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Introduction: The Tibetan medicinal botanical drug Taoerqi has long been
recognized for its anti-inflammatory, antibacterial, and tumor-inhibitory
properties.

Methods: Botanical drug focuses on the isolation and characterization of
secondary metabolites from Pseudomonas frederiksbergensis, an endophytic
bacterium isolated from Taoerqi roots. The metabolites were obtained through
fermentation and purification processes and were evaluated for their anti-breast
cancer activities using cellular assays and transcriptomic analysis. Key regulatory
targets, including SARM1, RGS5, PROM2, and BAG1, were identified through
bioinformatics analysis and validated using qPCR and Western blotting.
Furthermore, a clinical risk assessment model was constructed using breast
cancer transcriptome databases to explore the potential prognostic value of
these targets.

Results: The secondary metabolites from Pseudomonas frederiksbergensis
exhibit significant anti-tumor effects and highlight their potential molecular
mechanisms in breast cancer regulation.

Discussion: This study provides insights into the therapeutic potential of these
metabolites and lays the groundwork for future preclinical and in vivo
investigations.
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1 Introduction

Podophyllum hexandrum (Royle) Ying [Berberidaceae],
Pharmacopoeia of the People’s Republic of China (2020 Edition),
commonly referred to as Taoerqi in Tibetan medicine, is a
traditional botanical drug widely recognized for its anti-
inflammatory, antibacterial, and anticancer properties (Yaohui
et al., 2014a; Yaohui et al., 2013). Historically, its roots, rhizomes,
and fruits have been used to treat gynecological disorders, regulate
menstrual flow, and promote blood circulation. Among these,
podophyllotoxin is the primary secondary metabolite, serving as
a precursor for clinically used anticancer drugs like etoposide and
teniposide (Yaohui et al., 2014b). However, the high toxicity of the
roots and rhizomes restricts their direct clinical application, leading
to increased interest in alternative sources of bioactive metabolites.

In recent years, endophytic microorganisms isolated from P.
hexandrum have garnered attention due to their ability to produce
pharmacologically active secondary metabolites. Among them, P.
frederiksbergensis, an endophytic bacteriu, we first isolated from the
roots of P. hexandrum, has shown promising biological activities,
including environmental bioremediation and potential anticancer
effects (Ting, 2016) Originally identified from coal gasification sites,
Pseudomonas frederiksbergensis demonstrates an exceptional capacity to
degrade toxic polycyclic aromatic hydrocarbons (PAHs), such as
phenanthrene and anthracene (Aislabie et al., 2006). In addition to
its ability to degrade these hydrocarbons, P. frederiksbergensis has been
shown to break down various aromatic compounds, including
phthalates and hydroxybenzoic acid, highlighting its promise in
environmental remediation (Biocyc Pathway Database, 2023).
Beyond its environmental bioremediation capabilities, recent studies
have also focused on the bioactive metabolites of P. frederiksbergensis,
which exhibit notable cytotoxicity against various cancer cell lines.
These metabolites have been shown to possess anticancer properties by
affecting gene expression, modulating cell cycle progression, and
inducing apoptosis (Liu et al., 2023; Kumar et al., 2019; Bashizi
et al., 2023). Such findings suggest that P. frederiksbergensis may
offer promising therapeutic strategies in cancer treatment, with
significant potential for novel drug development.

Despite growing interest in the biotechnological and
pharmaceutical potential of P. frederiksbergensis, its specific
anticancer mechanisms, especially in breast cancer, remain largely
unexplored. The goal of this study was to resolve the potential
mechanisms of P. frederiksbergensis metabolites against breast
cancer, and to validate the effects of the metabolites on the tumor
microenvironment through cellular experiments, transcriptome
analysis, and bioinformatics modeling. To address this knowledge
gap, our study integrates cellular assays, transcriptomic analysis, and
clinical database mining to evaluate the effects of secondary metabolites
from P. frederiksbergensis on breast cancer cells. This investigation,
utilizing a bioinformatics-clinical prognostic model, focuses on key
regulatory genes, including SARM1, RGS5, PROM2, and BAG1, which
are closely associated with tumor progression, immune regulation, and
cellular apoptosis pathways. (Piezzo et al., 2020; Andersen et al., 2000).

Furthermore, bioinformatics analysis was employed to construct
a breast cancer risk prognosis model, evaluating the potential clinical
relevance of these genes as therapeutic targets. By combining
transcriptome data and molecular validation, this study aims to
provide novel insights into the anticancer mechanisms of P.

frederiksbergensis metabolites and establish a foundation for
future preclinical investigations.

2 Materials and methods

2.1 Isolation and purification of endophytic
bacteria from plants

2.1.1 Plant material
Podophyllum hexandrum Royle [Berberidaceae] (Taoerqi) was

collected on 26 September 2020, from Gansu Dingxi (altitude
2614.7 m, longitude 104.545791, latitude 34.508744). Identified as
medicinal plant Taoerqi by Teacher Shengfu Hu(Jiangxi University
of Chinese Medicine), its well-grown roots were collected and stored
in a refrigerator at 4°C for further use.

The medicinal materials used in this study fully comply with the
Nagoya Protocol, CITES, and all associated treaties, including
phytosanitary regulations.

2.1.2 Preparation of culture media
In this experiment, the isolation of endophytic fungi was carried out

using Potato Dextrose Agar (PDA) solid culture medium. PDA solid
medium was packed and sterilized by high-pressure steam at 121°C for
20 min. Potato Dextrose Broth (PDB) was used for the liquid culture of
endophytic bacteria, with each bottle containing 250 mL.

2.1.3 Methods for isolating and purifying
endophytic bacteria

① Isolation of endophytic fungi: Freshly collected roots were
washed to remove surface attachments and dried with sterile filter
paper. Then, the roots were cut into small segments of 4 cm in length.
These segments were subjected to surface sterilization and disinfection
under aseptic conditions in a laminar flow hood as follows:

Sterilization procedure: rinsing with sterile water for 30 s →
soaking in 75% alcohol for 30 s → soaking in 2% sodium
hypochlorite solution for 2 min → soaking in 75% alcohol for
30 s → rinsing three times with sterile water.

The treated roots were then cut in half using a sterile blade and
inoculated onto PDA culture medium plates, placed in a constant
temperature incubator at 28°C for static culture for 2–7 days. During
this period, the growth of endophytic fungi was observed. Once the
myceliumgrew at the edge of the tissue, a portionwas picked under sterile
conditions for purification on culture plates. After multiple purifications,
the cultures were transferred and stored in test tubes for future use.

② Surface sterilization verification experiments: In the process
of isolating endophytic fungi, three types of blank control
experiments were set up to ensure that the obtained strains were
plant endophytic fungi.

Method one: Three open PDA culture plates were placed in the
laminar flow hood during the isolation process. After incubating at
28°C for 7 days, no contaminants should appear on these plates,
ensuring that the colonies grown on the isolation plates originated
from plant materials rather than environmental contaminants.

Method two: Rinse liquid test, sterile water from the final rinse
was spread onto PDA culture plates and incubated at 28°C for 7 days.

Method three: Tissue imprinting method, where the surface-
sterilized plant materials were placed on PDA culture plates. After
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20 min of contact between the sterilized plant material and PDA
culture medium, the sterilized plant material was removed, and the
plates were incubated at 28°C for 7 days.

If no colonies appeared on the above PDA culture plates after
incubation, it indicated that the surface sterilization of the plant was
thorough, and surface bacteria had been completely eliminated, while
the colonies growing on the plant incision were endophytic bacteria.

2.1.4 Purification and preservation of
endophytic bacteria

The purification of endophytic bacteria mainly used the quadrant
streak method, which is employed to isolate and purify bacterial
strains. It divides the plate into four quadrants, with the fourth
quadrant being the main distribution area of single colonies.
Under aseptic conditions, a small amount of bacterial cells was
directly taken out from the slant surface using an inoculation loop,
or a bacterial suspension was first prepared. Then, the bacterial cells
were inoculated at the edge of the plate and excess bacterial cells were
burned off. The plate was rotated at 60–70°, and gentle streaking was
performed from left to right on the plate surface. The inoculation loop
was sterilized by passing it through the flame outside the alcohol lamp
after each turn. The area where the previous streak ended was lightly
streaked without breaking the culture medium. After incubation,
single colonies were observed and picked at the streaking site.

Slant passage preservation method (short-term preservation):
By inhibiting the growth and reproduction of microorganisms using
low temperatures, the shelf life of the culture is extended. The
bacterial strains grown on slant culture medium were stored at
4–5°C in a refrigerator and transferred periodically, with a transfer
performed every 3–6 months.

2.2 Screening of endophytic bacteria
fermentation broth activity

2.2.1 Preparation of fermentation broth
Revival of preserved endophytic bacterial strains (cultured on

PDA solid medium at 28°C for 5 days), transferred to conical flasks
containing Potato Dextrose Broth (PDB) liquid culture medium.
Each conical flask contained 250 mL of medium, and the bacterial
strains were cultured in a constant temperature shaking incubator at
28°C for 5–7 days. Stored at 4°C in a refrigerator for later use.

2.2.2 Cytotoxicity experiment (MTT) sample
preparation

The fermentation broth was placed into a blender, crushed,
subjected to 10 min of ultrasonication, and then filtered using a
filtration bottle.

2.2.3 Metabolite sample processing
The filtratewas poured into a separating funnel and vigorously shaken

for 10minwith ethyl acetate. This extractionwas repeated three times, and
the ethyl acetate layers were combined. Themixture was concentrated in a
rotary evaporator (at 80°C under vacuum) to a small volume, transferred
to an evaporation dish, and dried, yielding a crude extract.

The dried extract was dissolved in PBS and stored at 4°C under
sterile conditions through a membrane filter (d = 0.22 μm, Minipore)
for use in assessing anti-cancer potential and further research.

The metabolite profiling in this study adhered to the ConPhyMP
framework, categorizing the extracts as Type C. High-resolution
chemical fingerprints were generated to ensure reproducibility and
compliance with phytochemical standards (ConPhyMP guidelines,
2023). Although Taoerqi has been listed in the Chinese
Pharmacopoeia, Taoerqi endophytic fermentation metabolites
belongs to Extract C in the ConPhyMP tool (https://ga-online.org/
best-practice/). The chemical fingerprints of the metabolites and high-
resolution mass spectrometry are in the Supplementary Materials.

2.2.4 Cell sample processing
Recovery and proliferation ofMDA-MB-231 cells (approximately 7

days for recovery-culture). Thaw the cryopreserved cell line rapidly by
placing the cryovial in a preheated 37°C water bath, continuously
shaking to ensure rapid melting of the liquid inside the vial.
Approximately 1–2 min after complete dissolution of the liquid
inside the cryovial, transfer the cell suspension into an EP tube
containing 5 mL of DMEM high-glucose culture medium with 10%
FBS. Centrifuge at 1000 rpm for 4 min, discard the supernatant, add an
appropriate amount of fresh culture medium (containing 10% FBS, 1%
penicillin-streptomycin in DMEM high-glucose culture medium,
14 mL), mix gently, and inoculate into a cell culture flask. Incubate
at 37°C in a 5% CO2 cell culture incubator and change the culture
medium approximately every 2 days.

The cells grow under constant conditions at 37°C. When the cell
confluency reaches around 80%, passaging can be performed
(usually takes about 3 days for proliferation to reach 80%).

2.2.5 Cell passaging
When the cells in the culture flask reach approximately 80%

confluency, discard the supernatant, wash gently three times with
PBS, add 500 μL. of 0.25% trypsin, and incubate at 37°C for
approximately 2–3 min until the cells become round and detach. Add
an appropriate amount of complete culture medium to terminate cell
digestion, gently pipette the cells, transfer the cell suspension into an EP
tube containing 10% FBS in DMEM high-glucose culture medium,
centrifuge at 1000 rpm for 5 min, discard the supernatant, add 5 mL
of pre-prepared complete culture medium, mix gently, aspirate 50 μL.
using a pipette for cell counting (using a hemocytometer):

① Wipe the cell counting chamber clean with a cotton ball
dipped in 75% alcohol, let it air dry, and then cover it with a
coverslip on one side.

② Pipette 50 μL of cell suspension from the gun head onto the
edge of the coverslip of the cell counting chamber to fill the
gap between the cell counting chamber and the coverslip.

③ Count the number of cells in the four large squares of the cell
counting chamber under an inverted microscope (when
encountering cells on grid lines, count only the cells to the
right and below each grid line).

④ Calculate the cell density using the following formula: Cell
density = (total number of cells in four large squares/4) × 104

cells/mL

2.2.6 MTT Experiment
Based on the cell concentration obtained in the previous step, adjust

the cell concentration to 3 × 105 cells/mL and seed them into a 96-well
plate, adding 200 μL. per well, with 6 parallel wells per group. After the
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cells were cultured for 24 H, add 24 μL. of filtered metabolites solution
(through a 0.22 μm filter) to each well. Set up a blank control group (only
culturemedium, no cells) and a control group (cells withoutmetabolites).
The last two rows were used as the color removal group (with culture
medium and corresponding metabolites concentration). Incubate all
groups at 37°C in a 5% CO2 cell incubator for 24, 48, and 72 H. Add
MTT (5 mg/mL) at a volume of 20 μL per well (except for the slides and
blank columns), incubate normally for 4 H, centrifuge, discard the
supernatant, add 150 μL of DMSO per well (except for the slides and
blank columns), shake for 10min, andmeasure the absorbance at 490 nm
wavelength on an enzyme immunoassay instrument - OD (A value).
Calculate the inhibition rate using the formula: Inhibition rate (%) =
(Control group A value - Experimental group A value)/Control group A
value × 100%. Repeat the experiment 5 times.

2.3 Identification of dominant
bacterial strains

2.3.1 PCR amplification
Sequence amplification was performed using universal primers:

Bacteria: 27F/1492R primers
27F: 5′-AGAGTTTGATCCTGGCTCAG-3′
1492R: 5′-GGTTACCTTGTTACGACTT-3′

Fungi: ITS1/ITS4 primers
ITS1: 5′-AGAGTTTGATCCTGGCTCAG-3′
ITS4: 5′-GGTTACCTTGTTACGACTT-3′

2.3.1.1 PCR reaction system

2.3.1.2 PCR reaction conditions

2.3.2 Electrophoresis detection of
amplified products

Electrophoresis was performed to preliminarily assess the
amplification of PCR products for each sample.

2.3.3 Sequencing of amplified products
Sequencing of the amplified products was carried out

using the first-generation sequencing platform 3730. Each
sample yielded.abl peak files and.seq sequence files.
Generally, poor-quality sequences at both ends of the
sequencing were removed by quality trimming. The quality-
controlled paired-end sequencing results were assembled
to obtain 16S rRNA or ITS sequences, saved in fasta
format. Strain identification raw data are in
Supplementary Material.

2.4 Influence of secondary metabolites on
cancer cells

2.4.1 Preparation of mRNA sequencing samples,
WB samples, and PCR samples

Cells with a concentration of 3 × 105 cells/mL were seeded
into multiple 6-well plates with 2.5 mL per well. After 24 H of
constant temperature incubation at 37°C under 5% CO2

conditions, 250 μL. of the corresponding metabolites solution
was added to each well. After 8 H of incubation under 37°C
constant temperature conditions with 5% CO2, samples were
taken as follows:

Observe cell density and status (when cells grow to 80%–90%
confluency), confirm cell status and integrity, and perform
cell counting.

Remove the culture medium from the culture dish/
bottle, wash gently three times with pre-cooled 1 × PBS, and
centrifuge.

Discard the supernatant and resuspend the cell pellets with 1 mL
TRIzol per 5 × 106 cells, transfer into RNA-free cryogenic tubes,
freeze rapidly in liquid nitrogen for 0.5 H, and then send the mRNA
sequencing samples embedded in dry ice to Majorbio (Shanghai) for
sequencing. WB and PCR test samples are stored at −80°C for less
than 3 months.

2.4.2 Sequencing experiment process
Eukaryotic mRNA sequencing is based on the Illumina

Novaseq 6000 sequencing platform. It sequences all mRNA
transcribed from specific tissues or cells of eukaryotes at a
certain period. The sequencing experiment uses the Illumina
TruseqTM RNA sample prep Kit method for library
construction. The operation process diagram and instrument
reagents are as follows:

ExtractTotaI RNA, Oligo dT Enriched RNA, Fragmented
mRNA, Reverses synthetic cDNA, Connect adaptor, Illumina
sequencing.

Extract total RNA from tissue samples and evaluate RNA
concentration, purity, and integrity using Nanodrop 2000,
agarose gel electrophoresis, and Agilent2100 for RIN value
determination. Single library construction requires RNA total
amount ≥1 ug, concentration ≥35 ng/μL, OD260/280 ≥ 1.8, and
OD260/230 ≥ 1.0.

Enrich mRNA using Oligo dT that binds to the polyA tail at the
3′end of eukaryotic mRNA.

Fragment mRNA using fragmentation buffer to obtain
fragments of around 300 bp.

10 × Ex Taq buffer 2.0 μL

5U Ex Taq 0.2 μL

2.5 mM dNTP Mix 1.6 μL

27 F/ITS1 1 μL

1492 R/ITS4 1 μL

DNA 0.5 μL

ddH2O 13.7 μL

Total volume 20 μL

95°C 5 min

95°C 30 s

56°C 30 s 25 circles

72°C 90 s

72°C 10 min
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Reverse transcribe cDNA using reverse transcriptase with
random hexamers, forming stable double-stranded cDNA.

The process continues with steps such as adaptor ligation, library
enrichment, PCR amplification, cluster generation, and sequencing on
the Illumina platform (PE library, read length 2 × 150 bp).

2.4.3 Bioinformatics analysis process
The bioanalytical process is shown in Figure 1.

2.5 Targeted network construction

We predicted clinical prognosis outcomes by targeting specific
miRNAs for genes (SARM1, RGS5, PROM2, BAG1). This involved
screening for co-expressed mRNA and miRNA, leading to the
identification of target miRNAs. The prediction of corresponding
targeted lncRNAs was made, and a mRNA-lncRNA interaction
network was drawn using Cytoscape.

FIGURE 1
Bioinformatic analysis process.
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2.6 Western blot (WB)

2.6.1 Grouping
ZC group (blank control group): three parallel groups, each

group was MDA-MB-231 cells without metabolites addition.
JL group (low dose group): three parallel groups, each group was

MDA-MB-231 cells plus low dose Pseudomonas frederiksbergensis
metabolite.

JM group (middle-dose group): three parallel groups, each with
MDA-MB-231 cells plus middle-dose P. frederiksbergensis
metabolite.

JH group (high dose group): three parallel groups, each with
MDA-MB-231 cells plus high dose P. frederiksbergensis metabolite.

2.6.2 Sample preparation
Add 150–250 μL of lysis buffer per 20 mg sample for complete

lysis. Centrifuge the lysed sample at 4°C, 12000 g for 15 min, collect
the supernatant, and store it in a −80°C freezer after protein
quantification.

2.6.3 Protein quantification
After constructing a standard curve, apply the sample,

perform electrophoresis, transfer to a membrane, detect
membrane proteins, block, incubate with antibodies, perform
colorimetric detection, and analyze protein bands’ grayscale
values using ImageJ software.

2.7 Fluorescent quantitative PCR (qPCR)

2.7.1 Total RNA extraction using the Trizol method
Remove cells from culture media, rinse twice with cold PBS, add

1mL Trizol directly to a 3.5 cm culture dish for cell lysis. Add 0.2 mL
chloroform (1/5 of the total volume of lysis buffer), close the cap,
shake by hand for 15 s, and allow it to stand for 3 min. Centrifuge at
4°C, 12000 rpm for 15 min. The centrifuged sample separates into
three layers, with RNA in the upper aqueous phase. Transfer 400 μL
of the aqueous layer to a clean RNA-free centrifuge tube, add 0.8-
fold isopropanol for RNA precipitation, mix thoroughly, incubate
at −20°C for 15 min, and centrifuge at 4°C, 12000 rpm for 10 min.
The white precipitate at the tube bottom is RNA. Wash the RNA
precipitate with 1.5 mL 75% ethanol. Carefully remove the ethanol
and air-dry the RNA. Dissolve the RNA precipitate in a dissolution
solution and measure the RNA concentration.

2.7.2 Nano drop RNA concentration measurement
The ratio of absorbance values at 260/280 nm and 260 nm and

280 nm assesses RNA purity, ideally around 2.0. The ratio of
absorbance values at 260/230 nm indicates RNA purity
secondary to 260/280 nm, generally between 1.8–2.2. The RNA
values in this experiment were around 2.0 for both indicators.

2.7.3 cDNA template synthesis and q-PCR
experiment

Using a 20 μL system according to the reverse transcription kit’s
instructions, select high-quality RNA to synthesize cDNA following
the kit’s instructions. Perform q-PCR using the aforementioned
cDNA as a template.

2.7.4 Data processing
Analyze Real-time qPCR values using the 2-△△CTmethod. Use

GraphPad PRISM 9.0 software for plotting. Statistical significance is
confirmed when P < 0.05 (Tables 1, 2).

△△CT Method:
A = CT (Target Gene, Test Sample) - CT (Reference Gene,

Test Sample).
B = CT (Target Gene, Control Sample) - CT (Reference Gene,

Control Sample).

2.8 Determination of metabolites
hemocompatibility

Preparation of metabolites solutions.
The extracted, concentrated, and filtered metabolites was diluted

with normal saline to prepare 1%, 2%, and 5% solutions for use.

2.8.1 Hemocompatibility assessment
Procedure: Whole blood was collected from New Zealand

white rabbits and diluted with physiological saline. The diluted
blood was stirred and centrifuged to prepare a 2% red blood cell
(RBC) suspension. The RBC suspension was then mixed with the

TABLE 1 Primer.

Gene Primer Primer Sequence (5′-3′)

β-actin β-actin F TGGCACCCAGCACAATGAA

β-actin R CTAAGTCATAGTCCGCCTAGAAGCA

SARM1 SARM1 F AGGCTGTGCTTACTTTCAACGGT

SARM1 R GTGTCAGAGCCTGCAGATGAGTC

RGS5 RGS5 F TCTCCTCCAGAAGCCAGACTCAG

RGS5 R TGCTTTGCCTTCTCAGCCATCTT

PROM2 RGS5 F TTTGAGTTTGCAGACACCCCAGG

RGS5 R TCCTTGCACTGCTGATAGGCTTG

BAG1 RGS5 F CGACCTTCATGTTACCTCCCAGC

RGS5 R CCCGGCAACCATCTTGTATTCCA

Primers were synthesized by Shanghai Sangong Biological Engineering Co.

TABLE 2 Transcription conditions.

Clusters Volumetric
(μL.)

Amplification
procedures

cDNA 1 95°C–2 min

Forward Primer (10 μM) 0.4 95°C–5 s 40 cycles

Reverse Primer (10 μM) 0.4 60°C–34 s

2 × PerfectStart Green
qPCR SuperMix

10 95°C–15 s

Nuclease-free Water 8.2 60°C–1 min Detected every
0.2°C rise

Total 20 95°C–15 s
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metabolites solutions of different concentrations in a 1:1 volume
ratio and incubated at 37°C for 1 h. After incubation, the samples
were centrifuged for 10 min, and the absorbance of the
supernatant was measured at 540 nm using a microplate reader.

Controls:

Positive control (PC): 1% Triton X-100 solution.
Negative control (NC): physiological saline solution.

Hemolysis Rate Calculation:

Hemolysis rate %( ) � 100 × A − B( )/ C − B( )
Where:

• A: Absorbance of the test sample.
• B: Absorbance of the negative control.
• C: Absorbance of the positive control.

Groups: Positive control (PC), negative control (NC), and
metabolites L, M, H.

2.8.2 Coagulation function assessment
Procedure: Metabolites solutions at various concentrations were

added to plasma at a 5% volume ratio, while the control group
received plasma with 5% physiological saline instead. The mixtures
were incubated in a thermostatic incubator at 37°C for 30 min.
Coagulation parameters, including fibrinogen (Fg), activated partial
thromboplastin time (APTT), prothrombin time (PT), and
thrombin time (TT), were measured using an automated
coagulation analyzer.

Groups: Positive control (PC), negative control (NC), and
metabolites L, M, H. Each group consisted of 3 samples.

2.8.3 Plasma protein determination
Procedure: Metabolites solutions at different concentrations

were added to plasma at a 5% volume ratio. The control group
received plasma with 5% physiological saline instead. The mixtures
were incubated in a thermostatic incubator at 37°C for 30 min,
followed by centrifugation at 3500 rpm for 10 min. The supernatants
were collected for protein concentration measurement using
commercial assay kits for total protein, albumin (Alb),
immunoglobulin G (IgG), and fibrinogen.

Groups: Positive control (PC), negative control (NC), and
metabolites L, M, H. Each group consisted of 3 samples.

2.8.4 Dynamic coagulation time measurement
Procedure: Metabolites solutions at various concentrations were

added to fresh blood at a 5% volume ratio. The control group
received fresh blood with 5% physiological saline instead. After
standing for specific time intervals (10, 20, 30, 40, and 50 min), the
samples were placed in small beakers containing 15 mL of distilled
water for 5 min. The absorbance of the solution was measured at
545 nm. For each time point, 3 samples were tested, and the average
value was calculated.

Evaluation: Higher absorbance values indicate better
anticoagulant performance.

Groups: Positive control (PC), negative control (NC), and
metabolites L, M, H. Each group consisted of 3 samples, tested at
5 time points.

3 Results and discussion

3.1 MTT cell toxicity screening

ThroughMTT assay, dominant bacterial strains (number 16, 17)
with certain anti-cancer activity were screened. The fermentation
liquids of strains 16 and 17 were co-cultured with breast cancer cells
for 24 H, 48 H, and 72 H. The inhibition rates are presented in
Tables 3, 4. The inhibition rates of 2.5, 5, 10, and 20 μL of
fermentation liquids from dominant strains (16, 17) co-cultured
with breast cancer cells for 48 H are shown in Figure 1 below. At the
same time, in order to test the intervention effect of the dominant
strain 16 on different tumour cells, human breast cancer MDA-MB-
231 cells, human breast cancer mda-mb-468 cells, human non-small
cell lung cancer H1299 cells, human colon cancer SW480 cells,
human non-small cell lung cancer A549 cells were selected as the
intervention targets, and were diluted 50-fold from the original
initial concentration and cultured with the corresponding tumour
cells. The cells were diluted 50 times from the original initial
concentration and cultured with the corresponding tumour cells.
The cells were diluted 50 times from the original initial
concentration and then co-cultured with the corresponding
tumour cells for 24 h. The inhibition rates are shown in
Supplementary Table 2.

Re-fermentation of dominant bacterial strains, when co-
cultured with cancer cells for 24 H, 48 H, 72 H, still exhibited
satisfactory inhibition rates as presented in Table 3.

The dominant strains’ secondary metabolites (16 & 17)
exhibited potent anticancer cytotoxicity. Notably, this cytotoxic
effect intensified with increasing concentration and prolonged
exposure to the cancer cells (Figure 2).

As shown in Table 4, when the dominant strain 16 was selected
and diluted 50 times to intervene with different tumour cells, the
tumour cell inhibition remained significant.

TABLE 3 Cell inhibition rate of sample 16/17.

Group A490 Inhibition
rate

24 H 72 H 24 H 72 H

Medium + cells 0.4954 ± 0.0336 1.3849 ± 0.0281

Medium 0.0591 ± 0.0048 0.0900 ± 0.0038

Medium + 16 0.075 ± 0.0031 0.1208 ± 0.0023

Medium + 17 0.0859 ± 0.0058 0.1440 ± 0.0027

Medium +
16 + cells

0.3236 ± 0.0355** 0.6642 ± 0.0297** 43.11% 58.04%

Medium +
17 + cells

0.3274 ± 0.0919* 0.8562 ± 0.0352** 44.63% 44.99%

Compared with Medium + cells *p < 0.01, **p ≪ 0.001.
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3.2 Morphology and identification results of
bacterial strains

Sequencing was performed using the 3730 first-generation
sequencing platform on amplified products, yielding peak graph
files in.abl format and sequence files in.seq format for each sample.
Generally, the sequence quality at both ends of sequencing is lower,
so trimming was performed to remove low-quality sequences from
both ends. The double-ended sequencing results after quality control
were assembled to obtain 16S rRNA or ITS sequences, which were
saved in fasta format.

Species Confirmation by Database Alignment: Each sample’s
assembled sequence was aligned with databases, and species were
determined based on coverage, similarity, and alignment results.
The species with the highest alignment score was preliminarily
identified as P. frederiksbergensis.

Phylogenetic Analysis: Approximately 15–20 different microbial
species closely related to the samples were selected by database
alignment. Using MEGA, a phylogenetic tree depicting the
evolutionary relationships within a larger population was
constructed. This analysis helped determine the sample’s
evolutionary relationship and classification status within a
broader population.

Ultimately, both strains were confirmed as P. frederiksbergensis
(Andersen et al., 2000; Kumar et al., 2019; Ruiz et al., 2021)
(Figures 3, 4).

3.3 Differential gene data mining

Sequencing Data Statistics and Grouping: Transcriptome
sequencing was conducted for 6 samples in total, with 3 samples
in each of the two groups (JWTQ17 treatment group and KB blank
group), resulting in a total of 46.48 Gb Clean Data. Each sample’s
Clean Data reached 6.88 Gb or more, with Q30 base percentage
above 94.02%.

Reference Genome Alignment: Using Homo sapiens as the
reference gene source (GRCh38 version, reference genome
source: http://asia.ensembl.org/Homo_sapiens/Info/Index), the
Clean Reads of each sample were separately aligned to the
designated reference genome. Alignment rates ranged from 96.
51% to 97.02%.

Expression Level Analysis: A total of 25,301 expressed genes
were detected in this analysis, comprising 25,028 known genes and
273 new genes. Additionally, 114,041 expressed transcripts were
identified, consisting of 105,442 known transcripts and 8,599 new
transcripts.

Differential Expression Analysis: Through quantitative
analysis, we identified genes with varying expression levels
between groups. This differential expression is critical for
understanding the functional impact of these genes in
different sample groups. Based on quantitative expression
results, inter-group differential gene analysis was conducted
using DESeq2 software with a screening threshold of |

TABLE 4 Inhibition of different kinds of tumor cells by fermented extracts of Pseudomonas frederiksbergensis.

Cell types A490 Inhibition
rate (24H)

Medium +
cells

Medium Medium +
metabolites

Medium + metabolites +
cells

MDA-MB-231 1.0684 ± 0.0346 0.0577 ± 0.0025 0.1215 ± 0.0094 0.7678 ± 0.0065 36.07%

MDA-MB-468 1.0117 ± 0.0617 0.0525 ± 0.0011 0.0879 ± 0.0008 0.8006 ± 0.0787 25.70%

H1299 1.3556 ± 0.0534 0.0591 ± 0.0064 0.0956 ± 0.0191 0.7803 ± 0.0763 47.19%

SW480 1.1006 ± 0.0976 0.0546 ± 0.0012 0.1067 ± 0.0034 0.9305 ± 0.1254 21.24%

A549 1.1545 ± 0.0876 0.0517 ± 0.0037 0.1038 ± 0.0003 0.7783 ± 0.0236 39.11%

FIGURE 2
Concentration-dependent experiment of samples 16 and 17 for 48 H (as the dosage increases, the inhibition rate gradually increases) (the horizontal
axis represents the dosage, and the vertical axis represents the cell inhibition rate).
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log2FC|≥1 and padjust <0.05, resulting in: Total genes: 2,153,
Upregulated: 1,254, Downregulated: 899.

Inter-sample Correlation Analysis: We analyzed the correlation
among biological replicates to validate the consistency with the
experimental design. This step ensures the reliability of our
differential gene analysis, providing a foundational reference. A
higher correlation coefficient closer to 1 signifies higher similarity in
gene/transcript expression levels between samples, indicating better
inter-sample correlation.

PCA Analysis between Samples: Principal Component
Analysis (PCA) reduces data complexity and delves into the
relationships and variations among samples. By reorganizing
variables into new, unrelated comprehensive variables
(i.e., principal components), PCA ranks factors by importance,
typically discarding less impactful factors to simplify data. PCA
analysis effectively separates the metabolites-treated sample
(JWTQ17) from the untreated sample (KB), demonstrating
significant impact of the metabolites (JWTQ17) on cancer cell
growth (Figure 5).

3.4 Functional annotation analysis of
differential genes

This section involves functional analysis of genes within the
differential gene set, including GO, KEGG, Reactome, and DO
classification annotations (Figures 6, 7).

3.5 Functional enrichment analysis of
differential genes

This section involves conducting functional enrichment analysis
of genes within the differential gene set, determining the primary
functionalities or major involvement in metabolic pathways of this
gene set. This includes GO enrichment analysis, KEGG enrichment
analysis, Reactome enrichment analysis, DO enrichment analysis,
and DisGeNET enrichment analysis.

Based on the sequencing results, the Cell cycle pathway was
significantly enriched in multiple enrichment methods. It is
suggested that the study of P. frederiksbergensis metabolites
should focus on the target of Cell cycle action in the future
scientific research. (Piezzo et al., 2020; Butt et al., 2008; Yin
et al., 2023).

3.6 Construction of differential gene clinical
risk model

Data Source: Transcriptome Count data and clinical
information of breast cancer were downloaded from TCGA
database through Sangerbox 3.0 (http://vip.sangerbox.com). This
dataset included 113 normal or adjacent tissue samples and
1091 breast cancer patient samples, providing a total of
60489 gene targets. Intersection of TCGA data targets with

FIGURE 3
Phylogenetic tree of samples D (16), G (17).

FIGURE 4
Appearance as well as microstructure of endophytic colonies.
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differentially expressed genes (2153) resulted in
2133 common genes.

COX Regression Model Construction: The COX regression
model utilized survival outcomes and survival time as dependent
variables, analyzing multifactorial effects on survival duration. Using
the common gene set for Cox risk score model data, we conducted
Univariate Cox regression analysis, LASSO regression analysis
(Least Absolute Shrinkage and Selection Operator), and
multifactorial Multivariate Cox regression analysis to construct
the COX risk score model.

To observe the relationship between the common gene set
expression and prognosis, we randomly divided 1089 breast
cancer samples into two groups: training set (700 samples) and
validation set (389 samples). Regarding the expression levels of

common genes and clinical survival data, we performed single-factor
COX regression analysis on the training set, resulting in 114 genes
from uniCox analysis, 45 genes from LASSO analysis, and 27 genes
from multiCox analysis.

Following LASSO regression analysis using ten-fold cross-
validation and summarizing the dimensional reduction results,
counting the frequency of each probe’s appearance, the
combinations with the highest frequencies were observed.
Finally, these genes (Table 5) showed trajectories concerning
the coefficient changes with different lambdas in Figure 8, while
the standard deviation distribution of different lambdas is
depicted in Figure 7. Further analysis via KM curve
demonstrated that this gene set can significantly differentiate
between high and low-risk groups.

FIGURE 5
(A) displays a volcano plot illustrating the differential expression of genes based on selection criteria |log2FC|≥1 and P < 0.05. The horizontal axis
represents the expression values obtained from contrasting groups, while the vertical axis shows the changes in gene expression between the differential
comparison groups derived from differential expression analysis. The values on both axes have undergone logarithmic transformation. Each point in the
plot represents a specific gene, with red dots indicating significantly upregulated genes, green dots indicating significantly downregulated genes,
and gray dots representing non-significant differentially expressed genes. Upon mapping all genes, it becomes apparent that genes positioned higher in
the plot are upregulated, whereas those situated lower are downregulated, indicating a more significant expression difference. (B) presents a statistical
graph depicting the differential expression levels (total DEG: 2153 differentially expressed genes; (3) up: 1254 upregulated differentially expressed genes;
(4) down: 899 downregulated differentially expressed genes). (C) shows a heatmap illustrating the correlation between samples, where JWTQ17-1/2/
3 represents cancer cells treated with NO.17, and KB-1/2/3 denotes untreated cancer cells. The left and upper sides display the clustering of various
samples/groups, with different colored squares indicating the degree of correlation between two samples/groups. Larger values indicate higher
correlation between the two, signifying better biological replicability between the samples. (D) displays a principal component analysis (PCA) plot of
samples after dimensionality reduction. The distance between sample points represents their similarity, with closer distances indicating higher similarity
between samples. The horizontal axis represents the contribution of the first principal component (PC1) in distinguishing samples, while the vertical axis
represents the contribution of the second principal component (PC2) in distinguishing samples.
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By calculating the risk scores of each sample based on the
expression levels of the training set samples, we plotted the
distribution of RiskScore for samples as shown in Figure 8.
Calculated risk scores to evaluate the association between gene
expression and potential molecular mechanisms in breast cancer.
From the figure, it is evident that samples with higher risk scores
had noticeably shorter Overall Survival (OS) compared to those
with lower scores, indicating that samples with higher RiskScore
had a worse prognosis. Furthermore, using the R package
‘timeROC’ for RiskScore, we conducted ROC analysis for
prognosis classification, demonstrating high AUC values of
around 0.7 for one, three, and 5-year prognostic predictions
(Jia et al., 2023; Kang et al., 2023).

Breast cancer targets for which P. frederiksbergensis metabolites
have a clinically significant prognostic effect were screened by risk
scoring modeling, and once again, the potential therapeutic effect of
the metabolites on these breast cancer targets was verified by
validation set risk assessment modeling (Zhu et al., 2023) (Figure
9, Table 6).

Risk scores were calculated for each patient and patients were
categorized into high-risk and low-risk groups using the median
cutoff value.

Risk score = AP000317.2 × 0.071261 + LINC00973 × 0.011253 -
TOGARAM2 × 0.00818 + HIF1A-AS2 × 0.021367 + PRDM16 ×
0.000887 + EN2 × 0.001851 + FAM27B × 2.205989 + PROM2 ×

5.20E-05 - AC011462.2 × 0.17244 - ST7AS1 × 0.00356 +
SLCO2A1 × 0.000169 + AL355512.1 × 0.007062 + SPINT1 ×
5.22E-05 - HCG4B × 0.01031 - HTRA3 × 4.18E-05 - NFE2 ×
0.00424 - BAG1 × 0.00128 - AP002478.1 × 0.41836 - NRG1 ×
0.00128 + JMJD1CAS1 × 0.00839 + SFTA1P × 0.01152 - ITGAX ×
0.0002 - IHH × 0.08086 - SARM1 × 0.00086 + RGS5 × 5.63E-06 +
AP000769.1 × 0.000308.

3.7 Construction of nomogram model

Based on the risk model established earlier, we identified
prognostic biomarkers. In addition to assessing the impact of
metabolitess on biomarkers through ROC curves and survival
analysis, combining biomarkers with clinical features enables a
comprehensive prediction of patient survival, thus leaning
towards personalized medicine in the metabolites treatment
process (Mulé, 2023; Xia et al., 2023).

The Nomogram integrates multiple predictive indicators
based on the results of the multifactorial COX regression
analysis. It visually displays the relationship between clinical
data and survival in graphical form (Figure 10A). After
constructing the Nomogram model, ROC curves are used to
evaluate the model’s discriminative ability (Figure 10B).
Calibration plots assess the model’s consistency. The closer

FIGURE 6
(A)GO classification statistical chart (Each gene hasmultiple GO functions, thus, the total percentage sums to greater than 1). (B) KEGG classification
statistical chart (The vertical axis represents the names of KEGG metabolic pathways; the horizontal axis shows the quantity of genes annotated to each
pathway. KEGGmetabolic pathways are classified into seven major categories: Metabolism, Genetic Information Processing, Environmental Information
Processing, Cellular Processes). (C) Reactome classification statistical chart (The vertical axis represents the names of Reactome metabolic
pathways; the horizontal axis indicates the number of genes annotated to each pathway). (D)DO classification statistical chart (The vertical axis shows the
second-level terminology of DO; the horizontal axis displays the quantity of genes matching this second-level classification. The colors denote
categories such as disease by infectious agent, disease by anatomical entity, disease of cellular proliferation, disease of mental health, disease of
metabolism, genetic disease). Note: DO and Reactome only support gene-level analysis, andDO analysis is only applicable to projects focusing on human
research species.
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FIGURE 7
(A)GOenrichmentchorddiagram.The right sidedisplays significantenrichment information forTerms/Pathwaysofdifferential genes,while the left side represents
genes included in that Term/Pathway, arranged indescendingorderof log2FC.Ahigher log2FC indicates agreater expressiondifference forupregulatedgenes,whereas
a smaller logFC signifies a larger expression difference for downregulated genes. When log2FC approaches 0, it indicates a smaller differential expression multiple for
genes. (B)KEGGenrichment analysis results - Bubble plot (The vertical axis represents KEGGpathwaynames,while thehorizontal axis represents the ratioof genes
enriched in the KEGG pathway (Sample number) to the number of annotated genes (Background number). A higher Rich factor indicates a greater level of enrichment.
The sizeof thedots indicates thequantityofgenes in the respectiveKEGGpathway, and thecolorscorrespond todifferentP-adjusted ranges. The top20enriched results
are shown under the premise of P-adjust <0.5). (C) Reactome enrichment analysis results - Bubble plot (The vertical axis displays Reactome pathway names, while the
horizontal axis shows the ratio of genes enriched in the Reactome pathway (Sample number) to the number of annotated genes (Background number). The size of the
dots denotes thenumber of genes in eachReactomepathway, and the colors represent different P-adjusted ranges. The top20enriched results are displayedunder the
premiseofP-adjust<0.5). (D)DOenrichment analysis results -Barplot (with lines) (Thevertical axis representsDOterms; thebottomhorizontal axis indicates thequantity
of genesmatchingeachDO term, corresponding todifferent points on the line. The tophorizontal axis represents the significance level of enrichment, corresponding to
theheight of the bars. The smaller the P-adjust, the larger the -log10(P-adjust) value, indicatingmore significant enrichment of theDO term. The top 20 enriched results
are shownunder the premise of P-adjust <0.5). (E)DisGeNET enrichment analysis results - Bar plot (with lines) (The vertical axis representsDisGeNET terms; the bottom
horizontal axis indicates the quantity of genes matching each DisGeNET term, corresponding to different points on the line. The top horizontal axis represents the
significance level of enrichment, corresponding to the height of the bars. The smaller the P-adjust, the larger the -log10(P-adjust) value, indicating more significant
enrichmentof theDisGeNET term.The top20enriched results are shownunder thepremiseofP-adjust<0.5).Note:DOandReactomesupport gene-level analysisonly,
and DO and DisGeNET analysis can only be conducted for projects focusing on human research species.
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the curve fits the diagonal line, the better the predictive value of
the model (Figures 10C–E) illustrates the calibration plots for 1/
3/5 years, showing good fitting.

ROC curves only evaluate the specificity and sensitivity of the
model, and false negatives may still exist in clinical settings. Decision
Curve Analysis (DCA) evaluates the effectiveness of clinical
indicators. In DCA curves, ‘All’ and ‘None’ represent two
extreme situations. The straight line represents no intervention
for everyone, with a net benefit of 0. The diagonal line represents
all samples being positive, indicating a negative slope for everyone
receiving intervention (Figure 10F).

The prognostic effect of P. frederiksbergensis metabolites on the
treatment of breast cancer patients was further investigated by
survival prognostic modeling, and 5-, 3-, and 1-year survival
rates were all improved.

Validating the validation set data using the Nomogram model
yielded results similar to those of the training set, confirming that the

Nomogram model reflects clinical validation of risk scores (Figure
11) (Table 7).

3.8 Analysis of gene expression
characteristics of CIBERSORT immune
cell subtypes

Based on the principle of linear support vector regression,
convolution of the expression matrix of human immune cell
subtypes is performed. This algorithm is based on a known reference
set and provides gene expression feature sets for 22 immune cell
subtypes (Li et al., 2023; Zhang et al., 2023; Luo et al., 2019).

We used expression profile data from 1089 breast cancer
patients, applying linear support vector regression to
deconvolute the expression matrix of human immune cell
subtypes. Analyzing the gene expression feature sets of
22 immune cell subtypes based on the known reference set,
this method is superior in deconvolution analysis for
unknown substances and matrices containing similar cell
types. There were significant differences observed in the
B cells memory, T cells CDB, T cells CD4 memory resting,
NK cell activated, Macrophages M1, Dendritic cells resting,
Dendritic cells activated, Mast cells resting, Eosinophils, and
Neutrophils between the High and Low Risk groups. This
indicates significant differences in the tumor cell immune
microenvironment between the High Risk/Low Risk groups,
further suggesting that metabolites-influenced gene differences
also have an impact on the tumor microenvironment in the High
Risk/Low Risk groups (Figure 12).

3.9 Gene set enrichment analysis (GSEA)

Gene set enrichment analysis aims to assess the distribution
trend of the gene set of differentially expressed genes in a sorted gene
expression profile related to the phenotype, to determine its
contribution to the phenotype.

Gene Set Enrichment Analysis (GSEA) involves using pre-
defined gene sets, usually derived from functional annotations or
previous experimental results (contained in MSigDB). Genes are
ranked based on their differential expression in two sample classes,
and the pre-defined gene set is then tested to determine whether it
clusters at the top or bottom of the ranked list.

For the differential genes (results of differential expression
analysis after metabolites intervention), GSEA KEGG analysis
was performed using the WEBGestalt database (http://www.
webgestalt.org), provided by Meiji Biosciences (Figure 13,
Table 8).

The six lowest (−0.67, −0.63, −0.61, −0.60, −0.60, −0.60) and
highest (0.84, 0.82, 0.80, 0.79, 0.79, 0.77) standardized enrichment
scores (ES) were all found to have P-values smaller than 0.01.

3.10 Transcription factor analysis

Transcription factors (TFs) are proteins that can bind to
specific DNA sequences, widely found in organisms, and can

TABLE 5 Multivariate Cox gene based signature.

Id coef HR HR.95L HR.95H p value

AP000317.2 0.071261 1.073861 1.029749 1.119863 0.000869

LINC00973 0.011253 1.011317 1.006751 1.015902 1.09E-06

TOGARAM2 −0.00818 0.991849 0.979621 1.004231 0.196012

HIF1A-AS2 0.021367 1.021597 1.012218 1.031061 5.60E-06

PRDM16 0.000887 1.000887 0.999918 1.001858 0.072932

EN2 0.001851 1.001853 0.999461 1.004249 0.128993

FAM27B 2.205989 9.079231 2.891796 28.50562 0.000157

PROM2 5.20E-05 1.000052 1.00001 1.000094 0.014641

AC011462.2 −0.17244 0.841606 0.731145 0.968755 0.016299

ST7-AS1 −0.00356 0.996444 0.992411 1.000493 0.085092

SLCO2A1 0.000169 1.000169 1.000043 1.000296 0.008789

AL355512.1 0.007062 1.007087 0.998261 1.015992 0.115851

SPINT1 5.22E-05 1.000052 1.000022 1.000083 0.00075

HCG4B −0.01031 0.98974 0.976006 1.003667 0.148036

HTRA3 −4.18E-05 0.999958 0.999906 1.000011 0.119843

NFE2 −0.00424 0.99577 0.992823 0.998726 0.005067

BAG1 −0.00016 0.999836 0.999749 0.999923 0.000232

AP002478.1 −0.41836 0.658128 0.542068 0.799038 2.37E-05

NRG1 −0.00128 0.998725 0.997958 0.999493 0.001139

JMJD1C-AS1 0.00839 1.008426 1.004422 1.012446 3.57E-05

SFTA1P 0.01152 1.011587 1.005774 1.017433 8.92E-05

ITGAX −0.0002 0.999803 0.999553 1.000053 0.123341

IHH −0.08086 0.922325 0.846898 1.00447 0.06324

SARM1 −0.00086 0.999141 0.998479 0.999803 0.011033

RGS5 5.63E-06 1.000006 1.000002 1.00001 0.004817

AP000769.1 0.000308 1.000308 1.000082 1.000534 0.007559
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FIGURE 8
Building the Training Set Risk Assessment Model. (A) Standard deviation distribution ofmodels at different lambdas. (B)Gene coefficient trajectory at
different lambdas. (C) Prognostic KM curve for the high and low-risk groups; the high-risk group shows significantly shorter survival than the low-risk
group. (D) RiskPlot curve, where the number of deceased patients is notably higher in the high-risk group. (E)Model evaluation - Time-dependent ROC
curve (1-year, 3-year, 5-year).
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activate or inhibit gene expression by binding to cis-regulatory
elements upstream of genes. TFs usually consist of DNA-binding
domains (DBDs), trans-activating domains (TADs), and other
TF binding domains (Signal sensing domain, SSD). Based on
different domains, TFs can be classified into different TF families,
generally sharing the same DBD but different TADs.

By analyzing the domain information contained in gene
transcripts, TF prediction and family analysis of genes were

performed. JASPAR (http://jaspar.genereg.net/) and AnimalTFDB
3.0 (http://bioinfo.life.hust.edu.cn/AnimalTFDB/) were used to
analyze TFs from human and murine genes, respectively.
Additionally, TF-target gene prediction was performed to obtain
potential regulatory gene information.

3.11 Expression distribution

Quantitative analysis was conducted on the overall expression
levels of genes/transcripts using software, allowing for the
subsequent analysis of differential gene expression among
different samples. Boxplots and violin plots were used to
illustrate the distribution of gene expression among different
samples. Furthermore, by integrating sequence function
information, gene regulatory mechanisms can be revealed
(Supplementary Figure 2).

FIGURE 9
Constructing the Validation Set Risk Assessment Model. (A) Prognostic KM curve for the high and low-risk groups; the high-risk group shows
significantly shorter survival than the low-risk group. (B) RiskPlot curve; the high-risk group exhibits a noticeably higher number of deceased patients than
the low-risk group. (C) Model evaluation - Time-dependent ROC curve (1-year, 3-year, 5-year).

TABLE 6 Riskscore C index of Training set and validation set.

Group c.Index se Lower Upper p.value

Training set 0.8350977 0.02567499 0.7847756 0.8854197 6.229114e-
39

Validation
set

0.7123169 0.03755439 0.6387116 0.7859221 1.571368e-
08
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3.12 Predictive interaction network of
key genes

Using clinical prognosis genes (SARM1, RGS5, PROM2, BAG1),
data from the miRNA-mRNA module were used to identify key
miRNAs that highly co-express with mRNAs in breast cancer.

Further, using data from the miRNA-lncRNA module, key
miRNAs obtained were docked with lncRNA to identify lncRNAs
interacting with key miRNAs, constructing an mRNA-lncRNA
interaction network, as shown in Figure 14. We selected SARM1,
RGS5, PROM2, BAG1, and NEAT1 targets in the network to further
investigate their expression.

FIGURE 10
Training Set Nomogram Model Construction and Validation. (A) Nomogram column chart. (B) Model evaluation - Model discriminative ability
validated by ROC curve. (C–E)Clinical consistency validation - 1, 3, 5-year calibration plots. (F) Clinical limited evaluation - Decision Curve Analysis, DCA.
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3.13 PCR experiment and western blot
experimental results

During the preparation of cell samples, three different
dosages were used to intervene with breast cancer cells: high-
dose group (JH1/2/3), medium-dose group (JM1/2/3), and low-
dose group (JL1/2/3). When high-concentration metabolitess

FIGURE 11
Validation Set Nomogram Model Construction and Validation. (A) Nomogram column chart. (B) Model evaluation - Model discriminative ability
validated by ROC curve. (C–E) Clinical consistency validation - 1, 3, 5-year calibration plots. (F). Model evaluation - Clinical limited evaluation - Decision
Curve Analysis, DCA.

TABLE 7 Nomogram C index of Training set and validation set.

Groups c.Index se Lower Upper p.Value

Training set 0.8358683 0.0210686 0.7945746 0.877162 3.25621e-57

Validation
set

0.7888763 0.04339162 0.7038303 0.8739223 2.786748e-
11
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were co-cultured with cells, a higher number of cells underwent
apoptosis. Therefore, in the PCR results, the gene expression
levels of SRAM1, PROM2, BAG1, and NEAT1 in the JH group

were significantly lower compared to the other dosage groups.
Hence, the medium-dose group (JM1/2/3) and low-dose group
(JL1/2/3) hold greater reference value.

FIGURE 12
(A)Overview of 22 immune cell types (barplot). (B)Overview of 22 immune cell types (boxplot). (C)Comparison of the distribution of 22 immune cell
types in High/Low Risk groups (****P < 0.00001, ***P < 0.0001, *P < 0.01).
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The detection results revealed that, compared to the control
group, both low and medium doses of metabolitess significantly
upregulated the expression of SARM1, PROM2, BAG1, and
NEAT1 genes. Moreover, the low-dose metabolitess exhibited a
remarkable increase in the expression of the
RGS5 gene (Figure 15).

The results of the WB (Western blot) experiments were similar
to those of the PCR experiments. When compared with the blank
control group, the metabolites treatment significantly increased the

protein levels of SARM1, PROM2, and BAG1, while decreasing the
protein expression levels of RGS5 (Figure 16).

3.14 Determination of metabolites
hemocompatibility

Hemolysis Rate The experimental results demonstrated that the
hemolysis rate in the high-concentration group (H group) was

FIGURE 13
In the upper part of the graph, the dynamic ES values are represented, with the highest point indicating the ES value for this gene set. Themiddle part
of the figure represents the sorted sequence of hybrid data, with vertical lines indicating genes present in this gene set in the sequenced dataset. The
lower part of the curve represents the sorted values, distributed from high to low along the sequence of the sequenced data. In phenotype classification
data files, positive values indicate correlationwith the first phenotype, negative values indicate correlationwith the second phenotype. In continuous
phenotype data files, such as time series, positive values indicate positive correlation, negative values indicate negative correlation, or no correlation.

TABLE 8 Results of GSEA enrichment analysis.

Gene set name Description ES Padjust

GSE28726_NAIVE_CD4_TCELL_VS_NAIVE_NKTCELL_DN Genes downregulated in naïve T cells: CD4 [GeneID = 920] versusNK. −0.6719 0

GSE28726_NAIVE_VS_ACTIVATED_NKTCELL_UP Genes upregulated in NKT cells: naïve versus activated −0.63494 0

GSE28726_NAIVE_CD4_TCELL_VS_NAIVE_VA24NEG_NKTCELL_DN Genes downregulated in naïve T cells: CD4 [GeneID = 920] versus
Va24- NKT.

−0.61459 0.002661

GSE5099_UNSTIM_VS_MCSF_TREATED_MONOCYTE_DAY7_DN Genes downregulated in unstimulated monocytes versusmacrophages
incubated with CSF1 [GeneID = 435] at day 7

−0.60051 0.00633

GSE18893_TCONV_VS_TREG_24H_TNF_STIM_UP Genes upregulated in lymphocytes treated with TNF [GeneID = 7124]
for 24H: T conv versus T reg cells

0.790745 0

GSE24634_TREG_VS_TCONV_POST_DAY5_IL4_CONVERSION_UP Genes upregulated in comparison of CD25+ T cells treated with
IL4 [GeneID = 3565] versus CD25− T cells treated with IL4 [GeneID =
3565] at day 5

0.80377 0

GSE24634_TEFF_VS_TCONV_DAY5_IN_CULTURE_UP Genes upregulated in comparison of untreated CD25+ T effector cells
at day 5 versus untreated CD25− T cells at day 5

0.815868 0

GSE13485_DAY1_VS_DAY21_YF17D_VACCINE_PBMC_DN Genes downregulated in comparison of unstimulated peripheral blood
mononuclear cells (PBMC) 1 day after stimulation with YF17D
vaccine versus PBMC 21 days after the stimulation

0.839337 0
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significantly higher than that in the medium-concentration (M
group) and low-concentration groups (L group) (p < 0.05). This
suggests that the metabolites at high concentrations may cause

significant damage to the erythrocyte membrane, posing a
potential risk of hemolytic toxicity.

Coagulation Function Assessment Prothrombin Time (PT),
Thrombin Time (TT), Activated Partial Thromboplastin Time
(APTT), and Fibrinogen (Fib) Content: No significant changes
were observed across all groups (p > 0.05), indicating that the
metabolites did not exert a noticeable inhibitory effect on
thrombin generation or coagulation pathways at any concentration.

Plasma Protein Measurement Albumin (Alb): Compared to the
control group (NC group), albumin levels in the high-concentration
and medium-concentration groups were significantly reduced (p <
0.05), suggesting that the metabolites may impair albumin synthesis
in the liver or increase its consumption. Total Protein (TP): The total
protein level in the medium-concentration group was significantly
higher than in other groups, indicating that the metabolites might
induce an inflammatory response or immune activation, leading to
an increase in proteins such as immunoglobulins. Immunoglobulin
G (IgG): The IgG level in the high-concentration group was
significantly lower than that in the control group (p < 0.05),
suggesting a potential immunosuppressive effect of the
metabolites. Fibrinogen (Fbg): The fibrinogen levels in the high-
concentration and low-concentration groups were significantly
lower than those in the control group, indicating that the

FIGURE 15
PCR results of SARM1, RGS5, BAG1, PROM2, NEAT1. ZC1/2/3:breast cancer normal control group, JL1/2/3: additive low dose group, JM1/2/3:
additive heavy dose group, JH1/2/3 additive high dose group. Compared with blank group, *p < 0.05, **p < 0.01, ***p < 0.005.

FIGURE 14
Clinical prognostic gene mRNA-lncRNA interaction network.
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metabolites may interfere with fibrinogen metabolism, potentially
impacting blood coagulation.

Dynamic Coagulation Time The dynamic coagulation time in all
groups showed a gradual decline over time, indicating that the
metabolites did not significantly interfere with coagulation function.
However, slightly higher absorbance values in the high-
concentration group may suggest a mild anticoagulant effect.

The results indicate that the metabolites exhibits dose-
dependent effects on blood compatibility: The high-concentration
group demonstrated a higher hemolysis rate and lower levels of
immunoglobulin G and fibrinogen, suggesting potential hemolytic
toxicity and immunosuppressive effects. The elevated total protein
levels in the medium-concentration group may reflect an enhanced
inflammatory response or immune activation. The low-
concentration group showed minor effects on fibrinogen
metabolism.

This study utilized various metabolites doses. During the
preliminary experiments, it was found that the concentrated dose
of fungal extract was too high for cellular experiments, yielding no
viable results. After dilution and combining the findings from the
cellular experiments, it is recommended that future in vivo animal
studies use the low-dose concentration determined from the
hemolysis assay to minimize potential risks. During the dose

design and application process, it is essential to carefully consider
the potential risks to hemocompatibility and control the metabolites
concentration to ensure safety (Figure 17).

With the present study, we determined the key role of the
metabolites of the endophytic bacterium P. frederiksbergensis in
the suppression of breast cancer cells. We found that which are
associated with key pathways influencing tumor progression,
immune modulation, and cellular apoptosis. The constructed
clinical oncogenic action network provided us with a deeper
understanding of the mechanism of action of endophyte
metabolites on breast cancer cells. In addition, the validation by
PCR and WB experiments further established the exact regulatory
effects of endophyte metabolites on these targets. These findings not
only expand our understanding of endophytic bacterial metabolites,
but also provide valuable new ideas and potential clinical
applications for breast cancer treatment and prognosis.

Among these, genes such as SARM1, RGS5, PROM2, and BAG1
have emerged as critical players in breast cancer biology, influencing
cell survival, migration, and resistance to treatment. SARM1 (Sterile
Alpha and TIR Motif-Containing 1) plays a role in regulating cell
death pathways and immune responses, which are pivotal in cancer
progression (Butt et al., 2008). RGS5 (Regulator of G-protein
signaling 5) is associated with tumor angiogenesis and resistance

FIGURE 16
WB detection results of SARM1, RGS5, PROM2, BAG1. ZC1/2/3: breast cancer normal control group, JL1/2/3: additive low dose group, JM1/2/3:
additive heavy dose group, JH1/2/3 additive high dose group. Compared with blank group, *p < 0.05, **p < 0.01, ***p < 0.005.
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to chemotherapy (Yin et al., 2023). PROM2 (Prominin 2) is involved
in stem cell maintenance and has been linked to cancer stem cell
properties in breast cancer (Piezzo et al., 2020). BAG1 (Bcl-2-
associated athanogene 1) modulates protein stability and
apoptosis, influencing chemotherapy resistance in breast cancer
cells (Yin et al., 2023).

These genes were chosen for investigation due to their critical
roles in cancer cell survival, proliferation, and resistance
mechanisms. The metabolites of P. frederiksbergensis may offer a
novel approach to modulating these pathways, providing an

alternative therapeutic avenue with potentially fewer side effects
compared to current treatments.

Currently, the standard therapies for breast
cancer—chemotherapy, surgery, and radiation—often lead to
significant side effects and are limited by resistance,
particularly in metastatic cases. Targeted therapies, such as
CDK4/6 inhibitors, have shown promise in overcoming
resistance, but their effectiveness can be limited by the
heterogeneity of tumors and the development of new resistance
mechanisms (Piezzo et al., 2020). In contrast, the metabolites

FIGURE 17
Determination of Metabolites Hemocompatibility (Indicates a significant difference compared to the normal control group (NC), with p < 0.05).
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from P. frederiksbergensis represent a promising alternative due to
their ability to influence multiple signaling pathways, including
apoptosis and cell cycle regulation, in a more targeted and
potentially less toxic manner.

Further investigations revealed that the secondary
metabolites from P. frederiksbergensis might exert their effects
on breast cancer cells by influencing specific signaling pathways,
including cell cycle regulation, apoptotic processes, and cell
proliferation. This discovery opens new avenues for targeted
therapies in breast cancer treatment. For instance, the
modulation of genes such as SARM1, RGS5, PROM2, and
BAG1 could be directly linked to tumor cell survivability,
invasiveness, and metabolites sensitivity. Moreover, a deeper
analysis of how these metabolites affect key points in the cell
cycle could elucidate their potential mechanisms in inhibiting
tumor growth. Lastly, the bioinformatics analysis conducted in
this study also sheds light on how these metabolites might alter
the microenvironment of breast cancer cells by affecting gene
expression and signaling networks, guiding future experimental
designs and clinical research directions.

Additionally, our study suggests that the anti-cancer properties
of these metabolites may involve the modulation of immune
responses, particularly in the tumor microenvironment. The
interaction between these metabolites and key immune cells, such
as T-cells and macrophages, could be critical in mediating anti-
tumor effects. This highlights the potential of these secondary
metabolites as immunomodulatory agents in breast cancer
therapy (Xie and Chen, 2023).

Furthermore, the potential synergistic effects of these
metabolites with existing chemotherapy agents should be
explored. Combining these natural metabolites with established
treatments could enhance efficacy and reduce side effects,
offering a more holistic approach to cancer management.

In light of these findings, it is imperative to conduct in vivo
studies to validate these in vitro results and to understand the
pharmacokinetics and pharmacodynamics of these metabolites
in animal models. Such studies will provide crucial insights into
the feasibility and safety of using these metabolites in
clinical settings.

To fully harness the therapeutic potential of these metabolites,
future research should also focus on their chemical
characterization, stability, and bioavailability. Understanding
these aspects will be key to developing efficient metabolites
delivery systems and formulating these metabolites into viable
therapeutic agents.

In conclusion, the secondary metabolites of P. frederiksbergensis
offer promising avenues for the development of novel anti-cancer
therapies. Their diverse mechanisms of action, coupled with the
potential for low toxicity, make them valuable candidates for further
research and clinical exploration.

4 Conclusion

The metabolites of endophytic bacterium P. frederiksbergensis
from Taoerqi exhibit cytotoxicity against breast cancer. The
clinical prognosis risk-score model provides insights into risk
stratification and potential molecular pathways associated with

breast cancer progression. Based on bioinformatics analysis, the
metabolites of P. frederiksbergensis can enhance the survival period
of breast cancer patients. These metabolites can act through
intervening in breast cancer targets such as SARM1, RGS5,
BAG1, PROM2, and NEAT1.
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