamers et al., 2021; Wakamatsu et al., 2022) and
“Organ-on-a-chip” (Xue et al., 2021; Huang et al., 2021; Xie et al.,
2022) can also be utilized to attain the 3D structure of the organoids
(Figure 1). The intricate surrounding milieu regulates the structure,
development and function of cells in the organism, encompassing
interactions between cells and cell-extracellular matrix (ECM).
Because Matrigel plays an excellent supporting role, the 3D
culture conditions can recapitulate the microenvironment in
which primary cells are located accurately (Tuveson and Clevers,
2019). In this scenario, 3D-grown organoids exhibit strong
resemblance to the parents, and also retain the genetic stability
and chromatin heterogeneity of the parents. Additionally, organoids
can proliferate quickly within 1–2 weeks and can be stably sub-
cultured and cryopreserved similar to normal cell lines (Drost and
Clevers, 2018). In addition, cells are able to aggregate into spherical
shapes under 3D culture conditions, which contributes to
establishing the intercellular signaling pathways (Fan et al., 2019).
Organoid models have characteristics similar to living organs: 1)
they contain various organ-specific cell types; 2) exhibiting some

specific functions related to organs; 3) forming a spatial structure
similar to organs. Organoid are considered as an important model in
exploring the occurrence, progression and evolution of diseases due
the ability of faithfully replicating and simulating the distinctive
biological traits of organs and parent cells. Moreover, tumor
organoids can be established through preoperative biopsy or
postoperative resection specimen, serving a crucial function in
predicting personalized drug sensitivity and screening adjuvant
therapy medications. Therefore, organoid models offer superior
alternatives for drug screening and personalized drug treatment
(Broutier et al., 2017; Wang et al., 2021; Yuan et al., 2022). The
recognition of organoids’ potential to broaden fundamental research
by supplementing existing model systems is becoming more
widespread (Bahmad et al., 2021).

Stem cells, being primitive and undifferentiated, possess the
capability to differentiate into distinct and specialized cell categories.
Organoids can be derived from embryonic stem cells (ESCs),
induced pluripotent stem cells (iPSCs), and adult stem cells
(ASCs), due to the self-renewal and multi-directional
differentiation potential of stem cells (Figure 2) (Lancaster and
Knoblich, 2014; Takebe and Wells, 2019). The development of
organoids from stem cells is comparable to how the organ
obtains its unique organizations, primarily involves the self-
organization of the cell population (Rossi et al., 2018). It needs

FIGURE 1
Culture approaches of organoids. Organoids can be achieved by submerged culture, air–liquid interface (ALI) culture and Organoids-on-a-chip
culture. Submerged culture is themost widely used organoids culturemethod. Because of direct exposure to oxygen, ALI cultures provide higher oxygen
supplement than submerged culture. Organ-on-a-chip is a microfluidic cell culture device which could accurately control the abiochemical and
biophysical environment for cell growth.
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to mimic an in vivo microenvironment and active various signaling
pathways during cell development and differentiation to induce self-
organization. Organoids derived from pluripotent stem cells (PSCs,
including ESCs or iPSCs) are established through directed
differentiation of PSCs. To initiate cell-directed differentiation
and maturation, it is necessary to form particular germ layers
(endoderm, mesoderm or ectoderm) and then co-culture them
with specific growth and signaling factors as well as cytokines.
Culturing of ASCs-derived organoid require to isolate the tissue-
specific stem cells from the target organ, and then embed them into
an ECM containing defined, tissue-specific combinations of growth
factors to support propagation (Huch and Koo, 2015; Kim et al.,
2020). While initial studies suggested organoids were solely derived
from stem cells (Lancaster and Knoblich, 2014), it is now evident
that organoids can also originate from differentiated cells like
cholangiocytes (Aloia et al., 2019; Sampaziotis et al., 2017).

Organoids are categorized into distinct groups based on defining
characteristics, according to the consensus on the definition and
nomenclature of hepatic, pancreatic and biliary organoids. These
encompass epithelial, multi-tissue, and multi-organ ones. Epithelial
organoids represent the most widely studied organoid type. These
structures originate from one germ layer (endoderm, mesoderm, or
ectoderm) and can self-renew under suitable culture conditions. Multi-
tissue organoids are formed by co-culturing cells from two ormore germ
layers or by co-differentiating PSCs.Multi-organ organoids represent the
most intricate and least documented category of organoids, characterized
by inter-organ developmental self-organization patterns. These systems
offer significant potential for researching organogenesis, a process
regulated by various boundary tissue interactions (Marsee et al., 2021).

1.2 The current status

After Clevers’ team in the Netherlands published their findings
in 2009, reporting that leucine-rich repeat-containing G protein-
coupled receptor 5 (Lgr5) positive ASCs in the mouse intestine were

capable of forming the crypt-villus structure in vivo, organoid
models of normal organs and tumor tissues can be observed in
studies of multiple fields, including the stomach, colon, pancreas,
kidney, prostate, brain, and retina (Barker et al., 2010; Spence et al.,
2011; Sato et al., 2011; Gao et al., 2014; Eiraku and Sasai, 2011;
Lancaster et al., 2013; Low et al., 2019; Boj et al., 2015).

In 2013, the 3D culture method was used by Takebe’s lab in the
construction of 3D vascular and functional iPSC-derived liver buds
(iPSC-LBs) in vitro. The analysis of immunostaining and gene
expression demonstrated the resemblance between liver buds
induced in vitro and those in vivo. Moreover, the internal
functional blood vessels could promote the maturation of iPSC-
LBs into liver tissue (Takebe et al., 2013). Takebe’s study addressed
the technical challenges of organoid boundary system formation,
opening up the possibility of studying complex interactions during
early organ development.

In the same year, Clevers et al. extracted Lgr5+ progenitor-like
oval cells from the portal triad area in injured mouse livers that CCl4
induced. Then, Lgr5+ cells were cultured and induced to differentiate
in a Matrigel matrix with Wnt3a, R-pondin-1, EGF, HGF,
FGF10 and Noggin to establish mature mouse hepatobiliary
organoids (Huch et al., 2013). Certain liver progenitor cells could
develop into early hepatocytes and biliary epithelial cells, according
to the analysis of the resulting organoids. Which demonstrated that
the mouse liver organoids were bipotential. Under the culture
conditions that added Notch, TGF-β pathway inhibitors, FGF,
BMP7, EGF, and dexamethasone without R-spondin-1 and HGF,
these bipotential organoids tended to differentiate into hepatocytes.
After implantation into immunodeficient mice, mouse liver
organoids differentiated into liver tissues and showed mature
hepatocyte markers and function, including low-density
lipoprotein uptake, albumin and bile acid secretion, glycogen
accumulation, and induction of the cytochrome P450 system
(Huch et al., 2013; Schulze et al., 2019). Soon after in 2015,
Clevers et al. successfully established human liver organoids
originated from EpCAM+ cells obtained from the human liver

FIGURE 2
Strategies for organoids/tumoroids establishment in vitro. The cell sources for establishing organoids include ESCs, ASCs, iPSCs and tumor cells.
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in vitro, which were bipotential (Huch et al., 2015). In 2018, studies
showed that more mature and longer-lasting hepatocyte organoids
could be constructed by inducing purified AXIN2+ mouse
hepatocytes (Peng et al., 2018; Hu et al., 2018). Furthermore,
there have been reports of hepatocyte organoids originated from
human embryonic liver tissue of aborted fetuses (Hu et al., 2018).
Wang et al. established human ESCs derived expandable hepatic
organoids (hEHOs) from using a new type of media (serum-free,
feeder-free). The hEHOs were capable of maintaining the
phenotypic traits of bipotential hepatic stem cells stably and had
the ability to differentiate into functional hepatocytes or
cholangiocytes (Wang et al., 2019). Wu et al. successfully
established the first functional hepatobiliary organoids (HBOs)
using human induced pluripotent stem cells (hiPSCs) (Wu et al.,
2019). The authors produced hepatobiliary organoids by inducing
hiPSCs to form endoderm and mesoderm tissues simultaneously
and activating the NOTCH2 and TGF-β signaling pathways to
generate separate hepatocyte and cholangiocyte populations.
Next, the hepatobiliary organoids were matured using a
proprietary cholesterol+ MIX supplemented standard base
medium. Soon after, Wu et al. updated their previous protocol
(Wu et al., 2019), which shortened the time to achieve maturation
in vitro, and developed a medium that could maintain HBOs for
more than 1.5 months (Wu et al., 2021). Takebe’s team successfully
constructed the continuous and dynamic hepato-biliary-pancreatic
organoid (HBPO). Furthermore, a functional connection between
the internal pancreas, especially the exocrine lineage, and the bile
ducts within HBPO (Koike et al., 2019). Functioning human liver
organoids were generated from pluripotent stem cells derived from
peripheral blood CD34+ cells by Kasem et al. (Kulkeaw et al., 2020).
Since only the hepatic endoderm was able to form liver organoids
without co-culture with the endothelium and septum mesenchyme,
endothelial cells or hepatic progenitor cells (Takebe et al., 2013;
Pettinato et al., 2019; Ng et al., 2018), the method of Kasem et al. was
simple and faster than a previous study (Mun et al., 2019). This study
also showed that hiPSCs produced from hematopoietic progenitor
cells could differentiate into hepatocytes and create liver organoids,
indicating that a less invasive approach could be used to
manufacture hiPSCs. Wendy et al. constructed multi-cellular
human liver PSC-derived organoids, comprised predominantly
hepatic epithelial cells, differentiated simultaneously with stellate-
like and hepatic macrophage-like cell that had the potential for
modeling of hepatic inflammatory diseases in vivo (Thompson and
Takebe, 2020).

Research have shown that self-renewing epithelial organoids
can be cultured from primary tissue of the human liver (Huch
et al., 2015; Hu et al., 2018) and extrahepatic biliary tree
(Sampaziotis et al., 2017; Lugli et al., 2016). Self-organizing
3D structures could also be cultured from primary and
metastatic tumors and even tumor needle biopsies of the liver
and extrahepatic bile ducts (Broutier et al., 2017; Nuciforo et al.,
2018; Saito et al., 2019). Hepatocellular carcinoma (HCC)-
derived organoids replicate the histological structure, mutation
profile, and transcriptome of the original tumor. The same
applied to the culture of intrahepatic cholangiocarcinoma
organoids, which maintained their drug-resistance phenotype,
enabling in-depth mechanistic and personalized drug
interaction research.

2 Applications of hepatobiliary
organoids

Organoid technology has significant advantages: 1) Human-
derived: Human organoids represent human physiology, 2) Rapid:
Organoids can be rapidly and easily established derived from ASC
and PSC, 3) Robustness: Scale-up is usually possible for drug and
genomic screening on a large scale, once established, 4) Genetic
manipulation: majority of genetic engineering tools can be used on
iPSC or directly on organoid systems, 5) Personalization: iPSCs and
organoids can be obtained from individuals (Kim et al., 2020). The
wide array of biomedical applications (Figure 3) is facilitated by
these benefits of hepatobiliary organoids.

2.1 Hepatobiliary disease research

2.1.1 Hereditary disease
Organoids are able to be used to study and model organ-specific

genetic diseases. Alpha-1 antitrypsin (AAT) deficiency (AATD), one
of the inherited metabolic diseases, results from deficiency of the
anti-protease component-α1-antitrypsin in the blood. Clevers et al.
used biopsies from patients with α1-antitrypsin deficiency to
generate liver organoids by organoid culture technology (Huch
et al., 2015). They observed AAT protein aggregates in the
resulting organoids, which resembled the findings in the original
biopsy. Besides, supernatants from these organoids showed a lower
ability to block elastase activity. In addition, a Spanish team’ success
confirming Clevers’s findings (Gómez-Mariano et al., 2020).

Alagille syndrome (ALGS) is a rare multisystem disorder caused
by mutations of the JAG-1 and NOTCH2 genes (ShenTu et al., 2021;
Mitchell et al., 2018). The main hepatobiliary presentations are
biliary atresia and chronic cholestasis caused by bile duct hypoplasia.
The team of Clevers reported that they had established the first
human ALGS liver organoid models (Huch et al., 2015). When
R-spondin, Nicotinamide, TGFbi and FSK were removed, the ALGS
liver organoids lost the potential to upregulate biliary markers. A
similar conclusion was drawn from the study of Emma et al.
(Andersson et al., 2018). Guan et al. introduced the mutation
causing ALGS in JAG1 with Clustered regularly interspaced short
palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)
technology and cultured and induced iPSCs from healthy people to
produce liver organoids whose pathological features were similar to
ALGS (Guan et al., 2017).

Polycystic liver disease, also known as cystic fibrosis (CF),
caused by mutations in a cell-surface chloride transporter called
cystic fibrosis transmembrane regulator (CFTR) gene (Masyuk et al.,
2022; Kothadia et al., 2024). Sampaziotis’ team applied 3D culture
technology to construct cystic fibrosis organoid models with
cholangiocytes generated by inducing PSCs (Sampaziotis et al.,
2015). Monique et al. established cholangiocyte organoids by
extrahepatic cholangiocytes obtained from a compound CFTR
gene mutation patient (Verstegen et al., 2020).

Wilson’s disease, also known as hepatolenticular
degeneration, is an autosomal recessive copper metabolism
disorder, manifest as accumulation of copper ions in major
organs such as the liver (Lucena-Valera et al., 2021; Arai
et al., 2021). Nantasanti et al. segregated hepatocytes from
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copper metabolism MURR1 domain 1 (COMMD1) deficient
dogs to culture organoids and observed the intracellular
copper accumulation, which demonstrated that the in vitro
model of Wilson’s disease was generated successfully
(Nantasanti et al., 2015). In 2020, a study isolated and
cultured hepatic progenitors from COMMD1-deficient dogs to
generate organoids (Kruitwagen et al., 2020). After gene
correction, the organoid-derived hepatocyte-like cells are
transplanted via the portal vein into the dog livers, and the
cells engraft and survive up to 2 years. This study provided a
new approach that applied organoids as tools to treat gene-
defective inherited liver diseases.

Wolman disease (WD) is an autosomal recessive genetic disease
caused by the inactivation of acid lipase in the lysosome (Aguisanda
et al., 2017). A large amount of lipid accumulates in the hepatocytes
contribute to steatohepatitis and fibrosis (Aguisanda et al., 2017;
Pastores and Hughes, 2020). To explore new treatment methods,
Ouchi et al. constructed three organoid models with severe fibrosis
by culturing and inducing iPSCs of Wolman disease patients (Ouchi
et al., 2019). They added FGF19, which could relieve symptoms of
WD into the culture system of organoids and found that the
production of reactive oxygen species, a marker of hepatocyte
injury in nonalcoholic fatty liver, was significantly decreased
(Attia et al., 2017).

FIGURE 3
Applications of the hepatobiliary organoids. Organoids have wide application prospects on basic research, drug screening, safety testing, disease
modeling, bio-banking, regenerative medicine, genetic engineering, precision medicine and many other fields.
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2.1.2 Viral hepatitis
Viral hepatitis, especially hepatitis B and hepatitis C, is one of

the major public health problems and economic burdens
worldwide (Fotiadu et al., 2004; Shiha et al., 2020; Zhang
et al., 2021). Two studies had used pluripotent stem cells from
hepatitis B patients and liver specimens from hepatitis C patients
to induce and culture liver organoids with hepatitis B and
hepatitis C, respectively (Nie et al., 2018; Baktash et al., 2018).
According to recent studies, liver organoids obtained from
healthy individuals were co-cultured with either the
recombinant virus or the serum of patients with HBV. As a
result, the organoids became infected and the virus showed active
proliferation (De Crignis et al., 2021). The 3D organoid models of
viral hepatitis can demonstrate the connection and interaction
between the hepatitis virus and host cells, offering essential
preclinical models for mechanism research, drug discovery
and treatment of viral hepatitis.

2.1.3 Fatty liver
Recently, organoids have been recognized as the favored 3D

in vitro representation for studying non-alcoholic fatty liver
disease (NAFLD) (Ramos et al., 2022). Ouchi’ team, using
PSC lines, developed a reproducible method to derive multi-
cellular human liver organoids composed of hepatocyte-, stellate-,
and Kupffer-like cells. Under treatment of free fatty acid,
organoids recapitulated steatosis, inflammation and fibrosis
phenotypes, which are key characteristics of steatohepatitis,
successively. Gurevich et al. established a novel in vitro
differentiation process to generate cryopreservable hepatocytes
using an iPSC panel of non-alcoholic steatohepatitis (NASH)
donors and healthy controls (Gurevich et al., 2020). In drug
metabolism research field, team of McCarron developed methods
that allow the derivation, proliferation, hepatic differentiation,
and extensive characterization of bipotent ductal organoids from
NASH patients’ irreversibly damaged live (McCarron et al.,
2021). Hendriks’ team introduces the FatTracer, a CRISPR
screening platform designed to identify steatosis modulators
and potential targets using APOB−/− and MTTP−/− organoids
and identified fatty acid desaturase 2 (FADS2) as a key factor in
hepatic steatosis. These organoid models enable the investigation
of steatosis causes and drug targets (Hendriks et al., 2023).
Kimura et al. devised a pooled human organoid-panel of
steatohepatitis to investigate the impact of metabolic status on
genotype-phenotype association. ‘‘In-a-dish’’ genotype-
phenotype association strategies disentangle the opposing roles
of metabolic-associated gene variant functions and offer a rich
mechanistic, diagnostic, and therapeutic inference toolbox
toward precision hepatology (Kimura et al., 2022).
Consequently, organoid-derived fatty liver models are central
tools to further study the occurrence, transformation and
mechanism of steatosis disease.

2.1.4 Biliary atresia and bile duct defects
Biliary atresia (BA) is characterized by progressive extrahepatic

and intrahepatic biliary fibrosis and biliary obstruction. If left
untreated, affected patients will eventually develop portal
hypertension and liver failure (Lin et al., 2019; Vij and Rela,
2020). BA mainly occurs in neonates, and the etiology is still

unclear, which may be related to viral infection, immune
damage, environmental and genetic factors (Vij and Rela, 2020).
BA is the main indication for pediatric liver transplantation (Zhou
et al., 2019). After infection of human cholangiocyte organoids with
rotavirus, severe cytopathic changes occurred in the organoid cells,
which could partially mimic the development and pathological
changes of BA (Chen et al., 2020). Sinobol et al. treated mouse
liver ductal organoids with acetaminophen and found that the
expression of fibrogenic cytokines and cholangiocyte apoptosis
increased, indicating that the organoid model can simulate
injury-induced apoptosis of cholangiocytes in BA (Chusilp et al.,
2020). Bile duct epithelium organoids were cultured with
biliatresone, the cell structure of organoids was destroyed, and
the normal apical-basal structure was lost (Lorent et al., 2015).
The phenomenon of breakdown in apical-basal polarity was also
observed in organoids derived from BA patients or rhesus rotavirus
A-infected mice (Babu et al., 2020), which has been confirmed in a
recent study (Amarachintha et al., 2022). Cholangiocyte organoids
derived from liver biopsies of BA patients showed low expression of
developmental and functional markers (cytokeratin 7, EpCAM,
transporters aquaporin 1, CFTR), small quantity and
misorientation of cilia, a change in the expression pattern of
zonula occludens-1 (ZO-1) and increased permeability
(Amarachintha et al., 2022). The results above proved that BA
patient-derived organoids are excellent models for studying the
deficiency of molecular and function in the delayed development
of cholangiocytes in BA.

Iatrogenic bile duct injury has become one of the most common
causes of benign bile duct defects or strictures with the
popularization and broad application of laparoscopic
cholecystectomy (Del Vecchio Blanco et al., 2021). Besides,
patients who require surgical treatment due to hilar biliary
stricture caused by stones can also be observed at present.
However, surgical treatment methods for biliary deficit lesions
crediting to iatrogenic bile duct injury, BA and hilar biliary
stricture have many limitations and disadvantages. Therefore,
only biliary-enteric anastomosis can be performed in most
patients. Nevertheless, the biliary-enteric anastomosis
reconstructs the digestive tract, and the anastomosis fails to
function as the Oddis sphincter, which results in a series of
postoperative complications such as reflux cholangitis,
anastomotic leakage, anastomotic stricture, stone formation,
biliary cirrhosis, and even carcinogenesis (Sampaziotis et al.,
2017; Matthews et al., 1993; Tocchi et al., 2001; Laukkarinen
et al., 2007; Kadaba et al., 2017). As a result, it is still a hot issue
to preserve the function of the Oddis sphincter and make the
reconstructed bile duct in line with the anatomical structure and
physiological function of the normal bile duct. The appearance of
organoids provides a certain possibility to preserve the function of
the Oddis sphincter. Sampaziotis et al. pioneered the use of human
bile duct epithelial organoids to repair the gallbladder and bile duct
of mice (Sampaziotis et al., 2017; Tysoe et al., 2019). Another
investigation conducted by Sampaziotis’ team suggest that
organoids have the potential to be utilized for the restoration of
human bile ducts (Sampaziotis et al., 2021). Similar findings were
described in the study by Roos et al. (2021). These studies provide
novel ideas and theoretical bases for the development of treatments
for biliary defect diseases.
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2.1.5 Primary sclerosing cholangitis
Primary sclerosing cholangitis (PSC) is a cholestatic liver disease

of unknown etiology that may be associated with autoimmunity,
characterized by biliary inflammation and fibrosis (Reich et al.,
2021). Eventually, cholestatic jaundice, cirrhosis, and liver failure
develop as the disease progresses. Meanwhile, PSC is also one of the
high-risk factors for developing bile duct cancer (Cordes et al., 2019;
Dhillon et al., 2019). Soroka et al. collected bile samples from PSC
patients using endoscopic retrograde cholangiography and then
cultured organoids (Soroka et al., 2019). RNA sequencing showed
that PSC-derived organoids changed the expression of 39 genes
compared to control organoids. The expression of immune genes
(such as HLA-DMA and CCL20) was increased in PSC-derived
organoids, and these genes have previously been confirmed to be
involved in PSC (Jiang and Karlsen, 2017).

2.1.6 Hepatobiliary cancer
Currently, primary liver cancer, carcinoma of the bile duct and

gallbladder are common primary tumors of the hepatobiliary
system. Liver tumors are the sixth most prevalent and second
most fatal cancer, with increasing incidence in the world (Bray
et al., 2018). The current treatment for primary liver cancer is
dominated by radical resection, supplemented by arterial
chemoembolization, ablation, and sorafenib chemotherapy
(Petrowsky et al., 2020; Benson et al., 2021). However, the
treatment effect and overall prognosis of liver cancer are poor
due to high malignancy and a high recurrence rate after radical
resection (Vogel et al., 2018). Cholangiocarcinoma is the second
most common malignant tumor of the hepatobiliary system,
originating from the bile duct epithelium (Sarcognato et al.,
2021). When patients are diagnosed with cholangiocarcinoma,
most have unresectable tumors and fail to undergo surgery
because of the specific anatomical position, insidious clinical
symptoms and early neurovascular invasion and lymph node
metastasis (Banales et al., 2020; Zhu, 2015). Although some
patients are lucky to be treated with surgery, the tumor is prone
to recurrence after the operation and the 5-year survival rate is less
than 20% (Kamsa-Ard et al., 2019; Strijker et al., 2019; Cambridge
et al., 2021; Cai et al., 2016). Cisplatin plus gemcitabine is the first-
line chemotherapy regimen for patients in an advanced stage (Valle
et al., 2010; Eckel and Schmid, 2014). Despite the significant effect,
the prognosis is still unable to be improved (Koch et al., 2020).
Gallbladder cancer, deriving from the gallbladder or the cystic duct,
has high malignancy and is prone to metastasis in the early stage.
Furthermore, it is usually insensitive to radiotherapy and
chemotherapy (Kakaei et al., 2015). Like liver cancer and
cholangiocarcinoma, most patients are in the advanced stage
when the tumor is found (Schmidt et al., 2019). Therefore, it is
considered one of the malignant tumors with poor prognoses in
hepatobiliary surgery. Finding personalized and accurate therapy to
enhance the outlook of individuals with liver and bile duct tumors
continues to be a challenging issue in the medical field. As novel
cancer models, the advent of organoids sheds light on this puzzle. At
present, oncology research models mainly include human tumor cell
lines, mouse models and human tumor xenograft mouse models.
However, these models have some unavoidable shortcomings. For
example, tumor cell lines lose the genetic heterogeneity of the
original tissue during long-term subculture, which fails to

reproduce the occurrence, development and metastasis of tumors.
In the human tumor xenograft mouse model, it is unavoidable to use
murine tumor stroma instead of human tumor stroma with low
efficiency, long duration of tumor formation and high cost, limiting
this model from being an excellent preclinical model (Bresnahan
et al., 2020).

Tumoroids, organoids derived from cancer tissue, have distinct
advantages in oncology research. Tumor-derived organoids, like
non-tumor epithelial organoids, self-organize via cell-cell and cell-
matrix interactions. It has been corroborated that there was a high
degree of homology for gene expression profiles between primary
carcinoma and liver tumoroids, especially in the expression of
hepatocellular carcinoma markers (AFP, GPC3), hepatocyte
markers (ALB, TTR, APOA1, APOE), bile duct epithelial
markers (EpCAM, KRT19, S100A11) (Broutier et al., 2017).
Several studies have demonstrated that biliary tract tumoroids
robustly express bile duct epithelial markers (CK19, CK7,
EpCAM, S100A6) (Wang et al., 2021; Saito et al., 2019; Maier
et al., 2021).

Broutier’s team described a novel, near-physiological organoid
culture system and extend the 3D culture system to the propagation
of primary liver cancer organoids including HCC,
cholangiocarcinoma (CC), and combined HCC/CC (Broutier
et al., 2017; Broutier et al., 2016). In Nuciforo et al.’ study,
poorly differentiated hepatic tumors organoids model can also be
established derived from needle biopsies (Nuciforo et al., 2018). In
2019, organoids for biliary tract cancer (BTC) were developed from
excised tumor tissues (Saito et al., 2019). Similarly, organoids for
childhood liver cancers, such as hepatoblastoma (HB), have been
developed using a 3D system (Saltsman et al., 2020). The use of
surgical specimens from human or murine hepatomas has
increasingly become the predominant method for creating liver
cancer organoids. While the successful establishment rate of
about 30% (Nuciforo et al., 2018), significantly lower than the
reported success rates for establishing organoids of pancreatic
and colorectal cancer. Thus far, multiple tumoroids have been
developed to recapitulate HCC, CC, hepatoblastoma, BTC and
combined HCC/CC, which have substantially contributed to liver
and bile ducts cancer research for oncologists (Ren et al., 2023).
Tumor-derived organoids replicate the histological structure,
genomic landscape, gene expression, and tumorigenic potential of
the original tumor, offering a novel in vitro model for cancer
research. Tumoroids preserve the tumor’s original diversity and
histopathological features both in vitro and after
xenografting in vivo.

The integration of CRISPR/Cas9 and organoid technologies has
greatly enhanced the development of tumor models, improving both
tumor representation and the accuracy of gene effect predictions.
Clevers et al. created human Primary liver cancer (PLC) tumoroids
from healthy iPSCs by employing CRISPR-Cas9 to modify the
BAP1 gene and furthermore, developed innovative PLC
tumoroids by employing CRISPR-Cas9 technology to mutate four
genes: NF1, SMAD4, PTEN, and TP53 (Artegiani et al., 2019).
CRISPR-Cas9 technology is applicable in liver organoid
development due to its genome-modulating capabilities
(Artegiani et al., 2019). Artegiani et al. utilized CRISPR-Cas9-
mediated homology-independent organoid transgenesis (CRISPR-
HOT) technology to tag specific genes and sequences in human
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TABLE 1 The examples of hepatobiliary organoids application as disease modeling are listed in the table.

Diseases Species Cell
source

Expansion medium Main findings References

Hereditary
disease

Alpha-1 antitrypsin
deficiency (AATD)

Human Bile duct cells AdDMEM/F12, N2, B27,
N-Acetylcysteine, gastrin, EGF,
Rspo1, FGF10, HGF,
Nicotinamide, A83.01, FSK.

Organoids from A1AT-
deficiency patients can be
expanded in vitro and mimic the
in vivo pathology

Huch et al. (2015)

Human Bile duct cells AdDMEM/F12, penicillin/
streptomycin, Glutamax, Hepes,
N-acetylcysteine, Rspo1,
nicotinamide, gastrin Ⅰ, EGF,
FGF, HGF, Rho kinase

Liver organoid model
recapitulates the key features of
Z-AAT deficiency including
intracellular aggregation and
lower secretion of AAT protein,
and lower expression of ALB and
APOB.

Gómez-Mariano et al.
(2020)

Alagille syndrome
(ALGS)

Human Bile duct cells AdDMEM/F12, N2, B27,
N-Acetylcysteine, gastrin, EGF,
Rspo1, FGF10, HGF,
Nicotinamide, A83.01, FSK.

Organoids from an ALGS
patient reproduce the structural
duct defects present in the biliary
tree of these patients

Huch et al. (2015)

Mice Bile duct cells AdDMEM/F12, N2, B27,
N-Acetylcysteine, gastrin, EGF,
Rspo1, FGF11, HGF,
Nicotinamide

Establishment of bile
duct–derived organoids from
Jag1Ndr/Ndr mice

Andersson et al.
(2018)

Human iPSCs RPMI, B27, LDN-193189,
CHIR99021, A83-01, EGF,
FGF10, HGF.

iPSC-hepatic organoids
recapitulate the impaired bile
duct formation that is
characteristic of ALGS liver
pathology, with reduced ability
to form bile ducts and impaired
regenerative ability

Guan et al. (2017)

Cystic fibrosis (CF) Human iPSCs William’s E medium,
nicotinamide, sodium
bicarbonate, 2-Phospho-
L-ascorbic acid trisodium salt,
sodium pyruvate, glucose,
Hepes, ITS + premix,
dexamethasone, Glutamax,
penicillin, streptomycin, EGF.

iPSCs-cholangiocyte-like cells of
CF patients model in vitro key
features of CF-associated
cholangiopathy; VX809 rescues
the disease phenotype of CF
cholangiopathy in vitro

Sampaziotis et al.
(2015)

Human Bile duct cells AdDMEM/F12, N2, B27,
N-Acetylcystein, gastrin, EGF,
FGF10, HGF, nicotinamide,
A83.01, forskolin, Y27632,
R-spondin, Noggin, Wnt, hES
cell cloning recovery solution

ECO have cholangiocyte fate
differentiation capacity but no
potential for hepatocyte-like fate
differentiation. ECO derived
from a cystic fibrosis patient
showed no CFTR channel
activity

Verstegen et al. (2020)

Wilson’s disease Dog Bile duct cells AdvDMEM/F12, B27, N2,
N-acetylcysteine, gastrin, EGF,
R-spondin-1, nicotinamide,
HGF, Noggin, Wnt3a, Y-27632,
A83-01

Establishment of a long-term
canine hepatic organoid culture.
Successful gene
supplementation in hepatic
organoids of COMMD1-
deficient dogs restores function

Nantasanti et al.
(2015)

Liver stem cells The COMMD1-deficient
organoid, after restoration of
COMMD1 expression, were
safely delivered as repeated
autologous transplantations via
the portal vein

Kruitwagen et al.
(2020)

Wolman disease Human iPSCs AdvDMEM/F12, N2, retinoic
acid (RA)/Hepatocyte Culture
Medium (HCM), HGF,
Dexamethasone, Oncostatin M

Multi-cellular human liver
organoids of Wolman disease
recapitulated key features of
steatohepatitis, and organoid
stiffening reflects the fibrosis
severity. Severe steatohepatitis
was rescued by FXR agonism-
mediated reactive oxygen species
suppression

Ouchi et al. (2019)

(Continued on following page)
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TABLE 1 (Continued) The examples of hepatobiliary organoids application as disease modeling are listed in the table.

Diseases Species Cell
source

Expansion medium Main findings References

Viral hepatitis Human iPSCs,
HUVECs, BM-
MSCs

DMEM/12, GlutaMAX, HEPES,
insulin

HBV infection in iPSC-liver
organoids could recapitulate
virus life cycle and virus induced
hepatic dysfunction

Nie et al. (2018)

Human Hepatocytes Ad+++, B27, N2, N-acetyl-L-
cysteine, Rspo-1, Wnt3a,
nicotinamide, recombinant
human gastrin I, EGF, FGF10,
HGF, forskolin, A83-01, Noggin,
Y27632

Primary ex vivo HBV-infection
model derived from healthy
donor liver organoids after
challenge with recombinant
virus or HBV-infected patient
serum

De Crignis et al. (2021)

Fatty liver Human iPSCs William’s E medium,
Dexamethasone, SBSB431542,
DAPT, OSM.

End-stage hepatocytes derived
from non-alcoholic
steatohepatitis donors
demonstrated spontaneous
lipidosis without fatty acid
supplementation, recapitulating
a feature of NASH hepatocytes
in vivo

Gurevich et al. (2020)

Human Liver stem cells AdDMEM/F12, Pen/Strep,
glutamax, Hepes, B27, NAC,
Nicotinamide, R-spondin, N2,
FGF-10, HGF, EGF, Gastrin,
Forskolin, A83-01, Y27632

Expansion of primary liver stem
cells/bipotent ductal organoids
derived directly from
irreversibly damaged non-
alcoholic steatohepatitis patient
liver, showing significant
upregulation of liver fibrosis and
tumor markers, and reduced
passaging/growth capacity

McCarron et al. (2021)

Biliary atresia Mice Cholangiocytes Mouse HepatiCult organoid
growth medium supplemented
with penicillin–streptomycin

First description of
cholangiocyte injury in the
organoids derived from
intrahepatic bile ducts.
Fibrogenic response of injured
organoids was associated with
increased cholangiocyte
apoptosis and decreased
cholangiocyte proliferation

Chusilp et al. (2020)

Human Cholangiocytes AdDMEM/F12, penicillin/
streptomycin, Glutamax, Hepes,
B27, N2, N-acetylcysteine,
RSPO1, Nicotinamide, Gastrin,
EGF, FGF10, HGF, Forskolin,
A83-01

Establishment of biliary
organoids from liver biopsies of
infants with biliary atresia. EGF
+ FGF2 treatment induced
developmental markers,
improved cell-cell junction and
decreased epithelial permeability

Amarachintha et al.
(2022)

Bile duct regeneration Human Cholangiocytes William’s E medium,
nicotinamide, sodium
bicarbonate, 2-phospho-
L-ascorbic acid trisodium salt,
sodium pyruvate, glucose,
HEPES, ITS + premix,
dexamethasone, Glutamax,
penicillin and streptomycin,
EGF, R-spondin and DKK-1

Extrahepatic cholangiocyte
organoids can self-organize into
bile duct–like tubes after
transplantation and can
reconstruct the gallbladder wall
and repair the biliary epithelium
following transplantation into a
mouse model of injury

Sampaziotis et al.
(2017), Tysoe et al.
(2019)

Human Cholangiocytes AdvDMEM/F12, 1M HEPES,
L-Ultraglutamine, Primocin,
penicillin, streptomycine, N2,
B27, N-Acetylcystein, RSPO1,
Nicotinamide, Gastrin, EGF,
FGF10, HGF, A83-01, Forskolin

Bile-cholangiocyte organoids
originate from extrahepatic
biliary tissue and are capable of
repopulating human
extrahepatic bile duct scaffolds.
The cells obtain a transcriptomic
profile more closely resembling
primary cholangiocytes upon
repopulation of scaffolds in vitro

Roos et al. (2021)

(Continued on following page)
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organoids (Artegiani et al., 2020). This technology facilitates
organoid research by using fluorescent reporter genes to label
and visualize specific molecules. This technology can also induce
genetic changes to enhance the development of liver organoids from
human fetal cells (Hendriks et al., 2021). CRISPR-HOT technology
enables monitoring of cell fate, development, and division, as well as
inducing genetic modifications in liver organoids.

Thus, the organoid is a good model to investigate the
mechanisms of tumorigenesis, progression, metastasis and
recurrence of hepatobiliary cancer. It is also an important tool to
predict mutations and develop targets for targeted therapy.
Moreover, organoids have the potential to be tools for marker
discovery (Broutier et al., 2017). Tumoroids are widely utilized in
anti-tumor drug screening as well as precision medicine, and this
part is further discussed in the following section. The hepatobiliary
organoids application as disease modeling examples are listed
in Table 1.

2.2 Biobank

The establishment of organoid biobanks has been facilitated by
advancements in the long-term preservation, storage, culturing, and
expansion of organoids (Xie et al., 2023). Biobanks facilitate the
standardized preservation and collection of PLC tumor samples

along with their clinical data. As is mentioned in the previous
sections, Broutier et al. established a biobank of PLC tumoroids
from seven patients, maintaining the characteristics and expression
profiles of the original tumors, including mutations in ARID2,
ARID1A, TP53, KRAS, CTNNB1, and WNT1 (Broutier et al.,
2017). And Nuciforo and colleagues created an HCC tumoroid
biobank that replicated the histopathological and genetic
characteristics of original tumors from 38 patients with poorly-
differentiated tumors (Nuciforo et al., 2018). Xenograft models
demonstrate that PLC tumoroid transplantation in experimental
animals induces metastatic traits akin to the original tumors. These
data suggest that the tumoroids biobank is suitable for disease
modeling, drug testing and validation in PLC and hepatobiliary
tumors. Ji’ team established a biobank of 65 patient-derived liver
cancer organoids, encompassing 44 HCC organoids, 12 intrahepatic
cholangiocarcinoma (ICC) organoids, and 4 combined HCC/CC
organoids. These organoids comprehensively represent the
histological and molecular characteristics of diverse liver cancer
types, as determined by multiomics profiling, including genomic,
epigenomic, transcriptomic, and proteomic analyses (Ji et al., 2023).
Yang et al. established a PLC biobank was with 399 tumor organoids
from 144 patients, accurately reflecting the histopathology and
genomic characteristics of the original tumors. This biobank is
effective for drug sensitivity screening, as demonstrated by in
vivo models and patient responses (Yang et al., 2024).

TABLE 1 (Continued) The examples of hepatobiliary organoids application as disease modeling are listed in the table.

Diseases Species Cell
source

Expansion medium Main findings References

Primary sclerosing cholangitis Human Cholangiocytes complete ADF medium,
R-spondin, B27, nicotinamide,
N-acetyl cysteine, N2, EGF,
HGF, FGF10, gastrin, A83-01,
forskolin

Bile-derived organoids retain
features of cholangiopathies,
including the ability to react to
inflammatory stimuli by
secreting chemokines and
propagating immune-reactive
phenotype

Soroka et al. (2019)

Hepatobiliary
tumor

Hepatobiliary tumor Human Tumor cells AdvDMEM/F12, penicillin/
streptomycin, GlutaMAX-I,
HEPES, Primocin, B27, N-
acetyl-l-cysteine, EGF, FGF10,
FGF-basic, HGF, forskolin,
A8301, Y27632, Rspo-1, Wnt3a,
Noggin

This study delineates
heterogeneity of hepatobiliary
tumor organoids and proposes
that the collaboration of intra-
tumoral heterogenic
subpopulations renders
malignant phenotypes and drug
resistance

Zhao et al. (2021)

Primary liver cancer Human Tumor cells AdvDMEM/F12, Penicillin,
Streptomycin, Glutamax,
HEPES, B27, N2, N-Acetyl-L-
cysteine, Rspo-1, nicotinamide,
[Leu15]-Gastrin I, EGF, FGF10,
HGF, Forskolin and A83-01

The tumorogenic potential,
histological features and
metastatic properties of primary
liver cancer-derived derived
organoids are preserved in vivo.
Patient-derived organoids are
powerful research tool for the
drug screening

Broutier et al. (2017),
Nuciforo et al. (2018),
Saito et al. (2019),
Saltsman et al. (2020)

Extrahepatic
cholangiocarcinoma and
Gallbladder carcinoma

Human Tumor cells AdvDMEM/F12, Penicillin,
Streptomycin, Glutamax,
HEPES, B27, N2, gastrin, A83-
01, Y-27632, EGF, FGF10,
R-Spondin1, Noggin, Afamin/
Wnt3a CM.

Biliary tract cancer patient-
derived organoids show similar
histological and genetic
characteristics to the
corresponding primary tumor
tissues. Patient-derived
organoids are powerful research
tool for the drug screening

Wang et al. (2021),
Saito et al. (2019), Ren
et al. (2023)
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2.3 Drug research and precision medicine

Precision medicine aims to enhance disease characterization at
the molecular and genomic levels, thereby improving drug
screening. Drug screening refers to the screening of new drugs or
lead compounds with bioactivity from natural products or synthetic
compounds. Due to the advantages described above, lots of studies
have utilized organoids as ideal models for drug screening. Patient-
specific tumoroids can be established in a short time by culturing
tumor specimens obtained by biopsy or surgical resection from the
patient (Eckel and Schmid, 2014). The drug screening platform
based on patient-specific tumoroids tends to test the sensitivity of
the tumor to anticancer drugs in a very short time, providing data
support and guidance for individualized treatment.

Broutier et al. tested the sensitivity to 29 anticancer drugs in
tumoroids originating from HCC, CC and combined HCC/CC and
the results showed that except for CC-2 tumoroid was resistant to all
anticancer drugs, and other tumoroids had their respective sensitive
drugs (Broutier et al., 2017). Another study used diethylnitrosamine
(DEN) to induce liver cancer in mice and generated liver tumoroids
from these mice (Cao et al., 2019). Then, they performed drug
sensitivity testing and found that 3 samples were sensitive to both
sorafenib and regorafenib, 6 were sensitive to only sorafenib, and
4 were not sensitive to both sorafenib and regorafenib. Tissues from
different regions of surgical cholangiocarcinoma specimens were
obtained to generate 27 tumoroids, which were used to perform drug
screening with 129 antitumor drugs (Li et al., 2019). The study
showed that during the 129 antitumor drugs, most drugs were only
effective against a few tumoroids. But bortezomib, romidepsin,
prukamycin, idarubicin, panobinostat, carfilzomibhe and
ixazomib were effective against all tumoroids and had moderate
or higher killing activity against most tumoroids. Wang et al.
constructed 5 gallbladder patient-derived tumoroids (GBC 1–5)
and an extrahepatic cholangiocarcinoma (eCCA) patient-derived
tumoroid, and found that GBC1 was sensitive to 5-fluorouracil,
GBC2 was sensitive to gemcitabine and paclitaxel, GBC3 was
sensitive to gemcitabine, GBC4 was sensitive to infigratinib and
cisplatin, GBC4 was sensitive to paclitaxel and eCCAwas sensitive to
gemcitabine (Wang et al., 2021). Additionally, they found that
treatment with 10 or 50 μM paclitaxel greatly decreased the
growth rate of GBC5 tumoroid, indicating that organoids can be
used to identify optimal drug doses. Similarly, a recent study
cultured 3 bile duct tumoroids using patient-derived
cholangiocarcinoma tissues and transplanted the tumoroids into
immunodeficient NSG mice (Maier et al., 2021). Then, the mice
formatting tumor successfully were utilized for further in vivo drug
testing. The experimental results exhibited that tumors in mice
treated with gemcitabine stopped growing, while tumors in control
mice continued to grow and the response of mice treated with
gemcitabine resembled human cholangiocarcinoma patients. Yuan
et al. tested 20 targeted drugs approved by the FDA (Food and Drug
Administration) that have minimal toxicity to normal gallbladder
organoids. The findings indicate that histone deacetylase (HDAC)
inhibitors can effectively reduce the growth of gallbladder tumoroids
(Yuan et al., 2022).

Consequently, the conclusion can be drawn that different patients
have different sensitivities to different chemotherapies or anticancer
drugs. The establishment of patient-specific organoid models is able to

provide a possibility for drug screening and evaluation of drug efficacy.
Meanwhile, organoid xenografts originating from patients exhibited
treatment responses analogous to the corresponding patient
malignancies, which provide a direct and reliable basis to guide the
medication regimen. The organoid is a precision medicine-oriented and
efficient preclinical model and has value as an alternative to in
vivo models.

Other applications of hepatobiliary organoids for medicine
research also include drug resistance and toxicity assessment
(Zhao et al., 2021; Leung et al., 2020). In addition, hepatobiliary
organoids can also be used as a good in vitro prediction model of
drug hepatotoxicity. In recent years, some research teams have seen
the potential of liver organoids and applied them to the assessment
of drug metabolic parameters and toxicity, which have been
developed to study and predict drug-induced liver injury (Brooks
et al., 2021).

While patient-derived organoids (PDOs) are gaining traction in
therapeutic screening, various challenges need to be overcome to
unlock their full potential. Firstly, the successful establishment of
organoids relies on the availability of fresh and viable tissue samples.
However, acquiring adequate and high-quality tissue samples for
organoid culture is challenging, particularly for some specific tumor
types. A further challenge involves the scarcity of patient-derived
samples and the ethical issues related to their acquisition.
Alternative sources such as minimally invasive procedures or
liquid biopsies may be the direction of exploration.

Another major challenge is from the absence of standardized
methods for generating and culturing PDOs. Standard methods are
essential to ensure the reliability and reproducibility of PDOs as a
therapeutic screening model. Differing protocols used by
laboratories for their isolation, expansion, and differentiation
may lead to the variability in organoid quality and characteristics,
which can hinder the comparison of results across studies and the
reproducibility of findings in various laboratories.

Organoids should deliver swift outcomes to inform treatment choices
within a clinically relevant period. For postoperative adjuvant
chemotherapy, 1–3 weeks may be acceptable interval for a drug
sensitivity test. However, for neoadjuvant chemotherapy or those
advanced tumors, drug screening tests are needed as soon as possible.
Efforts are essential to streamline the workflow and minimize the
turnaround time for organoid generation and drug sensitivity testing.

Organoids may become contaminated with normal cells during
the culturing process. Implementing quality control measures for
organoids is crucial prior to drug sensitivity testing. For example,
Next-generation sequencing (NGS) is conducted before drug
sensitivity testing to verify the presence of key mutations in
organoids that influence drug response.

Finally, correlating organoid drug sensitivity testing results with
clinical outcomes is crucial to validate its effectiveness in guiding
treatment decisions and enhancing patient outcomes. Extensive
longitudinal studies involving larger patient cohorts are essential to
assess the clinical efficacy and performance of drug sensitivity testing.

2.4 Regenerative medicine

Currently, only liver transplantation can treat various end-stage
liver diseases, but the shortage of donors is always a difficulty.
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Moreover, as previously described, some patients suffer from bile
duct defects due to congenital or acquired causes and there is
currently no effective treatment. To overcome this dilemma, an
increasing number of researchers valued the value of organoids in
regenerative medicine. Yang’ team constructed 3D bio-printed
hepato-organoids by 3D printing technology and transplanted
them into immunodeficient mice with tyrosinemia type Ⅰ and
liver failure (Yang et al., 2021). After being transplanted, the
organoids have the ability to develop functional vascular system.
Furthermore, the previous section on disease modeling on “Biliary
atresia and bile duct defects” mentioned the utilization of human
bile duct organoids to restore the gallbladder, bile ducts, and
intrahepatic bile ducts in isolated human livers through various
studies (Sampaziotis et al., 2017; Tysoe et al., 2019; Sampaziotis
et al., 2021).

Autologous organoids may not be feasible for all regenerative
medicine applications due to various limitations. Organoid
derivation is a time-consuming process, making it unsuitable for
patients with acute liver failure who need immediate off-the-shelf
regenerative medicine solutions. Second, patient-derived autologous
primary organoids might still be influenced by the disease, leading to
diminished organ regeneration capacity. Furthermore, access to
primary tissue may be unattainable in certain cases, such as
cholangiocytes in vanishing bile duct syndrome.

3 Limitations and future perspectives

The past decade has witnessed dramatic progress in organoid
technology. Organoids possess distinct advantages as they replicate
almost physiological circumstances and maintain parental genetic
stability. Disease modeling and drug screening studies can utilize
these cells or tissues, which can also be used to treat disorders caused
by mutations by reversing the disease-causing mutation. Moreover,
organoids exhibit rapid growth and a high rate of success in culture,
potentially addressing the issue of low efficiency in forming tumors
in patient-derived tumor xenograft models. Nevertheless, the
current state of the technology is not fully developed, and
numerous obstacles remain that must be surmounted.

Lack of microenvironment sometimes, especially in ASC-
derived organoids is the first limitation. Organoid technology
serves as an intermediary between cell lines and in vivo models,
yet it often lacks critical components such as stromal, immune, and
vascular endothelial cells needed for thorough modeling. For
instance, liver organoids frequently miss hepatocyte zonation and
key elements involved in the pathogenesis of metabolic fatty liver
disease, including vasculature, immune cells, and neural
innervation. This impedes their capability to precisely predict
clinical outcomes and prognoses.

As is written in the drug screening section, globally standardized
protocols for organoid establishment and quality control are
urgently needed. The organoid industry faces challenges due to
insufficient standardization, a problem intensified by the swift
advancements in engineered organoids. Reproducibility is
influenced by batch variations such as patient tissue
heterogeneity and the timing and method of iPSC induction, as
well as culture conditions like cytokine concentration, matrix gel
concentration and composition, and the composition and structure

of cells and organoids. Addressing these challenges necessitates
collaboration among biomedical scientists, clinicians, and
regulatory bodies to standardize organoid technology, thereby
easing its transition from research to clinical applications and
enabling large-scale organoid production for drug screening.

Relatively higher expenditure compared to traditional models is
equally noteworthy. Organoid establishment, maintenance, and
passages are costly. The high price of growth factors and
medium additives restrict the popularization of organoid culture
technology. Only a few laboratories are able to perform organoid
culture. To some extent, economic pressures have limited the
widespread adoption of organoid technology. Another
disadvantage of organoid culture is that it is time consuming,
which has also been discussed in the chapter of drug screening.

Furthermore, tissue samples prepared for organoid generation
are only small parts of the whole tumor. The higher heterogeneity of
tumors questions the reliability of substituting small pieces for whole
tumor tissues. Tissue extraction from different sites of the same
tumors might better reflect tumor heterogeneity and reliably
facilitate cancer translational research.

Organoid technology currently struggles to replicate the
complexity of patient-specific immune environments. While
coculturing tumoroids with immune cells enhances the modeling
of tumor-immune interactions and treatment effects, certain
challenges may impede precise modeling and prediction of
immunotherapy responses. Different tumor types exhibit unique
immune components and varying cell quantities, influencing the
immune cell composition in early tumoroid culture and the
potential for maintaining and expanding these immune cells.
Tumors vary in immune cell composition, with some containing
diverse and complex immune cells, while others have immune cells
only in the surrounding stroma or lack them entirely. In addition,
although preserved immune cells can be maintained initially, they
may be lost and diluted over time. Inaccurate modeling of the tumor
immune environment limits the utility of organoids in translational
and precision medicine.

Vascularization of organoids is still a major challenge. Although
implantation of organoids into animals or coculture systems
promotes organoid vascularization, these methods only endow
organoids with vascular characteristics but not functional
perfusion vessels (Shirure et al., 2021). The current microfluidic
platform used to establish vascularized organoids is crude and semi-
adjustable, and it is affected by multiple factors, including the
concentration and composition of cytokines and flow rate. More
accurate and flexibly controllable and detectable microfluidic
platforms are urgently needed for better vascularization of
organoids and accurate prediction of responses to
antiangiogenic therapies.

The past decade has witnessed dramatic progress in organoid
technology. Organoids faithfully maintain the histological and gene
expression characteristics of native tissue, making it the important
preclinical models for studying diseases and developing therapies.
The use of hepatobiliary organoids technology presents a unique
opportunity to investigate the pathophysiological process and
disorders of the human hepatobiliary system. These innovative
preclinical models hold great potential for future applications.
Nevertheless, the organoid method is currently in its early phase
and possesses certain limitations. Vascularization of organoids
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remains a hotspot in tissue engineering. In the future, how to
combine new technologies (CRISPR-HOT, Organ-on-a-chip and
so on) with organoid and accelerate translational applications
is important.
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