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Drug addiction is a chronic and potentially deadly disease that is considered a
global health problem and describes the alteration of brain function by
psychostimulant drugs through changes in the reward system. However, there
is still no ideal strategy for the management of drug addiction. Previous studies
have suggested that microglia are involved in events associated with
neuroplasticity and memory, which are also related to drug addiction. Many
studies have shown that psychoactive substances may act directly on immune
cells, altering their function and inducing the production of various inflammatory
mediators. In recent years, a ketogenic diet (KD) was shown to have therapeutic
benefits as a dietary therapy for a variety of neurological disorders. With respect to
drug addiction, studies have shown that a KD can alleviate glucose metabolism
disorders caused by alcohol use disorders by increasing ketone metabolism,
thereby reducing withdrawal symptoms. This finding indicates the potential of a
KD as a treatment for drug addiction, since a KD may promote the transition of
microglia to a predominantly anti-inflammatory state through several
mechanisms. Here, we discuss recent research showing that a KD plays a
variety of roles in controlling microglia-mediated inflammation, opening new
treatment avenues to treat drug addiction. This succinct analysis offers evidence
of the enormous potential of a KD to treat drug addiction through the inhibition of
microglial activation.

KEYWORDS

ketogenic diet, microglia, inflammation, drug addiction, βhydroxybutyrate

Introduction

Drug addiction is a chronic, recurrent condition that has recently gained recognition as
a public health issue in numerous nations (Schottenfeld and O’Malley, 2016). The hallmarks
of this illness are obsessively seeking and using a substance; an inability to control one’s
intake of the substance; and a depressive mood, with little consideration for social, physical,
or individual repercussions (Koob and Volkow, 2016).

Current studies have shown that signalling pathways involving dopamine receptors may
be responsible for the adaptive cellular responses in the central nervous system (CNS)
caused by prolonged exposure to psychoactive drugs. For example, D1 activation increases
cAMP levels, which in turn activates extracellular signal-regulated kinase (ERK) and protein
kinase A (PKA) (Andrianarivelo et al., 2019). The activation of these molecules leads to the
activation of transcription factors such as delta FosB (ΔFosB), factors regulated by cAMP
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response element-binding protein (CREB), myocyte enhancer factor
2 (MEF2), and nuclear factor kappa B (NF-κB), which are related to
changes in gene and protein expression (Nestler, 2012), receptor
expression, neuronal excitability and cell morphology (Teague and
Nestler, 2022). Psychostimulants can alter neuroplasticity-related
signalling cascades, which are essential for the desire for
psychostimulants and associated drug seeking and relapse
(Krasnova et al., 2013).

Recently, it was demonstrated that microglia may regulate some
of these molecular pathways. For example, microglia can change the
shape and function of dopaminergic neurons by altering the
expression of receptors and the levels of tyrosine hydroxylase
(TH) and dopamine transporter (DAT); it has also been
demonstrated the fluorescence intensity of DAT and TH in the
ventral tegmental area (VTA) is decreased in male mice exposed to
social stress compared with unhandled control male mice (Catale
et al., 2022; Smith et al., 2020). Microglia also participate in
glutamate-induced synaptic alterations by altering AMPA
receptor expression, the AMPAR/NMDAR ratio, and glutamate
release (Basilico et al., 2022; Ji et al., 2013). Finally,
neurotransmission mediated by glutamate and dopamine also
affects microglial activation (Yan et al., 2015), including in the
context of psychostimulant abuse (Canedo et al., 2021). In this
review, we found that the addiction-related behavioural alterations
caused by binge methamphetamine exposure are mediated by
astrocyte‒microglia crosstalk, in which the release of glutamate
from astrocytes in a TNF/IP3 receptor (IP3R)/SNARE-dependent
manner leads to microglial activation, neuroinflammation, and
ultimately changes in addictive behaviour in mice (Canedo
et al., 2021).

Encouragingly, multiple studies have revealed a strong
correlation between diet-induced ketosis and the primarily anti-
inflammatory polarization of microglia in animals (Fedorovich et al.,
2018; Ghosh et al., 2018). Moreover, several researchers have
reported that nutritional ketosis results in the inhibition of
molecules such as mitogen-activated protein kinase (MAPK),
p38, NF-κB and the nucleotide-binding, leucine-rich repeat,
pyrin-domain-containing 3 (NLRP3) inflammasome (Guo et al.,
2018; Trotta et al., 2019) in addition to an increase in the synthesis of
substances such as peroxisome proliferator-activated receptor
(PPAR) and interleukin (IL)-10 (Newman et al., 2017). These
changes may favour a switch to predominantly anti-
inflammatory/neurorestorative microglial polarization (Xu et al.,
2018; Yang et al., 2018). Therefore, these findings suggest that diet-
induced ketosis may have pleiotropic effects on important mediators
of microglial function. If this is also true in human patients, new
avenues for treating neurological disorders could be explored.

A ketogenic diet (KD) is a diet with a reduced proportion of
carbohydrates and an increased proportion of fat (Veech, 2004). A
KD is characterized by adequate energy and protein intake and the
restriction of carbohydrates, typically to less than 30–50 g/day
(Trimboli et al., 2020). In a high-fat diet, calories from fat
typically constitute 30%–75% of the total daily caloric intake.
However, some nutritional protocols may aim for an even higher
percentage of calories from fat, reaching up to 90%. High-fat diets
are usually characterized by excessive intake of saturated fatty acids
and calories, which can lead to an increase in health problems,
particularly heart disease, weight gain, and obesity (Han et al., 2023).

A KD induces a state of ketosis that is similar to that caused by
fasting. Normally, carbohydrates are converted to glucose, which the
brain uses as its primary energy source. However, when no
carbohydrates are available, the body uses other energy sources,
such as acetyl coenzyme A (ac-CoA), which produces excess ketone
molecules, including acetoacetate (ACA), β-hydroxybutyrate
(BHB), and acetone, through a process called ketogenesis (Fukao
et al., 2004). Unlike pathological ketoacidosis, ketosis is a normal
process, as ketone bodies can be utilized effectively without reaching
dangerous levels (Paoli et al., 2013). In the past, a KDwas widely and
successfully used to treat epileptic disorders (Neal et al., 2008).
According to recent studies, a KD may also be beneficial for treating
alcohol or drug addiction (Li et al., 2022; Wiers et al., 2021). For
example, research has demonstrated that a KD with a ratio of fats to
carbohydrates and proteins of approximately 6:1 (93% fat, 2%
carbohydrates and 5% protein; 5 weeks) interferes with the
sensitization of ambulatory responses in cocaine-treated animals
and reduces the stereotyped responses elicited by cocaine in rats
(Martinez et al., 2019);. In clinical studies, a KD (80% fat, 15%
protein, and 5% carbohydrates; 3 weeks) reduced alcohol craving
and withdrawal symptoms in patients with alcohol use disorders. In
addition, BHB, a KD metabolite and the most abundant ketone
body, can β-hydroxybutyrylate CaMKII-α, resulting in significant
inhibition of T286 autophosphorylation and decreased CaMKII
activity, which plays a critical role in mediating the effect of KD
consumption in reducing cocaine reinstatement (Li et al., 2022).

The biochemistry of ketogenesis

Under physiological conditions, fatty acid oxidation produces
acetyl-CoA, which enters the tricarboxylic acid (TCA) cycle and
reacts chemically with oxaloacetate to form citrate. However,
under the metabolic conditions induced by a KD, oxaloacetate
is released from mitochondria and used in gluconeogenesis
(Elamin et al., 2017). Under these conditions, the amount of
oxaloacetate in the mitochondrial environment is far less than
the amount of acetyl-CoA produced, and oxaloacetate undergoes a
series of condensation processes that are characteristic of
ketogenesis (Kim et al., 2010). First, acetoacetyl-CoA is
generated by the combination of two acetyl-CoA molecules.
HMG-CoA synthase 2 facilitates a functionally irreversible and
rate-limiting interaction between acetoacetyl-CoA and another
acetyl-CoA molecule to generate HMG-CoA (Hyatt et al.,
2016). After HMG-CoA is produced, it dissociates to form
ACA, which is then further reduced to BHB via a process
facilitated by BHB dehydrogenase in which nicotinamide
adenine dinucleotide (NAD)/NADH acts as a hydrogen donor
(Bentourkia et al., 2009). Notably, BHB is the major ketone body
(KB) because the level of BHB in the circulation and tissues is
significantly greater than the level of ACA (Pifferi et al., 2008).

The liver releases BHB and ACA into the bloodstream, where
they are subsequently taken up by the heart, brain, skeletal muscle,
and other tissues with high metabolic needs (Kim et al., 2010). Once
BHB reaches these tissues, BHB dehydrogenase converts BHB to
ACA, which functions as a major regulator of the mitochondrial
NAD+/NADH ratio (Pifferi et al., 2011). The enzyme succinyl-CoA:
3-oxoacid CoA transferase then catalyses the hydrolysis of ACA to
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produce acetoacetyl-CoA and succinate, and thiolase cleaves
acetoacetyl-CoA to yield acetyl-CoA. Acetyl-CoA and succinate
serve as substrates for the TCA cycle and complex II of the
electron transfer chain (ETC.), respectively (Roy et al., 2012)
(Figure 1). This mechanism may explain the increased succinate
dehydrogenase activity in rodents fed a KD for extended periods
(Hashim and VanItallie, 2014). The effects of a KD can be replicated
with KB supplements, and while not widely accepted, there is
evidence that the normal ability of the liver to produce KBs may
be impeded by KB supplementation (Hugo et al., 2012).

Role of microglia in neural function and
CNS homeostasis

Microglia surveil and quickly react to foreign substances under
physiological conditions, actively observing and controlling
alterations in neuronal activity (Schafer et al., 2012). Microglia
take on this role because they briefly come into contact with
synapses and extrasynaptic regions through highly coordinated
movement (Salter and Beggs, 2014), and they express
homologous receptors for neurotransmitters such as glutamate
and gamma-aminobutyric acid (GABA) as well as receptors for a
variety of neuronal mediators, such as CD200 and fractalkine
(CX3CL1), on their surfaces (Koizumi et al., 2013). Additionally,
microglia express receptors for purinergic neurotransmitters such as
adenosine triphosphate (ATP), serotonin, and acetylcholine
(Schafer et al., 2012). An overwhelming body of research suggests

that ATP, which is generated by neurons, is a key regulator and the
most effective inducer of microglial activity (Orr et al., 2009).

Numerous research groups have reported that microglia may
control GABAergic and glutamatergic neurotransmission (Pascual
et al., 2012). ATP, which binds to cognate receptors on astrocytes
and increases glutamatergic activity by upregulating metabotropic
receptor 5, is the most likely regulator of glutamatergic
neurotransmission (Pascual et al., 2012). The ability of microglia
to regulate GABAergic transmission is particularly significant under
pathological conditions. This regulatory process involves the release
of ATP from injured neurons, which elicits the release of brain-
derived neurotrophic factor (BDNF) from activated microglia. The
released BDNF has the potential to reverse the direction of
GABAergic neurotransmission (Ferrini and De Koninck, 2013).

Responses of microglia to cocaine

Although changes in the glutamatergic and dopaminergic
systems are thought to be the primary neurobiological
mechanisms governing motivated behaviour, it is widely
recognized that psychoactive substances can also modify the
glutamatergic, serotonergic, and GABAergic neurotransmitter
systems as well as the levels of various molecules, such as
cytokines and neurotrophic factors (Doggui et al., 2021).
Furthermore, microglia can respond to neurochemical alterations
caused by psychoactive substances because they express ion
channels and neurotransmitter receptors, which are likewise

FIGURE 1
Schematic diagram depicting the ketogenesis and ketolysis reactions. ACA, acetoacetate; BHB, β-hydroxybutyrate. Under physiological conditions,
acetyl-CoA produced by fatty acid oxidation enters the tricarboxylic acid (TCA) cycle and subsequently engages in a chemical reaction with oxaloacetate
to produce citrate. The level of synthesized acetyl-CoA greatly exceeds the amount of oxaloacetate in the mitochondrial environment, and acetyl-CoA
engages in a series of condensation reactions, which are hallmarks of ketogenesis. First, two acetyl-CoA molecules combine to produce
acetoacetyl-CoA. This molecule reacts with another acetyl-CoA molecule to form HMG-CoA via a functionally irreversible and rate-limiting reaction
facilitated by HMG-CoA synthase 2. Once formed, this compound dissociates to form the KB acetoacetate (ACA), which is further reduced to BHB via a
reaction facilitated by BHB dehydrogenase in which NAD+/NADH acts as the hydrogen donor. BHB is released into the circulation from the liver and
ultimately enters the brain.
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expressed by neurons (Figure 2). Notably, microglial activation has
been demonstrated to alter the reward system (Taylor et al., 2015),
mostly due to the high susceptibility of dopaminergic neurons to
neuroinflammatory signals (Douma and de Kloet, 2020).

Microglia and cocaine

The crucial role of microglia in the development and maturation
of synapses is widely acknowledged. Drugs of abuse impair synaptic
and neuronal function over time. Thus, increasing amounts of data
point to a possible link between drug addiction and glial function
abnormalities (Kierdorf and Prinz, 2017; Schmidt and Engel, 2021).
In particular, the abuse of opioids, alcohol, and psychostimulants is
thought to be influenced by the glial and neuroimmune systems. It is
hypothesized that substances of abuse activate microglia by
stimulating innate immune receptors, causing the release of
cytokines and chemokines, which have an impact on neuronal
function (Schmidt and Engel, 2021). Moreover, innate immune
receptor stimulation may cause synaptic remodelling directly
(Schmidt and Engel, 2021). A theory known as the “xenobiotic
hypothesis” has emerged recently. This hypothesis suggests that
because substances of abuse are exogenous, they are viewed as
foreign “invaders” that activate the immune system’s defence
mechanism. Microglia, the main resident immune cells in the
brain, act as the first line of defence. However, repeated and
continuous administration of substances of abuse results in
hyperactivation of microglia and a neuroinflammatory state,
which can further exacerbate drug addiction by altering neuronal
function (Deng et al., 2020). Microglia play an important role in
drug addiction; a recent study showing that microglia are required
for synaptic alterations during cocaine withdrawal lends further
credence to this speculation (Cadet and Bisagno, 2014). More
research on microglial overactivation might improve our

knowledge of the mechanism of drug addiction and possibly lead
to the development of innovative treatments.

Preclinical research has shown that cocaine upregulates the
expression of the traditional microglial marker ionized calcium-
binding adaptor molecule-1 (Iba-1) in the hippocampus, frontal
cortex, and nucleus accumbens (NAc) (Costa et al., 2013; Jarvis et al.,
2019), as well as in sections of the mouse and rat brain (Chivero
et al., 2020). Furthermore, cocaine upregulates the expression of
CD11 in the striatum, cortical areas, and VTA (Chivero et al., 2021).
Interestingly, research has shown that acute cocaine injection
elevates CD11 expression only in animals with a history of
cocaine self-administration (Brown et al., 2018). Moreover,
cocaine increases the expression of CD68, a transmembrane
glycoprotein expressed by microglia, indicating increased
phagocytic activity (da Silva et al., 2021). Cocaine affects the
number and shape of microglia in addition to their protein
expression. For example, research has shown that after cocaine is
used for 7 days in a row, more cells express allograft inflammatory
factor 1 (AIF1) (Thangaraj et al., 2020). Additionally, previous
studies have shown that cocaine exposure decreases the number
of microglial branches and increases the size of microglial cell bodies
(Burkovetskaya et al., 2020; da Silva et al., 2021). In other words,
cocaine causes morphologic changes that could be linked to
heightened microglial activation.

Finally, the behavioural and molecular effects of
psychostimulants can be altered by microglial activity (Linker
et al., 2020). The inhibition of microglia by minocycline, a
common tetracycline antibiotic, reverses the effects of cocaine on
behaviour, conditioned place preference (CPP), and dopamine
release (Northcutt et al., 2015). Moreover, minocycline also
modifies cocaine reward after exposure to morphine and nicotine
(Taylor et al., 2016). Furthermore, the glial modulator and
phosphodiesterase 4 (PDE4) inhibitor ibudilast ameliorates
cocaine addiction in both humans and animals (Mu et al., 2021),

FIGURE 2
Possible effects through which the microglial activation–neuronal damage interaction may lead to neuroinflammation and further mediate drug
addiction. Disruption of the interaction between microglial activation and neurons via inflammatory factors or neurotrophic factors may lead to
neuroinflammation and drug addiction.
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and the colony stimulating factor-1 (CSF-1) inhibitor PLX3397 also
reduces cocaine-induced behavioural changes by depleting
microglia (Linker et al., 2020).

There have been few clinical studies on the effects of cocaine on
microglia in humans, and those that exist have generated
controversial results. The only study that was performed to assess
cocaine-induced microglial activation in a clinical population
exploited the binding of the PET radioligand [11C]PBR28 to
TSPO (Narendran et al., 2014). However, the authors failed to
demonstrate an alteration in [11C]PBR28 binding to TSPO in
abstinent (for a minimum of 14 days) patients who met the
DSM-IV criteria for cocaine dependence compared with healthy
controls (Narendran et al., 2014).

Positive effects of induced ketosis on
anti-inflammatory microglial
polarization

Increased NAD+ production and GPR109A
receptor activation

Numerous studies have confirmed that, after prolonged ketosis,
NAD+ levels are increased in the CNS of animals (Xin et al., 2018).
Other researchers have reported the inhibition of glycolysis in the brains
of study participants (Courchesne-Loyer et al., 2017). These findings
may have therapeutic implications since the elevation of NAD+ levels
and simultaneous reduction in NADH levels, along with the inhibition
of glycolysis, may cause the anti-inflammatory effects of a ketotic state
on microglia in the brain. An increase in the NAD/NADH ratio has an
important effect, as it alters the activity of the transcriptional inhibitor
C-terminal-binding protein (CtBP), which binds to the acetyltransferase
p300 in microglia and other myeloid lineage cells to regulate the
transcription of NF-κB and the expression of other proinflammatory
genes. However, this hypothesis needs to be empirically confirmed
(Shen et al., 2017). One of the defining characteristics of
proinflammatory microglial polarization is increased glycolysis,
which increases NADH levels and prevents CtBP from dimerizing,
eliminating its ability to function as a transcriptional repressor. The
opposite is true for decreased glycolysis and increased oxidative
phosphorylation, which increase NAD+ levels (Ghosh et al., 2018;
Shen et al., 2017). Notably, an increase in NAD+ levels in the brain
due to diet-induced ketosis may have a beneficial anti-inflammatory
effect through the binding of CtBP to the promoter regions of genes that
promote inflammation in microglia. Moreover, research suggests that a
more direct way to produce the same effect is through the binding of
KBs, particularly BHB (Pinto et al., 2018). Furthermore, because KBs
promote the primarily anti-inflammatory polarization of microglia,
they may represent potential therapeutic options.

According to previous research, BHB inhibits the generation of
COX-2 and iNOS by activating microglia both in vivo and in vitro,
partly through the activation of G protein-coupled receptor 109A
(GPR109A) (Fu et al., 2015). This receptor decreases the degradation
of IkBa and prevents NF-κB from translocating to the nucleus,
which allows the NF-κB to induce the transcription of inflammatory
molecules (Fu et al., 2015). Studies have also shown that rats that
have ingested or been injected with BHB have lower NLRP3 activity
in microglia and other cells of the CNS. This decrease in activity

could contribute independently to a reduction in
neuroinflammation by lowering IL-1 and IL-18 levels (Yamanashi
et al., 2017). Additionally, this effect may be partially mediated by
binding to GPR109A and the consequent suppression of
NLRP3 assembly due to endoplasmic reticulum (ER) stress
(Youm et al., 2015). Although clearly important, this mechanism
is not the only one through which BHB administration may decrease
ER stress and, subsequently, the in vivo activation of the
inflammasome. For example, BHB can reduce ER stress by
blocking mitochondrial fragmentation mediated by dynamin-
related protein 1 (DRP-1) and stimulating AMP-activated protein
kinase (AMPK) (Bae et al., 2016). From the perspective of anxiety
and depression treatment, the potential of diet-induced ketosis to
inhibit NLRP3 activity in the brain is interesting because there is
increasing evidence that stress-mediated activation of this
inflammasome precipitates or exacerbates anxiety and depression
symptoms, whereas its inhibition results in their amelioration or, in
certain cases, termination (Iwata et al., 2016).

Suppression of histone deacetylase

Nuclear factor erythroid 2-related factor 2 (Nrf-2) in the brain is also
upregulated by ketosis (Milder et al., 2010). Although the underlying
mechanisms are unknown, this change appears to be directly caused by
BHB (Izuta et al., 2018) and probably occurs via histone deacetylase
inhibition (Cai et al., 2015). In animal models of various neurological
diseases or traumatic brain injury, Nrf-2 upregulation has been shown to
be positively correlated with the predominantly anti-inflammatory
polarization of microglia, with concomitant decreases in iNOS and
IL-6 production as well as the induction of anti-inflammatory
M2 polarization in vivo. Studies have explored the potential of Nrf-2
upregulation as a therapeutic approach for reducing neuroinflammation
(Li et al., 2018). Although the mechanisms underlying these beneficial
effects of Nrf-2 upregulation in ameliorating microglial activity and
neuroinflammation involve the inhibition of inflammatory factor
secretion and NLRP3 activity, they are complementary to the
mechanisms underlying the effects of KD consumption and BHB
administration. However, they are sufficiently different to suggest a
level of synergy that would not be possible by modifying a single
biochemical pathway (Ahmed et al., 2017). For example, the anti-
inflammatory effect of Nrf-2 activity results from conserved cross-
talk between Nrf-2 and NLRP3 in vivo, which is facilitated by a
sophisticated mechanism that works antagonistically with the Rho
family kinase RAK to limit the development of inflammation and
oxidative stress (Cuadrado et al., 2014).

Conclusion and outlook

In this article, we summarize the intriguing potential of a KD to
treat drug addiction through the modification of microglial
activation. Interestingly, the possible therapeutic benefits of KD
consumption and other strategies for fostering ketosis for CNS
diseases have not received much attention in the field of
neuropsychiatry. The neurobiological mechanisms of various
mental disorders, especially drug addiction, may be significantly
influenced by primarily proinflammatory microglial polarization, as
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indicated by accumulating evidence from preclinical, postmortem,
and in vivo human studies. A KD was shown to be beneficial in
various neurological disorders, which suggests that its potential to
treat drug addiction cannot be disregarded. Decreasing microglial
activation via consumption of a KD might be beneficial for
numerous illnesses caused by drug addiction.

KD consumption may be promoted recovery from drug
addiction through various effects. However, some researchers
have shown concerns regarding the consumption of a KD in
individuals neurological diseases, such as decreased appetite,
increased risk of malnutrition, and several adverse effects
(Włodarek, 2019). The common adverse effects of KD
consumption include metabolic abnormalities, gastrointestinal
symptoms, kidney stones, and slow growth in children (Kossoff
et al., 2009). However, most of these adverse effects were observed in
children. Therefore, a KD should be applied with caution in people
with drug addiction, as this particular population often suffers from
multisystem disorders such as increased risk of malnutrition (Jeynes
and Gibson, 2017) and gastrointestinal symptoms (Su et al., 2020).
Finally, further preclinical studies and randomized controlled
clinical trials are needed to optimize KD strategies, such as the
timing of intervention and nutrient composition, and assess the
suitability, effectiveness, and safety of a KD in the treatment of
drug addiction.
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