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The COVID-19 pandemic caused by SARS-CoV-2 still lacks effective antiviral
drugs. Therefore, a thorough receptor-based virtual screening study was
conducted to screen different natural and synthetic drug libraries, such as the
Asinex Antiviral, Seaweed Metabolite Database, Medicinal Fungi Secondary
Metabolite and Therapeutics Library, and Comprehensive Marine Natural
Products Database comprising 6,827, 1,191, 1,830, and 45,000 compounds,
respectively, against the main protease enzyme of SARS-CoV-2. Accordingly,
three drug molecules (BBB-26580140, BDE-32007849, and LAS-51378804) are
highlighted as the best binding molecules to the main protease S1 pocket. The
docking binding energy scores of BBB-26580140, BDE-32007849, and LAS-
51378804 were −13.02, −13.0, and −12.56 kcal/mol, respectively. Compared to
the control Z1741970824 molecule with a binding energy score of −11.59 kcal/
mol, the lead structures identified herein showed robust hydrophilic and van der
Waals interactionswith the enzyme active site residues, such asHis41 andCys145,
and achieved highly stable binding modes. The simulations showed a stable
structure of the main protease enzyme with the shortlisted leads in the pocket,
and the network of binding interactions remained intact during the simulations.
The overall molecular mechanics with generalized Born and surface area
solvation binding energies of the BBB-26580140, BDE-32007849, LAS-
51378804, and control molecules are −53.02, −56.85, −55.44,
and −48.91 kcal/mol, respectively. Similarly, the net molecular mechanics
Poisson–Boltzmann surface area binding energies of BBB-26580140, BDE-
32007849, LAS-51378804, and control are −53.6, −57.61, −54.41,
and −50.09 kcal/mol, respectively. The binding entropy energies of these
systems showed lower free energies, indicating their stable nature.
Furthermore, the binding energies were revalidated using the water swap
method that considers the role of the water molecules in bridging the ligands
to the enzyme active site residues. The compounds also revealed good ADMET
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properties and followed all major rules of drug-likeness. Thus, these compounds
are predicted as promising leads and can be subjected to further experimental
studies for evaluation of their biological activities.
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dynamics simulations, water swap method

1 Introduction

Wuhan city in the Hubei province of China experienced an
outbreak of pneumonia with unknown etiology around the end of
December 2019. Up until 31 January 2020, the outbreak had
grown significantly, infecting 9,720 people and resulting in the
deaths of 213 people in China as well as 106 persons in 19 other
countries (Carabelli et al., 2023). The coronavirus pandemic of
2019 first started in Wuhan city and was declared a pandemic by
the World Health Organization (WHO) when the disease spread
across the globe (Excler et al., 2021; Omolo et al., 2020). It was
found to be caused by the highly contagious severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)
microorganism (Viana et al., 2022). This virus is grouped
under the Coronaviridae family and has an RNA genome with
distinct crown-like spikes on the surface (Dai et al., 2020). As of
23 November 2024, this disease is responsible for
7,010,681 deaths resulting from 704,753,890 confirmed cases
of infection in 231 countries (https://www.worldometers.info/
coronavirus/). Although substantial efforts have been made in the
last 2–3 years to better understand the biology of SARS-CoV-2,
outbreaks of the disease are still being reported in many countries
(Msemburi et al., 2023).

The COVID-19 pandemic was triggered by SARS-CoV-2.
Since the coronavirus 3-chymotrypsin-like protease (3CLpro)
regulates viral replication, it is considered as a key target and
potential approach for the development of direct-acting
rationally based antiviral drugs (Vandyck and Deval, 2021).
Different mutants of the virus have been reported to be
associated with the newer outbreaks (Khan et al., 2021). This
high mutagenicity of the virus is attributable to its RNA genome,
which acquires genetic adaptations to rapidly form new variants
with different characteristics than the ancestral strain (Korber
et al., 2020). The WHO has thus far reported five SARS-CoV-
2 variants based on epidemiological data, namely the omicron
(B.1.1.529), alpha (B.1.1.7), beta (B.1.351), gamma (P.1), and
delta (B.1.617.2) types (Carabelli et al., 2023). The treatment
options available for COVID-19 and recommended by WHO
are as follows: baricitinib, sotrovimab, molnupirvir, remdesivir,
sarilumab, and tocilizumab as IL-6 receptor blockers (Mousavi
et al., 2022). Despite the availability of these drugs, COVID-19
remains an emergent disease for which development of new
treatments is required. SARS-CoV-2 codes for at least four
structural proteins that help with viral RNA synthesis, viral
assembly process, and viral binding to the host cell receptors
(Kim et al., 2020). The structural proteins include spike,
membrane, envelope, nucleocapsid, and 16 non-structural
proteins (Calligari et al., 2020). The main protein enzymes,
also known as chymotrypsin-like and papain-like proteases, are

the two proteases vital for coronaviral proteolytic processing of
polyproteins (Narayanan et al., 2022). The main protease is the
key enzyme of SARS-CoV-2 biology as well as functionality and
is significant as a drug target (Agost-Beltrán et al., 2022). The
main protease enzyme was found to be the target in about
154 research studies, including both in silico and
experimental works, and several compounds have been
reported against it. Natural compounds are rich sources for
drug development owing to their strong bioactivities and
structural variety, which have long been recognized as
important criteria. For instance, research has shown that
plant-derived alkaloids and flavonoids can effectively block
important enzymes linked to diseases because of their
distinct chemical structures (Chopra and Dhingra, 2021). As
proven by the production of sulfonamide derivatives with
increased inhibitory activities against bacterial enzymes,
synthetic compounds have the advantage of customization
for particular biological targets integrating specific strategies;
a new study has shown how natural scaffolds and synthetic
shifts work collaboratively to improve the therapeutic design
efficacy and specificity (Dzobo, 2022). Several inhibitors have
been proposed against the main protease enzyme of SARS-CoV-
2. For example, PF-07304814, PF-07304814, and PF-07304814
are phase 1 trial inhibitors proposed by Pfizer. Ebselen and
masitinib proposed by Sound Pharmaceuticals and AB Science,
respectively, are currently under phase 2 trials (Pang
et al., 2023).

The development of new drug molecules is a complicated,
expensive, and lengthy process that takes approximately
2–4 years of preclinical efforts and up to 6 years of clinical
studies (Maltezou and Papa, 2011; Shaker et al., 2021), with the
total procedural costs often being as much as 500 million dollars.
Conventional drug discovery entails three vital steps, namely
discovery and development of targets or leads, preclinical
research, and clinical development (Yu and MacKerell, 2017).
Drug discovery also includes hit screening, applications of
medicinal chemistry, and structural/biological activity
optimizations to limit the side effects of the drugs (Gediya and
Njar, 2009); these steps often involve the use of either classical or
reverse pharmacology. Both of these technologies have their pros
and cons. Computational drug discovery has been proven significant
in the recent past for its utility in identifying and optimizing lead
structures (Van Drie, 2007). Computational and biophysics
techniques could reduce time and deliver hits that can directly be
used in experimental work. The present computational study aims to
identify novel inhibitors against the main protease enzyme of SARS-
CoV-2 using different techniques through computational tools like
UCSF Chimera, Discovery Studio, AMBER package,
and SwissADME.
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2 Materials and methods

The methodological steps of this study, starting from enzyme
retrieval to receptor-based virtual screening and biophysics
techniques, are presented in Figure 1.

2.1 Main protease enzyme crystal structure
searching, retrieval, and processing

An initial exhaustive search was performed for the best
resolution and latest structure deposited in the protein data bank
(PDB) from the start of the COVID-19 pandemic up to 5 September
2023. This allowed identification of the crystal structure of the
protease enzyme (PDB ID: 5RF3) in complex with the compound
Z1741970824 (Douangamath et al., 2020). The structure was
deposited to the PDB on 15 March 2020 and released on the
same day. The structure was also determined by X-ray diffraction
and is available at the best resolution of 1.50 Å. This structure is
expressed in Escherichia coli, which was used as the expression
system. These findings suggest the determination of a high-quality
main protease structure. Next, the structure was imported into
UCSF Chimera v1.17 (Kaliappan and Bombay, 2018), where it
was first visualized for missing residues and structural errors.
The missing hydrogen atoms and charges were added using
“AddH” and “Add Charge” features in Chimera v1.17 (Kaliappan
and Bombay, 2018). Energy minimization was then carried out to
relax the enzyme structure, and the process was completed using two
algorithms. The first algorithm was the steepest descent method,
which was implemented for 5,000 cycles with a step size of 0.02 Å.
The second algorithm used was the conjugate gradient method,
which was also implemented for 5,000 steps. Both these algorithms
ensured the removal of steric clashes present in the
enzyme structure.

2.2 Active site conservation analysis

The active site conservation analysis was performed using the
main protease enzyme sequence of SARS-CoV-2 from the given
PDB ID. The sequence was imported into the Blastp tool of NCBI
and searched against the PDB (Mahram and Herbordt, 2015). A
multiple sequence alignment (MSA) was performed, and the
conservation of two important catalytic residues (His41 and
Cys145) at the S1 pocket of the enzyme was examined
(Elsa€sser et al., 2017). A complete conservation was observed,
illustrating the key mechanistic roles of these residues in
enzyme catalysis.

2.3 Drug library selection, retrieval, and
processing

A thorough literature search was conducted to determine the
drug libraries that best meet the current research aim. The selection

FIGURE 1
Comprehensive stepwise approach used to identify potential
inhibitors against the main protease enzyme of SARS-CoV-2. First, the
high-resolution structure of the enzyme was retrieved, followed by
structural preparation and energy minimization. Then, several
drug libraries were screened against the target enzymewith the aim of
prioritizing potential non-toxic and non-PAINS inhibitors with stable
binding conformations as well as interactions with the enzyme active
pocket. Multiple postsimulation analyses were performed on the
simulation trajectories to validate the docking findings.
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of libraries was based on the following criteria: chemical scaffold
diversity, easy availability for experimental assays, most extracted
data from natural sources, and not much explored in past studies.
Accordingly, the Asinex antiviral library (Yadav et al., 2021),
Seaweed Metabolite Database (Davis and Vasanthi, 2011),
Medicinal Fungi Secondary Metabolite and Therapeutics Library
(MFSMTL) (Vivek-Ananth et al., 2021), and Comprehensive
Marine Natural Products Database (CMNPD) (Sheokand et al.,
2024) were found, which have 6,827, 1,191, 1,830, and
45,000 compounds, respectively. The Asinex antiviral library
was designed from the perspectives of safety profile and
profound antiviral activity. The Seaweed Metabolite Database
comprises compounds extracted from marine algae. The
MFSMTL is a curated database of natural products and
contains secondary metabolites extracted from diverse
medicinal fungi. The CMNPD is rich in marine compounds
extracted from bacteria, fungi, green algae, sponges, cnidarians,
echinoderms, etc. After retrieval, the libraries were subjected to
pan-assay interference compounds (PAINS) filtration to remove
false positive compounds (Whitty, 2011). Thereafter, toxicity
filtration was performed to remove toxic chemical scaffolds
from the filtered PAINS libraries; this was accomplished using
the ChemBioServer 2.0 server (Athanasiadis et al., 2012). Then, the
filtered compounds were imported into PyRx 0.8 for energy
minimization (Dallakyan and Olson, 2015), where the libraries
were energy minimized using the MM2 force field (Halgren, 1996)
and converted to .pdbqt format.

2.4 Site-directed virtual screening

Site-directed virtual screening of the selected drug libraries
against the S1 pocket of the main protease enzyme was conducted
in PyRx 0.8 (Dallakyan and Olson, 2015). One of the essential
enzymes that convert the viral polyprotein into useful components
required for viral replication is the SARS-CoV-2 major protease
(Mpro). This enzyme is an important target for treatment as it
effectively stops the viral replication cycle (Pang et al., 2023). The
grid boxes were set around His41:ND1 (x-axis: 12.676 Å, y-axis:
−4.526 Å, z-axis: 21.049 Å) and Cys145: N (x-axis: 6.416 Å, y-axis:
−5.110 Å, z-axis: 16.812 Å) (Douangamath et al., 2020). The box
size along each dimension was set to 30 Å. The number of binding
conformations generated for each compound at the active pocket
of the enzyme was 100. Then, iterations with binding energy
scores ≥ −5.00 kcal/mol were discarded. A control molecule in
the form of Z1741970824 was used to test and validate the docking
protocol. This control molecule was extracted from the crystal
structure and docked with the enzyme at the same position using
PyRx 0.8, and the root mean-squared deviation (RMSD) value was
calculated using UCSF Chimera v1.17 (Kaliappan and Bombay,
2018). It was observed that both the crystal and PyRx 0.8 docked
conformations were similar, with an RMSD value of 0.15 Å. The
best-docked solutions from virtual screening were filtered and used
in Discovery Studio Client v2021 to thoroughly examine the
chemical interactions (Biovia, 2017). The binding
conformations of the selected compounds with the enzyme were
studied using USCF Chimera v1.17 (Kaliappan and
Bombay, 2018).

2.5 2D fingerprinting of the best-
docked molecules

The 2D fingerprinting of the best-docked molecules was
performed using the Swiss similarity online server (Zoete et al.,
2016). The main objective here was to search for the derivatives of
leads identified in the virtual screening process and to evaluate their
binding affinities with the main protease enzyme.

2.6 Molecular dynamics simulations:
systems preparation and production

Molecular dynamics simulation is a powerful biophysics tool
that provides insights into complex dynamics over the simulation
time (Ahmad et al., 2017; Rafi et al., 2020). The simulations were
carried out using AMBER v22 (Case et al., 2022). The systems were
preprocessed using the Antechamber program (Wang et al., 2001).
The leap module was applied to add missing hydrogen atoms
(Schafmeister et al., 1995). The systems were solvated into the
OPC water model and counter ions were added subsequently to
neutralize the charge on the complexes (Sengupta et al., 2021). To
describe the receptors, the FF19SB force field was used. The
compounds were treated using the general Amber force field 2
(GAFF2) (Tian et al., 2019; Vassetti et al., 2019), and the energy
minimization was achieved using 500 iterations of the steepest
descent and conjugate algorithms. During this process, the
protein was fixed with a force constant of 250 kcal/mol/Å2. The
systems were heated to 300 K under a constant volume (NVT)
ensemble for 20 ps. At the same time, a weak constraint of 10 kcal/
mol/Å2 was applied to the protein atoms. Then, ensemble
equilibration of the systems was performed for approximately
1 ns under NPT. The production iterations comprised 100-ns
runs with an average pressure of 1 atm using isotropic position
scaling. Langevin dynamics was applied for temperature control in
the presence of a collision frequency of 1 ps−1 (Izaguirre et al., 2001).
The long-term non-bonded interactions were handled using the
particle mesh Ewald method (Petersen, 1995). The hydrogen atoms
involved in bonding were constrained by the SHAKE method
(Kräutler et al., 2001). The simulation trajectories were
determined using the CPPTRAJ script of AMBER for structural
stability investigations (Roe and Cheatham, 2013). Lastly,
XMGRACE v5.1 was used to obtain the plots (Turner, 2005).

2.7 Estimating binding free energies

Estimation of the binding free energies is vital in the current
drug discovery pipeline because of the modest computational
requirements and prediction accuracy. The binding free energies
are considered to be more accurate than the docking calculations as
the former is based on simulation trajectory frames and considered
as dynamic conformations of the intermolecular binding; the latter
is based only on one docked intermolecular conformations (Wang
et al., 2019). The binding free energies were estimated using the
molecular mechanics Poisson–Boltzmann surface area (MM-PBSA)
approach in AMBER v22. The MM-PBSA was obtained using the
AMBER MMPBSA.py module (Miller III et al., 2012). The initial
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.prmtop files for the complexes, receptors, and ligands were
generated using the ante-MMPBSA.py module. The MM-PBSA is
based on the principle of subtraction of the receptor and ligand
energies from that of the complex (Genheden and Ryde, 2015).
Mathematically, the MM-PBSA is given by

ΔGnet binding energy � Gcomplex binding energy

− Gprotein binding energy + Gligand binding energy( ).

Individually, the G terms above comprise the molecular
mechanics energy, coupled temperature and entropic energy, and
solvation free energy, as given by the following equation:

G � Emolecularmechanics − TS( ) + Gsolvation( ).

The MM-PBSA energy equation was simulated on a total of
10,000 frames. The binding entropies for the complexes were obtained
separately using normal mode analysis in AMBER (Genheden et al.,
2012). Owing to the computationally intensive nature of the entropy
energy calculations, only five frames were processed.

2.8 Water swap analysis

The water swap approach is considered to be a more robust and
theoretically efficient method for predicting the absolute binding
affinity of a guest ligand to a given macromolecule (Woods et al.,
2014). Here, a protein ligand is swapped with an equal volume of
water clusters present in the protein active pocket (Bergström and
Larsson, 2018). This method entails constructing a λ-coordinate that
allows the joining of a periodic box of water molecules with a
periodic box of ligands. The energy change in the λ-coordinate is
predicted by standard methods used in water swap (Ahmad et al.,
2019) over a default of 1,000 iterations.

2.9 Prediction of ADMET properties

Predictions of the ADMET properties of the compounds are vital
for selecting viable and effectivemolecules for in vitro and in vivo testing
(Van De Waterbeemd and Gifford, 2003). Compound failure during
clinical trials due to poor ADMET properties incur both financial and
time costs to scientists (Jia et al., 2019). Therefore, it is preferable to
select compounds that are predicted to possess favorable ADMET
properties as these are more likely to clear clinical hurdles associated
with their chemical attributes. The ADMEproperties of the compounds
were determined using SwissADME (Daina et al., 2017), while their
toxicities were predicted through the pkCSM server (Pires et al., 2015).

2.10 Computational prediction of the
biological activity

The bioactivity scores of the selected compounds were evaluated
using an online Mol inspiration server. This server predicts the
bioactivity score of a given compound against the ion channels,
kinases, proteases, G-protein-coupled receptors (GPCRs), and
enzymes. The Mol inspiration server can be accessed using the
following link: https://www.molinspiration.com/cgi/properties.

3 Results

3.1 Virtual screening for hit compounds

A structure-based virtual screening protocol was applied to screen
compounds from the selected drug libraries. The non-PAINS and
non-toxic compounds are only considered as discussed in the
methods section. The screening identified three promising
compounds from the libraries, namely BBB-26580140, BDE-
32007849, and LAS-51378804, with binding energy scores
of −13.02, −13.0, and −12.56 kcal/mol, respectively. These
compounds showed better binding affinity scores than the control
(Z1741970824; binding energy score: −11.59 kcal/mol). The lead
structures also showed robust hydrophilic and hydrophobic
interactions with the enzyme active site residues (His41 and
Cys145) and achieved highly stable docked binding modes. The
interaction patterns of the compounds were observed under broad
and expanded conditions for the S1, S1′, S2, and S3 active pocket
regions. All three compounds showed deep bindings at the active
pocket and were found to have adjusted well inside the pocket. The
chemical names of BBB-26580140, BDE-32007849, and LAS-
51378804 are 1-(carboxymethyl)-5-(cyclopentylcarbamoyl)pyridin-
1-ium-2-olate, 4-(4-(((3-chloro-2-methylphenyl)sulfonyl)carbamoyl)
phenyl)-1-methylpiperazin-1-ium, and 1-(carboxymethyl)-5-((4-
fluorobenzyl)carbamoyl)pyridin-1-ium-2-olate, respectively. The
BBB-26580140 compound formed hydrogen bonds with His41,
Cys145, His163, and Glu166 with interaction lengths of 1.56 Å,
1.84 Å, 1.64 Å, and 2.0 Å, respectively; the compound also showed
hydrophobic interactions with Leu141, Ser144, Phe140, Thr26, Thr25,
Ser46, Leu27, Met49, Met165, and His164. The BDE-32007849
compound produced a hydrogen bond with Ser46 at a bond
length of 1.87 Å; this hydrogen bond was formed through the
compound terminal benzene ring. The remainder of the
compound structure (N-((3-chloro-2-methylphenyl)sulfonyl)
benzamide) formed hydrophobic contacts with His41, Thr25,
Cys44, Thr45, Thr24, Ser144, Leu141, Phe140, Asn142, Glu47, and
Glu166, among others. The LAS-51378804 compound interacted
majorly through its 1-(carboxymethyl)-5-(methylcarbamoyl)
pyridin-1-ium-2-olate part and formed hydrogen bonds with
Ser144, His163, Glu166, and His41 at bond lengths of 1.56 Å,
2.01 Å, 1.56 Å, and 1.42 Å, respectively. Fluorobenzene also
formed a hydrogen bond with Ser46 at a bond length of 2.14 Å.
The docked conformations and chemical bondings of the compounds
and control are given in Figure 2. These results illustrate that the
compounds are deeply and strongly bound to the main protease
enzyme S1 pocket, resulting in highly stable binding conformations.
Furthermore, each of the leadmolecules was used in a similarity-based
2D search, and the best results against each lead were tabulated.

3.2 2D fingerprinting of the best-
docked molecules

Two-dimensional fingerprinting analysis was performed against
the drug-like molecules from the PDB, which allowed shortlisting of
15 compounds for BBB-26580140, six compounds for BDE-
32007849, and 16 compounds for LAS-51378804. The prediction
scores against each of the derivatives are given in Table 1. The
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compounds were redocked with the protease enzyme using the same
protocols and parameters. None of the structurally similar
compounds were found to have better binding than the
parent structure.

3.3 Molecular dynamics simulations

Study of the macromolecular structure is a key step in
understanding the biology of a molecule. The macromolecules
perform their functions by interacting with different ligands.
Therefore, stable dynamic behaviors of the docked complexes
were interpreted. In molecular dynamics simulations, stable
conformations and interactions of the selected leads with the
protease enzyme were disclosed. This was essential for the
compounds to exert their biological actions by stopping enzyme
activity. Statistical analyses were conducted based on different
simulations, including the root mean-squared deviation (RMSD)
(Ahmad et al., 2017; Maiorov and Crippen, 1994), root mean-
squared fluctuation (RMSF) (Ahmad et al., 2017; Kuzmanic and
Zagrovic, 2010), and radius of gyration (Rg) (Lobanov et al., 2008).
These analyses were conducted by choosing the carbon alpha atoms
of the docked systems. The RMSDwas performed first; in contrast to
the control used, the lead complexes have significantly stable
behaviors with no major deviations in the dynamics. The mean
RMSDs for BBB-26580140, BDE-32007849, LAS-51378804, and

control were 1.53 Å, 1.31 Å, 1.38 Å, and 1.89 Å, respectively
(Figure 3A). These values indicate that the control system shows
more structural variation in the presence of the control molecule. On
the other hand, the lead systems were more tolerant of the presence
of the compounds and showed strong intermolecular
conformations, making the complexes overall stable in nature.
The RMSF values of the complexes were calculated next; the
mean RMSF values of BBB-26580140, BDE-32007849, LAS-
51378804, and control were 1.35 Å, 1.20 Å, 1.25 Å, and 2.01 Å,
respectively (Figure 3B). Here also, larger deviations in the control
systems are depicted by the RMSF values; these changes may be
attributed to the continuous movements of the control compound in
the active pocket of the main protease enzyme, which results in
pressure on the flexible regions. Next, the compact nature of the
receptor enzyme in the presence of the inhibitors was evaluated. The
mean Rg values of BBB-26580140, BDE-32007849, LAS-51378804,
and control were 38.52 Å, 37.02 Å, 37.34 Å, and 40.25 Å, respectively
(Figure 3C); the Rg values show the same trend as the RMSD and
RMSF analyses.

3.4 Estimating the binding free energies

The overall objectives of the MM-PBSA and molecular
mechanics with generalized Born and surface area (MM-GBSA)
are to determine the differences in free energies between the bound

FIGURE 2
Binding modes and interactions of the leads with the S1 active pocket of the main protease enzyme of SARS-CoV-2. The different types of
interactions are presented in the figure.

Frontiers in Pharmacology frontiersin.org06

Alqahtani 10.3389/fphar.2025.1459581

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1459581


TABLE 1 Structure-based compounds similar to those of the leads.

Lead/Similarity-based scaffolds BBB-26580140 BDE-32007849 LAS-51378804

Parent structure

DB06397, Nicaraven
Score: 0.540
Docking score: −8.21

DB09355, Sulfabenzamide
Score: 0.642
Docking score: −7.52

DB15450, PF-05105679
Score: 0.542
Docking score: −6.34

DB12929, JNJ-39220675
Score: 0.536
Docking score: −9.62

DB12418, Saccharin
Score: 0.607
Docking score: −6.35

DB12929, JNJ-39220675
Score: 0.539
Docking score: −7.54
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TABLE 1 (Continued) Structure-based compounds similar to those of the leads.

Lead/Similarity-based scaffolds BBB-26580140 BDE-32007849 LAS-51378804

DB13655, Nikethamide
Score: 0.524
Docking score: −7.54

DB07115, N-(4-chlorobenzyl)-
N-methylbenzene-1
Score: 0.575
Docking score: −5.32

DB12585, Ondelopran
Score: 0.535
Docking score: −9.64

DB12585, Ondelopran
Score: 0.523
Docking score: −10.25

DB16040, DU125530
Score: 0.536
Docking score: −9.64

DB11366, Roquinimex
Score: 0.527
Docking score: −6.98
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and

TABLE 1 (Continued) Structure-based compounds similar to those of the leads.

Lead/Similarity-based scaffolds BBB-26580140 BDE-32007849 LAS-51378804

DB04764, [4-(3-aminomethyl-phenyl)-piperidin-1-yl]-(5-phenethyl- pyridin-3-yl)-methanone
Score: 0.522
Docking score: −6.54

DB07476, n-[4-(aminosulfonyl)phenyl]-
2-mercaptobenzamide
Score: 0.484
Docking score: −7.84

DB12562, Setipiprant
Score: 0.509
Docking score: −4.45

DB11366, Roquinimex
Score: 0.503
Docking score: −10.065

DB07049, (2R)-1-[(4-tert-butylphenyl)sulfonyl]-
2-methyl-4-(4-nitrophenyl)piperazine
Score: 0.482
Docking score: −9.65

DB13327, Picotamide
Score: 0.508
Docking score: −8.01
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TABLE 1 (Continued) Structure-based compounds similar to those of the leads.

Lead/Similarity-based scaffolds BBB-26580140 BDE-32007849 LAS-51378804

DB14805, DCFPyL F-18
Score: 0.500
Docking score: −8.65

Not predicted DB05861, Tasquinimod
Score: 0.506
Docking score: −9.64

DB13531, Nicofetamide
Score: 0.492
Docking score: −8.21

Not predicted DB13655, Nikethamide
Score: 0.500
Docking score: −6.58
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TABLE 1 (Continued) Structure-based compounds similar to those of the leads.

Lead/Similarity-based scaffolds BBB-26580140 BDE-32007849 LAS-51378804

DB13687, Niaprazine
Score: 0.489
Docking score: −8.64

Not predicted DB13531, Nicofetamide
Score: 0.496
Docking score: −9.64

DB04873, Piboserod
Score: 0.488
Docking score: −8.54

Not predicted DB13687, Niaprazine
Score: 0.493
Docking score: −8.64
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unbound states of the molecules in an aqueous solution and
compare different conformations of the molecules (Genheden
and Ryde, 2015; Wang et al., 2019). The MM-PBSA and MM-
GBSA methods are now regularly applied in drug discovery
pipelines as they offer more accurate information than the
static intermolecular conformation docking studies (Tuccinardi,
2021). The MM-PBSA requires modest computational resources
and is based on diverse molecular dynamics simulation frames
(Zhang et al., 2017). The details regarding the MM-PBSA and
MM-GBSA binding energies of the complexes are tabulated in
Table 2. The values indicate that all three complexes and the
control have robust binding energies and that the complexes are
considerably stable in terms of the binding and docked

conformations. Between the MM-PBSA and MM-GBSA
energies, the van der Waals energy demonstrated the
most favorable contribution to the equilibrium of the
complexes. The net van der Waals energy contributions of
BBB-26580140, BDE-32007849, LAS-51378804, and control
were found to be −50.36, −52.01, −50.61, and −49.51 kcal/mol,
respectively. The electrostatic energy showed the second
most favorable contributions to the binding of ligands with
the main protease enzyme. The net electrostatic energy
contributions to the overall stabilization of the complexes
are −16.34, −17.38, −15.00, and −13.69 kcal/mol for BBB-
26580140, BDE-32007849, LAS-51378804, and control,
respectively. The overall solvation energies of the complexes

FIGURE 3
Statistical evaluations performed on the trajectories of themolecular dynamics simulations. Themetrics included (A) RMSD, (B) RMSF, and (C) Rg. All
units are in angstroms.
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were found to have non-favorable contributions, and most of
these contributions were due to the polar solvation energies.
Non-polar solvation energy seems to be vital for stabilization
of the complexes. The net solvation energies of BBB-26580140,
BDE-32007849, LAS-51378804, and control were found to be
13.68, 12.54, 10.17, and 14.29 kcal/mol for the MM-GBSA
as well as 13.10, −57.61, −54.41, and −50.09 kcal/mol for the
MM-PBSA, respectively. The overall MM-GBSA binding
energies of BBB-26580140, BDE-32007849, LAS-51378804, and
control were −53.02, −56.85, −55.44, and −48.91 kcal/mol,
respectively. Similarly, the net MM-PBSA binding energies of
BBB-26580140, BDE-32007849, LAS-51378804, and control
were −53.6, −57.61, −54.41, and −50.09 kcal/mol, respectively.

3.5 Predictions of the entropy energies of
the complexes

The random energy possessed by each complex was determined
by entropy analysis. The random free energy enables the ligands to
escape the enzyme active pocket and detach from it. It was found
that the identified systems had lower free energies. The net entropy
energies of BBB-26580140, BDE-32007849, LAS-51378804, and
control were 11.36, 10.44, 14.05, and 18.67 kcal/mol, respectively.
This additionally confirms that these systems have high
intermolecular stabilities and good ligand binding strengths with
the protease enzyme. The binding entropy energy findings of the
complexes are reported in Figure 4.

TABLE 2 Free energy estimates of the docked/control complexes. The values are statistically calculated in terms of kcal/mol.

Energy parameter BBB-26580140 BDE-32007849 LAS-51378804 Control

MM-GBSA

VDWAALS −50.36 −52.01 −50.61 −49.51

EEL −16.34 −17.38 −15.00 −13.69

DELTA G gas −66.7 −69.39 −65.61 −63.2

DELTA G solv 13.68 12.54 10.17 14.29

DELTA TOTAL −53.02 −56.85 −55.44 −48.91

MM-PBSA

VDWAALS −50.36 −52.01 −50.61 −49.51

EEL −16.34 −17.38 −15.00 −13.69

DELTA G gas −66.7 −69.39 −65.61 −63.2

DELTA G solv 13.10 11.78 11.20 13.11

DELTA TOTAL −53.6 −57.61 −54.41 −50.09

FIGURE 4
Binding entropy energy contribution of each complex. The total energy is split into the rotational, vibrational, and translational energy components.
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3.6 Water swap energies of the complexes

Next, the water swap binding energies of the complexes were
determined to validate and crosscheck the system stabilities. The
water swap method is considered to be very robust in terms of
confirming the binding affinities of the compounds to the main
protease enzyme. Water molecules play significant roles in ligand
binding with the receptor enzyme residues (Woods et al., 2014). The
water swap approach is particularly useful for investigating the roles
of the water molecules in bridging the ligands with the enzyme active
site residues (Woods et al., 2011). The water swap method estimates
the absolute binding free energy in terms of three algorithms,
namely thermodynamic integration (TI), free energy perturbation
(FEP), and Bennett’s methods. Among the compounds, BBB-
26580140 was found to have the most dominant and stable
binding energy. The FEP, TI, and Bennett’s energy values of the
compounds were found to be −57.1, −58.67, and −58.6 kcal/mol,
respectively. The details of the water swap energies of the complexes
are given in Figure 5.

3.7 Predictions about drug-likeness and
medicinal chemistry of the compounds

Before conducting experimental evaluations, predictions about
the drug-likeness of the selected compounds were used to determine
whether they could pass the prominent drug-like rules, such as the
Lipinski rule of five (Lipinski, 2004), as well as the Veber (Veber et al.,
2002), Egan (Egan et al., 2000), and Muegge (Ahmad et al., 2017)
rules. Drug-likeness increases the chances that a compound
would obtain clearance from the clinical trials for further
marketing. Drug-likeness predictions allow us to compare and
contrast the selected leads with known drug-like rules. The drug-
like molecules also have improved oral bioavailabilities and can be
transformed into successful drug molecules (Protti et al., 2021).
All three leads and the control molecule were found to show
favorable drug-like properties and achieve clearance based on
the important drug-like rules, as summarized in Table 3. Similarly,
the compounds were found to have good bioavailability scores,

meaning that high concentrations of the compounds can reach
the target sites for biological actions. The compounds were also
disclosed to show no alerts for PAINS, indicating that they may
only bind to one specific biological macromolecule and not multiple
ones (Whitty, 2011). Thus, there are fewer chances of obtaining false
positive results. All the compounds were also found to have good
synthetic accessibility scores, where lower scores imply that the
compounds can be easily synthesized in the laboratory for
biological activities.

3.8 Computation of the pharmacokinetic
properties

To predict the bodily behaviors upon administration of the
selected compounds, the pharmacokinetic properties of the
inhibitors were determined (Lombardo et al., 2017). All the lead
compounds and the control molecule showed very high
gastrointestinal absorption, resulting in the maintenance of
significant amounts at the target site for biological activity (Alex,
2003). All compounds were non-permeable to the blood–brain
barrier, so the compounds are not expected to have any
neurotoxic side effects (De Boer and Breimer, 1994). The
compounds were non-substrates of P-glycoprotein, so they will
not be expelled from the cells and will be available for biological
functions (Wang et al., 2011). The compounds were also found to be
non-inhibitors of the cytochrome isoforms (Cheng et al., 2011).
Therefore, the compounds can be easily metabolized and excreted
from the body after fulfilling their pharmacological actions. Table 4
lists the pharmacokinetic properties of the selected inhibitors
and control.

3.9 Toxicity predictions

The toxicity features of compounds significantly impact their
success as drugs. Hence, the toxicities of the selected compounds
were evaluated. All compounds were found to be non-toxic, non-
immunogenic, and non-mutagenic.

FIGURE 5
Water-swap-based binding free energies of the complexes in units of kcal/mol.
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3.10 Bioactivity predictions

The possible bioactivities of the leads and control were predicted
(Table 5). The molecules with bioactivity scores >0.0 are considered
to have considerable biological activities, while those with scores in
the range of −0.50 to 0.00 are classified as modestly active and those
with values <−0.50 are regarded as inactive (Khan et al., 2017). The
findings presented in the table show that the compounds are
biologically active and may exert physiological activity by binding
to and interacting with the nuclear receptor ligands, protease
enzyme, and GPCR ligands. Moreover, the bioactivities of the
lead structures were predicted to be more pronounced than that
of the control molecule. Among the leads, BDE-32007849 was found
to have the most significant biological activities against the
target enzymes.

4 Discussion

The COVID-19 pandemic that started in China and spread
globally has resulted in the deaths of millions and left many with
health disabilities (Cecconi et al., 2020). Although the disease is
currently well-managed with extensive use of effective vaccines,
there is an ongoing search for potent drugs (Chukwudozie et al.,
2021). In this computational study, diverse drug library sources were
screened in an attempt to identify compounds that show the best
binding capabilities with the main protease enzyme of SARS-COV-
2, the causative agent of the COVID-19 pandemic. As a result, three
drug molecules (BBB-26580140, BDE-32007849, and LAS-
51378804) were found, which showed highly stable
conformations with the enzyme at the S1 pocket. The docking
binding energy scores of BBB-26580140, BDE-32007849, and

TABLE 3 Analysis of the medicinal chemistry properties and drug-likeness of the shortlisted inhibitors.

Drug-like rule BBB-26580140 BDE-32007849 LAS-51378804 Control

Lipinski rule of five Follow Follow Follow Follow

Egan Follow Follow Follow Follow

Veber Follow Follow Follow Follow

Muegge Follow Follow Follow Follow

Bioavailability score 0.56 0.55 0.56 0.55

Pan-assay interference compounds No alert No alert No alert No alert

Synthetic accessibility 2.23 3.02 2.26 3.11

TABLE 4 Pharmacokinetic properties of the inhibitory compounds.

Property BBB-26580140 BDE-32007849 LAS-51378804 Control

Drug absorption form the gastrointestinal tract Maximum Maximum Maximum Maximum

Penetration of blood–brain barrier Not detected Not detected Not detected Not detected

Compounds as P-gp substrates Not detected Not detected Not detected Not detected

Compounds as CYP1A2 receptor inhibitors Not detected Not detected Not detected Not detected

Compounds as CCYP2C19 receptor inhibitors Not detected Not detected Not detected Detected

Compounds as CYP2C9 receptor inhibitors Not detected Not detected Not detected Not detected

Compounds as CYP2D6 receptor inhibitors Not detected Not detected Detected Not detected

Compounds as CYP3A4 receptor inhibitors Not detected Not detected Not detected Not detected

Skin permeation (Log Kp) −7.06 cm/s −6.49 cm/s −7.07 cm/s −7.51 cm/s

TABLE 5 Predicted Mol inspiration bioactivities of the lead/control molecules.

Compound/
control

Ligand for
GPCR

Modulator of ion
channel

Inhibitor of
kinase

Ligand for
nuclear receptor

Inhibitor of
protease

Inhibitor of
enzyme

BBB-26580140 0.04 0.09 −0.59 1.01 0.11 0.27

BDE-32007849 0.17 0.14 −0.15 0.15 0.16 0.23

LAS-51378804 0.00 0.09 −0.35 0.66 0.11 0.22

Control 0.13 0.06 −0.22 0.25 −0.005 0.15
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LAS-51378804 were −13.02, −13.0, and −12.56 kcal/mol,
respectively. These energy scores determine the compounds as
lead structures with networks of strong intermolecular
interactions. In contrast to the control molecule Z1741970824
(binding energy score: −11.59 kcal/mol), the three compounds
showed robust hydrophilic and hydrophobic interactions. The
interactions most important to the overall stabilities of the
complexes involve the enzyme active site residues, such as
His41 and Cys145. As the molecular-docking-based virtual
screening often results in false positive findings, the predicted
stabilities of the best molecular bindings with the main protease
enzyme of SARS-CoV-2 were validated through molecular
dynamics simulations. It was observed that the enzyme structures
were stable in the presence of the shortlisted leads and that the
networks of binding interactions were intact. The net MM-GBSA
binding energies of BBB-26580140, BDE-32007849, LAS-51378804,
and control were −53.02, −56.85, −55.44, and −48.91 kcal/mol,
respectively; the net MM-PBSA binding energies of BBB-
26580140, BDE-32007849, LAS-51378804, and control
were −53.6, −57.61, −54.41, and −50.09 kcal/mol, respectively.
These energies demonstrate the formation of strong
intermolecular complexes. Moreover, the predicted binding
entropy energies of the systems showed the presence of lower
free energies, indicating that the systems had stable nature. From
the drug-likeness perspective, the compounds were found to be non-
toxic while fulfilling the important drug-like rules. The compounds
also revealed good ADMET properties (Jia et al., 2019). Thus, the
predicted compounds are promising lead structures that can be
utilized in further in vitro and in vivo studies.

5 Conclusion

In this study, three drug molecules (BBB-26580140, BDE-
32007849, and LAS-51378804) were identified as promising
binders of the main protease enzyme of SARS-CoV-2 after
extensive structure-based virtual screening of four libraries
(Asinex Antiviral, Seaweed Metabolite Database, MFSMTL, and
CMNPD with 6,827, 1,191, 1,830, and 45,000 compounds,
respectively). All three compounds showed highly stable binding
conformations at the S1 active pocket of the main protease enzyme
and formed short-distance hydrophilic and hydrophobic contacts
with catalytically active residues. The stable intermolecular
conformations of the docked complexes were validated through
molecular dynamics simulations, which showed minor local loop-
mediated deviations and the absence of global changes. It was also
noted that the enzyme was tolerant to the presence of the
compounds when they occupied the active pocket. The
compounds also revealed stable electrostatic and van der Waals
energies as well as lower polar solvation energies. Additionally, the

compounds were proven to be drug-like and showed favorable
medicinal chemistry properties along with non-toxic, non-
mutagenic, and non-carcinogenic features. The compounds were
found to show bioactivities against nuclear receptor ligands,
protease enzymes, GPCRs, etc. The bottom line of this study is
that the identified compounds are promising and may be used in
further experimental tests to validate their real biological potentials.
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