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Introduction: Adverse Drug Reactions (ADRs), a widespread phenomenon in
clinical drug treatment, are often associated with a high risk ofmorbidity and even
death. Drugs and changes in gene expression are the two important factors that
affect whether and how adverse reactions occur. Notably, pharmacogenomics
data have recently become more available and could be used to predict ADR
occurrence. However, there is a challenge in effectively analyzing the massive
data lacking guidance on mutual relationship for ADRs prediction.

Methods: We constructed separate similarity features for drugs and ADRs using
pharmacogenomics data from the Comparative Toxicogenomics Database [CTD,
including Chemical-Gene Interactions (CGIs) and Gene-Disease Associations
(GDAs)]. We proposed a novel deep learning architecture, DGANet, based on
the constructed features for ADR prediction. The algorithm uses Convolutional
Neural Networks (CNN) and cross-features to learn the latent drug-gene-ADR
associations for ADRs prediction.

Results and Discussion: The performance of DGANet was compared to three
state-of-the-art algorithms with different genomic features. According to the
results, GDANet outperformed the benchmark algorithms (AUROC = 92.76%,
AUPRC = 92.49%), demonstrating a 3.36% AUROC and 4.05% accuracy
improvement over the cutting-edge algorithms. We further proposed new
genomic features that improved DGANet’s predictive capability. Moreover,
case studies on top-ranked candidates confirmed DGANet’s ability to predict
new ADRs.
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1 Introduction

Adverse Drug Reactions (ADRs), commonly known as side
effects (Research, 2022), have emerged as a major concern in
public health and pharmacotherapy, imposing a substantial socio-
economic burden along with severe incidence and mortality rates
among patients during drug development. According to their
mechanism of occurrence, ADRs can be divided into two main
types: dose-related reactions (type A) and non-dose related or
idiosynchrasic (type B), among which type A reactions are widely
considered predictable (Micaglio et al., 2021). With the increasing
availability of clinical and non-clinical data, computer algorithms
have demonstrated the greatest utility in ADR prediction analysis. In
the last 2 decades (2004~2022), computer-based ADR predictions
have primarily relied on the structural information of compounds
(Das and Mazumder, 2023). However, the occurrence of Adverse
Reactions (ARs) is not solely influenced by the structural
information of the compound, but is also affected by the
interaction between drugs or their intermediate metabolites and
drug-effector gene-encoded proteins such as enzymes, receptors, ion
channels, and the genes themselves. Studies have demonstrated that
genetic variations in drug-metabolizing enzymes, drug transporters,
and drug targets have a significant impact on changes in
pharmacokinetics and pharmacodynamics of drugs (Zhou et al.,
2015). Consequently, predicting ADRs solely based on the structural
information of compounds may overlook critical information,
potentially compromising the predictive performance of the
model. According to recent investigations, pharmacogenomics
accounts for ~80% variability in drug pharmacokinetics and
pharmacodynamics, as well as over 60% of ADRs (Cacabelos
et al., 2019; Pirmohamed, 2023). For instance, HLA-
pharmacogenomic markers are the main culprits that influence
the mechanisms of immunopathogenesis of drug-induced severe
cutaneous adverse drug reactions (SCARs) (Satapornpong et al.,
2024). Currently the main clinical areas applying pharmacogenetic
testing include hemolitc anaemias, malignant hyperthermia,
porphyrias, severe skin disorders, Brugada and long QT
syndromes (Micaglio et al., 2021; Satapornpong et al., 2024).
Furthermore, changes in gene expression can often be detected
prior to the emergence of histopathological changes or clinical signs
(Zhang et al., 2020). This suggests that genes can serve as valuable
predictive factors, providing early warnings and preventing the
occurrence of ADRs, especially type B reactions (Micaglio et al.,
2021). Consequently, integrating pharmacogenomic data with
compound structural information into Machine Learning (ML)
algorithms, rather than relying solely on compound structural
information, could potentially enhance the timeliness and
reliability of ADR predictions.

Several large-scale pharmacogenomics databases have recently
become publicly available for research purposes, including the

Library of Integrated Network-based Cellular Signatures (LINCS)
L1000 project (Subramanian et al., 2017), Search Tool for
Interactions of Chemicals (STITCH) (Kuhn et al., 2008), and the
Comparative Toxicogenomics Database (CTD) (Davis et al., 2023).
The LINCS L1000 project (Subramanian et al., 2017) profiled Gene
Expression (GE) in cells treated with different dosages, with
expressions assessed at various time points. The LINCS
L1000 dataset has been widely used in recent studies to predict
ADRs (Wang et al., 2016; Üner et al., 2023; Li et al., 2024) or Drug-
Drug Interactions (DDIs) (Raja et al., 2017; Shankar et al., 2021). For
instance, using the combination of the strongest GEs in LINCS
L1000 and chemical structures of drugs,Wang et al. (2016) predicted
ADRs using Extra Trees (ETs) (Geurts et al., 2006) classifiers
(AUROC = 85.4%) and constructed an Adverse Drug Reaction-
Gene Ontology (ADR-GO) network to link the most probable ARs
predicted by the model to the relevant gene ontologies. Additionally,
using the complete set of drug-perturbed Gene Expression Profiles
(GEX) and their experimental Metadata (META), Üner et al. (2023)
achieved a better predictive performance among five deep learning
architectures, with Macro-AUC and Micro-AUC values of 79.0%
and 87.7%, respectively. Given that the metadata is meaningless
without GEs and could lead to numerous calculations, we chose the
original GE feature for comparison in this study. STITCH is a
resource for exploring known and predicted interactions of
chemicals and proteins from 1,133 organisms. It integrates
experimental, curated, and text-mined evidence, and users can
filter their searches by tissue, affinity, and other criteria. Bongini
et al. (2023) develop a model named DruGNN which constructed a
graph to predict ADRs based on drug-protein interactions obtained
from the STITCH database, and each protein was mapped to the
gene from which it was derived. DruGNN achieved an accuracy of
86.3%. Recently, Li et al. (2024) proposed a novel model named
BiMPADR, which integrated drug gene expression data extracted
from the LINCS database into drug features and utilized gene–ADR
associations extracted from the ADReCS-Target database (Huang
et al., 2018) into ADR features to predict ADRs, achieving an AUC
of 89.4%. While previous methods have demonstrated promising
predictive outcomes, they exhibit limitations, including lowAUROC
scores, inability to apply to drugs with limited pre-existing
information, and failure to consider both drug and ADR
characteristics simultaneously. Moreover, these methods have not
fully leveraged the potential of pharmacogenomics data, including
the complex and diverse relationships between chemicals, genes,
biomarkers, therapeutic targets, etc., rather than solely focusing on
changes in gene expression. The CTD database houses a substantial
amount of correlation data between chemicals, genes, phenotypes,
and diseases. These data were meticulously organized and annotated
by professional bioinformatics experts, ensuring data quality and
accuracy. Despite the potential of pharmacogenomics data for ADR
prediction, research in this area using the CTD database remains
limited, possibly due to the challenges associated with data mapping.
Consequently, there is still potential areas for advancement in ADR
prediction utilizing pharmacogenomics data.

Although the above databases provide rich pharmacogenomics
information, the enormous genetic data presents challenges to
feature processing and model design for ADR prediction.
Therefore, more efficient feature analysis is required to enhance
the performance of prediction models. To achieve this goal, we

Abbreviations: ADR, Adverse Drug Reactions; DDI, Drug‒Drug Interaction;
CS, Chemical Structure; GE, Gene Expression; GDA, Gene-Disease
Association; CGI, Chemical-Gene Interactions; DSA, Drug-Side Effect
Association; LSN, Linear Subnetworks; CSN, Convolutional Neural Network
with a Subnetwork; AUROC, Area under the receiver operating characteristic
curve; AUPRC, Area under the precision-recall curve.
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creatively combined chemical structure descriptors, ADR semantic
descriptors, and three different genomic descriptors [drug-
perturbed GE changes, Chemical-Gene Interactions (CGIs), and
Gene-Disease Associations (GDAs)] from various databases to
establish drug-genomic-ADR relationships that can be used to
train a Convolutional Neural Network (CNN)-based model for
predicting drug-ADR associations.

Herein, we first constructed a benchmark validation dataset and
five different features and then introduced a new deep learning
method for ADR prediction. Subsequently, the ablation experiment
validated the effectiveness of our proposed pharmacogenomics
features, and additional case studies further demonstrated the
practicality of our model as a predictor of novel ADRs.

2 Materials and methods

2.1 Benchmark datasets constructed using
known drug-ADR relations

The experimental benchmark datasets used in this study were
from five public databases: Side Effect Resource 4.1 (SIDER) (Kuhn

et al., 2016), LINCS L1000 (Subramanian et al., 2017), CTD (Davis
et al., 2023), PubChem (Kim et al., 2019), and the US National
Library of Medicine’s Medical Subject Headings (MeSH)
(Fernandez-Llimos et al., 2017). In summary, SIDER was used to
extract benchmark drug-ADR pairs, LINCS L1000, CTD and
PubChem were employed to extract drug characteristics, MESH
and CTD were utilized to extract ADR characteristics (Figure 1). In
order to generate better results, drugs that are simultaneously
recorded in CTD, PubChem, LINCS L1000, and SIDER databases
and ADRs that are simultaneously recorded in CTD, MESH, and
SIDER databases were included in this study. And all drugs or ADRs
without pharmacogenomics data were also excluded. The details of
data sets before and after processing in this study are shown in
Table 1; Figure 1.

The SIDER database is widely used for validating ADRs, and its
current version contains 1,430 marketed drugs, 5,868 side effects,
and 139,756 Drug-Side Effect Associations (DSAs). In SIDER
database, drug terms are coded in STITCH compound IDs,
which are also deformations of PubChem compound IDs. The
compound IDs can be obtained by removing the prefixes. The
Simplified Molecular-Input Line-Entry System (SMILES) strings
and synonyms for all the drugs were bulk downloaded from

FIGURE 1
Data resources. Figures outside parentheses represent the number of original records downloaded from the databases, whereas figures inside
parentheses represent the number of processed records finally used in the experiments.
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PubChem using these compound IDs. Furthermore, the Chemical-
Gene Interaction (CGI) and Gene-Disease Association (GDA)
profiles were downloaded from CTD, including 175,287 drugs,
2,418,814 CGIs, 13,183 diseases, and 105,753,621 GDAs. The
CGIs and GDAs were downloaded from CTD in March 2024. To
reduce the dimensionality of data processing, CGI records were
deduplicated using ChemicalID and GeneSymbol, irrespective of the
Organism, Interaction, InteractionActions and PubMedIDs within
the records. Similarly, the GDA records were deduplicated
GeneSymbol and DiseaseID, irrespective of DirectEvidence,
InferenceChemicalName, InferenceScore, OmimIDs, PubMedIDs
within the records. Additionally, GE signatures for drugs/small
molecule compounds in the landmark gene space were
downloaded from maayanlab.net, originally processed from the
LINCS L1000 database (Subramanian et al., 2017).

The five databases use different vocabularies to encode their
drugs and ARs, which we mapped in various ways. The medications
in CTD, PubChem, and LINCS L1000 which contained one or more
SMILES were mapped using a 166-bit MACCS (Molecular ACCess
System) fingerprint (Durant et al., 2002), which can be converted
from any format of SMILES using the Python RDKit package
(Landrum, 2024). The few drugs that could not be mapped with
MACCS were mapped using names and synonyms retrieved from
PubChem and CTD. The ADR terms in SIDER were mapped to
Preferred Terms (PTs) coded in MedDRA v16.0. The MEDIC
disease vocabulary of CTD is a modified subset of descriptors
from the “Diseases” branch of MeSH combined with genetic
disorders from the Online Mendelian Inheritance in Man
(OMIM) database (Amberger and Hamosh, 2017). First, we
downloaded MedDRA, SNOMED, and MeSH vocabularies from
the Observational Medical Outcomes Partnership (OMOP)
database (Sedlmayr et al., 2024). The MedDRA code was then
mapped to the MeSH code using a standard concept ID applied
in OMOP. Second, we downloaded the disease files from the Human
Disease Ontology (HDO) database (Köhler et al., 2017), which
contains the names, synonyms, and IDs linked to other data
sources, including SNOMED, MeSH, and the Unified Medical
Language System (UMLS) (Bodenreider, 2004), among others.
The MedDRA terms in SIDER were matched to MeSH terms in
CTD as long as they shared at least one linked ID. Not all ADRs can
be mapped using linked IDs, hence, they were subsequently mapped
using names and synonyms herein. Those that could not be mapped
to MeSH were excluded from our study.

Among all the five attribute data sources, 453 drugs and
1,091 ADRs were finally used in our experiments, comprising
23,395 known drug-ADR pairs, 101,257 drug-gene interactions
with 23,644 genes, and 15,087,041 GDAs with 53,968 genes. We

constructed an algorithm for AR prediction using the multi-source
data available on these management platforms.

2.2 Construction of drug similarity features

2.2.1 Drug similarity based on chemical structure
The SMILES string representation for each drug structure was

obtained from PubChem and then converted to topological
fingerprints using the Python RDKit package (Landrum, 2024).
Topological fingerprints are binary codes based on the
topological configuration and rotational angles of quaternary
rings within molecular structures. They are used to characterize
molecule stereochemistry and potential interactions. Herein, the
drug similarity matrices based on the Chemical Structure (CS) were
expressed as: Simdrug−drug

cs ; and the Tanimoto Coefficient was used to
measure the similarity score of each drug pair. The formula for
calculating the similarity scores of drugs i and j was as follows:

Simdrug−drug
cs i,j( ) � xcsi •xcsj

xcsi
���� ����2 + xcsj

���� ����2 − xcsi •xcsj

where xcs
i and xcs

j are the topological fingerprint representations of
drugi and drugj, respectively.

2.2.2 Drug similarity based on GE changes before
and after drug perturbations

Herein, Simdrug−drug
GE was defined as the drug similarity matrix at

the GE level. Based on works of Wang et al. (2016), we collected GE
signature profiles perturbed by drugs/small molecule compounds
from maayanlab.net. The Phase 1 experiment data of LINCS L1000
(GSE92742), in which a variable named “distil_ss” denotes the
signature strength of every experiment, was the source data of
the GE features. The larger the “distil_ss” variable, the more
differentially expressed the landmark genes are within a
signature. This approach quantifies the magnitude of the
differential expression of landmark genes when comparing the
average drug treatment to the DMSO treatment in the LINCS
L1000 dataset. The “distil_ss” values were computed using the
Characteristic Direction (CD) method (Clark et al., 2014), which
generates gene expression signatures for drug perturbations in the
978 landmark gene space. The cosine similarity measure was used to
compute the drug similarity based on gene expression changes. The
formula was as follows:

Simdrug−drug
GE i,j( ) � xGEi · xGEj

xGEi
���� ���� xGEj

���� ����

TABLE 1 Details of datasets before and after processing.

DataBase Initial Processed

Drugs ADRs Drug-ADR pairs Drugs ADRs Drug-ADR pairs

CTD 175,287 13,183 — 453 1,019 —

LINC L1000 41,774 — — 453 — —

SIDER 1,430 5,868 139,756 453 1,019 23,395
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where xGE
i and xGE

j are the differential gene expressions of
perturbations of drugi and drugj, respectively.

2.2.3 Drug similarity based on GE changes before
and after drug perturbations

Herein, CGIs were downloaded from CTD [ctdbase.org (last
updated on 29th November 2023], which curates specific
chemical-gene and chemical-protein interactions in vertebrates
and invertebrates from published literature. Each CGI was
quantified based on four degrees: Increases (e.g., “Chemical X
increases the expression of Gene Y mRNA”), decreases, affects, or
does not affect. Interactions with the “does not affect” degree
were excluded from CTD. There were also numerous indirect
CGIs [e.g., “Chemical X inhibits the reaction (protein P results in
the increased expression of Gene Y)”]. The variable
“InteractionAction” which has 3,431 distinct values, was used
to categorize the interactions.

Data dimensionality was first lowered by encoding drug-gene
interactions as one-hot vectors without considering cell types and
interaction degrees to reduce computational complexity. Briefly, for
each drug, all genes that interact or do not interact with it were
labeled as 1 and 0, respectively. Subsequently, gene sets GTi �
gi1, gi2, gi3, . . . , gin{ } which contain n genes that interact with
drug di and gene sets GTj � gj1, gj2, gj3, . . . , gjm{ } which
contain m genes that interact with drug dj were obtained. The
more identical the genes that interact with the two drugs (di and dj),
the higher their similarity. In other words, the similarity between the
two drugs, di and dj, can be quantitatively determined using the
intersection and union ratio of the two gene sets, GTi and GTj. The
Jaccard index was used to calculate the drug similarity Simdrug−drug

CGI

based on CGIs, and the formula was as follows.

Simdrug−drug
CGI i,j( ) � GTi ∩ GTj

∣∣∣∣∣∣∣∣
GTi ∪ GTj

∣∣∣∣∣∣∣∣

2.3 Construction of ADR similarity features

2.3.1 ADR semantic similarity extracted from the
MeSH database

Drug-induced diseases are a subset of ADRs (Pathan et al., 2018)
and are also commonly referred to as side effects. Herein, we
attempted to map all ADRs to a hierarchical clinical terminology
vocabulary to describe them more professionally. All the ADRs in
the SIDER database were mapped to the MeSH database, as earlier
mentioned in Section 2.1. The MeSH database is a commonly used
standard medical thesaurus published by the National Library of
Medicine (NLM) in the United States. It comprises hierarchical sets
of descriptors based on their semantic categories and subject
attributes. The MeSH database allows for the searching of
diseases at various levels of specificity and can be used to
examine disease correlations. For instance, the “Angioedema”
entry has three possible addresses or codes: C14.907.079,
C17.800.862.945.066, and C20.543.480.904.066, which belong to
Cardiovascular Disease [C14], Skin and Connective Tissue
Disease [C17], and Immune System Disease [C20] categories,
respectively. Figure 2 shows the hierarchical structure of ’

Angioedema’ extracted from the MeSH database.
We constructed a Directed Acyclic Graph (DAG) for each ADR

using hierarchical descriptors from MeSH, with nodes representing
ADR descriptors and edges representing the relationship between
the current ADR and its ancestor ADRs. Each ADR, s, can be
presented as a graph, DAGs � (s,Ns, Es), where Ns is the set of all
ancestor nodes, including the ADR node (s) itself, and Ed is the set of
parent nodes pointing to the child node edges. The semantic
contribution value of a node (n) to an ADR (s) in DAGs can be
calculated as follows:

Cs n( ) � 1, if n � s
max Δ*Cs n′( ) ∣∣∣∣ n′ ∈ children of n{ }, otherwise{

FIGURE 2
An illustration of the hierarchical structure of the disease “Angioedema” extracted from theMeSH database. The numbers next to the connecting line
indicate the size of the semantic contribution factor. The closer it is, the more significant the contribution factor.
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where Δ is a semantic contribution factor for the edges linking a
node (n) to its child (n′). Herein, Δwas set to 0.5. By summarizing all
nodes that an ADR (s) has, we can obtain the semantic value of ADR
s, DV(s), as follows:

DV s( ) � ∑
n∈Ns

Cs n( )

WhereNs is the set of the ADR node (s) and its ancestor nodes.
Notably, ADRs with more identical ancestors often have greater
similarity. Herein, we defined Simside−side

MESH(i,j) as the semantic similarity
between ADRs, si and sj, and it was calculated as follows:

Simside−side
MESH i,j( ) �

∑n∈Nsi∩Nsj
Csi n( ) + Csj n( )( )

DV si( ) + DV sj( )
2.3.2 ADR similarity based on GDA

In this study, GDAs were obtained from CTD. There are three
types of direct evidence for a GDA: M marker, Mechanism, or T

therapeutic. As in Simdrug−drug
CGI , we used gene sets GSi �

gi1, gi2, gi3, . . . , gin{ } to denote n genes with associations with
ADR si, and gene sets GSj � gj1, gj2, gj3, . . . , gjm{ } to denote m
genes with associations with ADR sj. Diseases associated with more
identical genes tend have greater similarity. In this regard, GDA-
based ADR similarity, Simside−side

GDA(i,j) , can bemeasured using the Jaccard
index as follows.

Simside−side
GDA i,j( ) � GSi ∩ GSj

∣∣∣∣∣∣∣∣
GSi ∪ GSj

∣∣∣∣∣∣∣∣

2.4 Drug-gene-ADRs network for ADR
prediction

After data preprocessing in Sections 2.2, 2.3, we obtained three
(Simdrug−drug

cs , Simdrug−drug
GE , and Simdrug−drug

CGI ) and two (Simside−side
MESH

and Simside−side
GDA ) similarity indices for drugs and ADRs, respectively.

FIGURE 3
Flowchart of DGANet in ADR prediction. For a drug-side effect pair, DGANet employs two Linear Subnetworks (LSNd for drug d and LSNs for side
effect s) and one Convolutional Neural Network with a Subnetwork (CSN) for feature crosses VFCs .

Frontiers in Pharmacology frontiersin.org06

He et al. 10.3389/fphar.2025.1448106

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1448106


We then constructed the input vector of drug as Drug and Side as
ADR as follows:

Drug � Simdrug−drug
CS , Simdrug−drug

GE , Simdrug−drug
CGI[ ]

Side � Simside−side
MESH , Simside−side

GDA[ ]
We constructed feature crosses using the Cartesian product to

better understand the nonlinear relationship between drug features and
ADRs. Feature crosses are a useful feature engineering technology that
can help the model capture nonlinear relationships in the data.
According to research, feature crosses can better capture the
interaction between features than fully connected operations (Lian
et al., 2018). Herein, the feature crosses of Drug and Side were
defined as VFCs and illustrated as follows:

VFCs � Drug # Side � d, s( ) d ∈ Drug , s ∈ Side
∣∣∣∣{ }

To effectively integrate similarity information from multiple
data sources for ADR prediction, we proposed DGANet, a CNN-
based multi-label classification architecture that considers each label
as an independent binary problem. Figure 3 depicts the architecture
of DGANet.

For a drug-ADR pair, DGANet employs two Linear
Subnetworks (LSNd for drug d and LSNs for ADR s) and one
Convolutional Neural Network with a Subnetwork (CSN) for feature
crosses VFCs. The two LSNs, LSNd and LSNs, share the same
architecture. The LSN formula can be summarized as follows:

xm,k � Linear Dropout p( ) RelU FCn1 CAT xm, ck( )( )( )( )( )
where xm,k is the latent representation of m drugs or m ADRs with k
different similarity features, which is the output of the LSN, FC(n) is
a fully connected layer with n neurons, andDropout(p) is a dropout
layer with probability p. On the other hand, Linear and RelU
represent linear and rectified linear unit activation functions,
respectively, and CAT concatenates given feature vectors. We
then obtained the vector embeddings of drugs, embdrugs, and
ADRs, embadrs. A six-layered CNN was used. Previously
constructed feature crosses VFCs were fed into the CSN to learn
the representation of feature crosses, embcross. Finally, the vector
embeddings, embdrugs, embadrs, and embcross constructed with
LSNd, LSNs, and CSN, were concatenated and fed into a multi-
label classifier, using two fully connected layers, activation functions,
and a dropout. Finally, our model generated a vector, and
values >0 indicated a correlation between the drug and ADR.
The output vector can be represented as follows:

yd,s � Relu FCn2 Dropout p( ) Relu FCn1 CAT(((((
embddrugs, embd,scross, embsadrs( ))))))

where yd,s is the output association of drug d and ADR s, FC(n) is a
fully connected layer with n neurons, and Dropout(p) is a dropout
layer with probability p, and embddrugs, embd,scross, and embsadrs are the
embedding vectors of LSNd, embd,scross CSN, and LSNs, respectively.

For model optimization, we adopted the ZLPR function (Su
et al., 2022) to calculate the errors between the predicted and true
values. The concept considers the correlation between labels,
yielding more comprehensive outcomes than binary relevance
methods. The loss function formula was as follows:

Ltlpr � log es0 + ∑
i∈Ωneg

esi⎛⎝ ⎞⎠ + log e−s0 + ∑
j∈Ωpos

e−sj⎛⎝ ⎞⎠
where Ωpos is the set of positive labels, and Ωneg is the set of negative
labels, si is the model output score of the ith category. And s0 was set
to 0 in our experiment.

Finally, the loss function Ltlpr was optimized using the Adam
algorithm, and the learning rate was set to 0.005.

3 Results

3.1 Statistical analysis

As mentioned in Section 2.1, our benchmark dataset comprised
453 drugs, 1,091 ADRs, 101,257 CGIs with 23,644 genes,
15,087,041 GDAs with 53,968 genes, and 23,395 known drug-
ADR pairs. The Drug-ADR, Drug-Gene, and ADR-Gene statistics
exhibited a long-tail distribution (Figure 4). Specifically, few drugs
accounted for a large proportion of all drug-ADR pairs and drug-
gene interactions, whereas a large number of drugs were associated
with only a small proportion of drug-ADR pairs and drug-gene
interactions. Additionally, among these three statistics, the number
of positive samples was far less than that of negative samples. A
class-balanced sampling method was adopted to address the
imbalance in the Drug-ADR dataset. The Jaccard Index was used
to calculate the similarity between the Drug-Gene and ADR-
Gene datasets.

3.2 Cross-validation test of ADR prediction
for different combination features

The ADR prediction model was evaluated through 5-fold cross-
validation. The Area Under the Receiver Operating Characteristic
Curve (AUROC), Area Under the Precision-Recall Curve (AUPRC),
Average Accuracy Percentage (Acc) and Matthews correlation
coefficient (MCC) (Chicco and Jurman, 2023) metrics were used
to assess our model’s performance in assigning the correct ADRs to
individual drugs. Higher values in both metrics indicated better
performance. In each fold, the model was trained using a randomly
selected subset of 80% known drug-ADR associations and a
matching number of randomly sampled non-associating pairs,
with the remaining 20% utilized for testing. The AUROC and
AUPRC values of the five folds were then averaged and used as a
benchmark for comparison to the other algorithms and optimizing
hyperparameters. Herein, seven different data settings for drugs [(i)
CS + GE + CGI, (ii) CS + CGI, (iii) CS + GE, (iv) GE + CGI, (v) CS,
(vi) CGI, and (vii) GE] and three different data settings for ADRs
[(a) MESH + GDA, (b) MESH, and (c) GDA] were used to
accomplish a fair comparison.

3.2.1 Comparative analysis of genomic descriptors
of drugs (GE and CGI)

A comparable result of GE and CGI was attained when the input
feature of ADRs was set to MeSH + GDA (see Table 2). Figure 5
shows the AUROC and AUPRC values. According to the results,
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setting (vi; CGI) had the best performance (AUROC = 92.30 ±
0.35%, AUPRC = 91.80 ± 0.38%, MCC = 71.22 ± 0.66%, Acc =
85.57 ± 0.31), even better than that of setting (i) (CS + GE + CGI;
AUROC = 91.75 ± 1.14%, AUPRC = 91.62 ± 0.30%, MCC = 70.49 ±
1.04%, Acc = 85.21 ± 0.54). This finding contradicts the widely held
belief that adding more features to a model improves training
accuracy. Compared to single feature settings [(v) CS and (vii)
GE], the AUROC values of setting (vi; CGI) were higher by 0.42%
and 1.41%, respectively. Furthermore, setting (ii; CS + CGI)
performed better than setting (v; CS) and setting (iv; GE + CGI)
performed better than setting (vii; GE). After adding CGI to CS and
GE, the AUROC values increased by 0.34% and 0.48% respectively.
Moreover, the AUROC and AUPRC values of setting (i; CS + GE +
CGI) were 91.75% and 91.62%, respectively. These values were
0.43% and 0.48% higher than those of setting (iii; CS + GE). On
the other hand, the AUROC scores of settings (iii), (iv), and (i) were
lower than those of settings (v), (vi), and (ii) (by 0.56%, 0.93%, and

0.47%) respectively). These findings indicate that adding CGI
improved model performance significantly in various situations,
while adding GE decreased the AUROC and AUPRC values. In this
regard, CGI is more informative than GE for ADR prediction,
potentially because it contains interactions curated from various
resources, providing more comprehensive drug information than
GE, which is based solely on the experimental results of the LINC
L1000 project.

3.2.2 Evaluation of the effect of GDA-based ADR
similarity on DGANet

Similar evaluation experiments were performed with ADR
settings (b) and (c). The results are shown in Tables 3, 4. Figures
6, 7 show the AUROC and AUPRC, respectively. A comparison of
Tables 2–4 revealed that ADR setting (a) had the highest scores,
followed by setting (b), and setting (c) scored lowest. The gap was
largest when the drug characteristics were set as CS + CGI. The

FIGURE 4
Frequency-rank distribution of experimental data. (A) presents the frequency-rank distribution of drug and related ADRs; (B) presents the frequency-
rank distribution of drug and related genes; (C) presents the frequency-rank distribution of ADR and related genes.

TABLE 2 Evaluation results of different drug feature settings with ADR setting (a).

Settings Drug feature ADR feature AUROC(%) AUPRC (%) Acc(%) MCC(%)

i CS + GE + CGI MESH + GDA 91.75 ± 1.14 91.62 ± 0.30 85.21 ± 0.54 70.49 ± 1.04

ii CS + CGI MESH + GDA 92.22 ± 0.46 91.73 ± 0.49 85.01 ± 0.60 70.10 ± 1.20

iii CS + GE MESH + GDA 91.32 ± 0.66 91.14 ± 0.22 84.24 ± 0.41 68.58 ± 0.84

iv GE + CGI MESH + GDA 91.37 ± 0.43 91.11 ± 0.55 84.10 ± 0.37 68.26 ± 0.73

v CS MESH + GDA 91.88 ± 0.29 91.83 ± 0.38 84.82 ± 0.36 69.67 ± 0.72

vi CGI MESH + GDA 92.30 ± 0.35 91.80 ± 0.38 85.57 ± 0.31 71.22 ± 0.66

vii GE MESH + GDA 90.89 ± 0.65 90.78 ± 0.25 83.85 ± 0.46 67.88 ± 0.86

The best performance is highlighted in bold.
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FIGURE 5
AUROC and AUPRC of DGANet with the fixed ADR feature setting (a) and seven different drug feature settings. (A) presents the AUROC curves of the
comparison; (B) presents the AUPRC curves of the comparison.

TABLE 3 Evaluation results of different drug feature settings with ADR setting (b).

Settings Drug feature ADR feature AUROC(%) AUPRC(%) Acc(%) MCC(%)

i CS + GE + CGI MESH 90.19 ± 2.25 90.87 ± 0.88 84.50 ± 0.80 69.08 ± 1.63

ii CS + CGI MESH 91.94 ± 0.42 91.74 ± 0.39 84.90 ± 0.40 69.86 ± 0.82

iii CS + GE MESH 90.00 ± 1.88 91.01 ± 0.55 84.39 ± 0.46 68.83 ± 0.92

iv GE + CGI MESH 90.41 ± 1.07 91.03 ± 0.34 84.15 ± 0.25 68.38 ± 0.49

v CS MESH 91.50 ± 0.30 91.43 ± 0.34 84.48 ± 0.35 69.06 ± 0.72

vi CGI MESH 91.70 ± 0.50 91.63 ± 0.22 84.93 ± 0.29 69.93 ± 0.58

vii GE MESH 89.19 ± 2.35 90.58 ± 1.04 84.11 ± 0.79 68.29 ± 1.55

The best performance is highlighted in bold.

TABLE 4 Evaluation results of different drug feature settings with ADR setting (c).

Settings Drug feature ADR feature AUROC(%) AUPRC(%) Acc(%) MCC(%)

i CS + GE + CGI GDA 88.17 ± 0.43 87.66 ± 0.56 79.90 ± 0.43 59.98 ± 0.92

ii CS + CGI GDA 87.94 ± 0.32 87.52 ± 0.49 79.80 ± 0.34 59.83 ± 0.73

iii CS + GE GDA 87.69 ± 0.47 87.26 ± 0.54 79.34 ± 0.45 58.74 ± 0.88

iv GE + CGI GDA 87.82 ± 0.60 87.29 ± 0.69 79.40 ± 0.72 58.94 ± 1.38

v CS GDA 87.40 ± 0.81 87.02 ± 0.91 79.32 ± 0.98 58.68 ± 1.95

vi CGI GDA 87.74 ± 0.56 87.15 ± 0.66 79.46 ± 0.68 59.09 ± 1.30

vii GE GDA 87.09 ± 0.31 86.62 ± 0.46 78.77 ± 0.25 57.57 ± 0.50

The best performance is highlighted in bold.
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AUROC values of setting (c) were 4.28% and 4.0% lower than those
of settings (a) and (b), respectively. The AUROC and AUPRC values
of Tables 2, 3 were both higher than 89.19%, whereas the highest
AUROC and AUPRC scores in Table 4 were 88.17% and 86.62%,

respectively. In addition, the MCC values in Tables 2, 3 exceeded
67.88%, whereas the MCC values in Table 4 were lower than 60%.
Furthermore, MeSH was superior to GDA, with the integration of
MeSH and GDA achieving the best outcome. In conclusion, GDA

FIGURE 6
AUROC and AUPRC of DGANet with the fixed ADR feature setting (b) and seven different drug feature settings. (A) presents the AUROC curves of the
comparison; (B) presents the AUPRC curves of the comparison.

FIGURE 7
AUROC and AUPRC of DGANet with the fixed ADR feature setting (c) and seven different drug feature settings. (A) presents the AUROC curves of the
comparison; (B) presents the AUPRC curves of the comparison.
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could improve the ADR prediction performance but had less
information than the semantic similarity of ARs themselves.

3.3 Performance improvement in ADR
prediction by adding similarity based on
existing DSAs

Multiple studies (Poleksic and Xie, 2018; Zhao et al., 2022; Zhao
et al., 2021) have recently shown that embedding neighborhood
similarity of known DSAs can improve ADR prediction accuracy.
However, this approach could easily lead to train-test
contamination. Herein, the samples in the test set were set to
zero before feature construction in each fold to avoid train-test
contamination. In this regard, the model could learn nothing about
the test set in the training phase. The results are shown in Tables 5.
Compared to the results in Table 2, the top 3 settings (ii), (v), and
(vi) exhibited increased AUROC (by 0.77%, 0.54%, and 0.44%,
respectively), AUPRC (by 0.85%, 0.75%, and 0.85%, respectively),
Acc (by 0.77%, 0.54%, and 0.44%, respectively) and MCC (by 0.77%,
0.54%, and 0.44%, respectively) values after adding similarity based
on existing DSAs. The AUROC and AUPRC are presented in the
Supplementary Figures S1–S3 illustrates the learning rate curves of
our model. This finding indicates that integrating neighborhood
similarity associated with known DSAs can improve the model’s
performance. Notably, this method relies significantly on existing
drug-ADR associations, and the information on new developed
drugs and ADRs may be incomplete. Nonetheless, it still
demonstrates high practicality and accuracy in predicting drug
reuse ADRs and severe rare ADRs (Poleksic and Xie, 2018).

3.4 Performance comparison between
DGANet and the state-of-the-art ADR
prediction models with
pharmacogenoimic features

To evaluate the performance of the DGANet model, we compared
it with three state-of-the-art methods with pharmacogenomic features,
including Wang’s method (Wang et al., 2016), MMNN. Sum (Üner
et al., 2023), DruGNN (Bongini et al., 2023) and BiMPADR (Li et al.,
2024). Table 6 shows the comparison results. In Wang’s method and

MMNN. Sum, ADRs associated with fewer than ten drugs were
excluded, and the remaining drug-ADR datasets used in
experiments remained imbalanced, leading to significantly lower
AUPRC scores compared to AUROC scores. Our method
(DGANet) addressed this imbalance by employing class-balanced
sampling to achieve a balanced train and test dataset. Despite
utilizing a smaller number of drugs and ADRs, our method still
demonstrated notable improvements of 4.6% and 5.06% in AUROC
score, respectively, with andwithout the incorporation of neighborhood
similarity based on existing DSAs. While DGANet’s overall accuracy
(85.95%)was slightly lower thanDruGNN (86.3%), whichwas achieved
among common ADRs (each drug may cause over 360 ADRs),
DGANet’s accuracy surpassed the other Acc scores achieved by
DruGNN when dealing with less common ADRs. Compared to
BiMPADR, DGANet exhibited significant improvements of 3.36%
and 4.05% in AUROC score and overall accuracy, respectively.

3.5 Literature evidence supports high ranked
drug-induced ADRs

To further assess the performance of DGANet in identifying
potential drug-ADR associations, case studies on the top
20 candidate drug-ADR associations unrecorded in SIDER were
collected for validation and analysis (Supplementary Table S3).
Moreover, we found that several indications were mistakenly
predicted as ADR, such as Misoprostol and Pruritus. Among the
20 drug-ADR associations, 19 were included in MetaADEDB (Yu
et al., 2021a) and OFFSIDES (Tatonetti et al., 2012), suggesting that
the drug-induced ADRs were indeed associated with the
corresponding drugs. And we collected the related genes from
CTD database for 10 drug-ADR pairs, which might contribute to
the occurrence of ADRs. The drug-induced ADRs labeled
“Literature” were reported by published literature, indicating that
they were not recorded in the adverse reaction databases, but their
association has been reported previously (Yu et al., 2021b).

4 Discussion

Pharmacogenomics incorporates genomic profiling to identify
biomarkers based on relevant genotype–phenotype interactions that

TABLE 5 Evaluation results of DGANet after adding existing drug-ADR associations to predict new ADRs.

Settings Drug feature ADR feature AUROC(%) AUPRC (%) Acc(%) MCC(%)

i CS + GE + CGI + DSAs MESH + GDA + DSAs 92.66 ± 0.50 92.39 ± 1.03 85.95 ± 0.56 71.95 ± 1.16

ii CS + CGI + DSAs MESH + GDA + DSAs 92.76 ± 0.37 92.49 ± 0.52 85.89 ± 0.33 71.84 ± 0.64

iii CS + GE + DSAs MESH + GDA + DSAs 92.49 ± 0.64 92.37 ± 0.72 85.43 ± 0.84 70.92 ± 1.69

iv GE + CGI + DSAs MESH + GDA + DSAs 92.55 ± 0.28 92.26 ± 0.49 85.65 ± 0.28 71.38 ± 0.57

v CS + DSAs MESH + GDA + DSAs 92.68 ± 0.31 92.58 ± 0.45 85.77 ± 0.49 71.64 ± 0.99

vi CGI + DSAs MESH + GDA + DSAs 92.74 ± 0.38 92.65 ± 0.50 85.78 ± 0.47 71.60 ± 0.94

vii GE + DSAs MESH + GDA + DSAs 92.26 ± 1.42 92.30 ± 1.03 85.63 ± 1.06 71.31 ± 2.13

The best performance is highlighted in bold.
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can predict drug response and risk of ADRs. Using pharmacogenomics
to predict adverse reactions can help improve the safety and
effectiveness of medical care. To address the growing volume of
complex, open-source pharmacogenomics data, artificial intelligence
(AI) algorithms capable of large-scale computation and high-
performance statistical analysis are essential. This paper introduces
deep learning methods into the exploratory research of
pharmacogenomics data analysis, leveraging the renowned CTD
database, and proposes two characteristics for drugs and ADRs
(CGI and GDA) and an intelligent prediction model (DGANet) for
ADRs prediction based on the characteristics of
pharmacogenomics data.

Initially, we curated a benchmark dataset comprising 453 drugs,
1,091 ADRs, 101,257 CGIs with 23,644 genes, 15,087,041 GDAs
with 53,968 genes, and 23,395 known drug-ADR pairs from SIDER,
LINCS L1000, CTD, PubChem, and MeSH source databases.
Notably, CGIs and GDAs are the characteristic expression
patterns we initially proposed to represent the relationships
between drugs and genes, as well as adverse reactions and genes.
In the evaluation experiments of ADR prediction, we compared
these two pharmacogenomics features with traditional drug features
(such as GE and CS). The five-fold cross-validation experimental
results demonstrated that both of these pharmacogenomics features
exhibit a significant tendency to enhance the predictive performance
of ADRs. Particularly, CGI consistently outperformed the widely
used drug features (GE and CS) in our experiments, and CGI could
enhance model performance when combined with other drug
features (Tables 2–5). Generally, the combination of CS and CGI
achieved the highest AUROC and AUPRC values. However, we also
observed some variations. In Table 2, the scores of CGI even
surpassed those of the combined CS and CGI. We posit that this
discrepancy might be attributed to the presence of coincidental
information extracted from the same research between
CGI and GDA.

Secondly, we proposed an intelligent model (DGANet) for
predicting ADRs which achieved pharmacogenomics information
fusion across all of drug, genomic and ADR features automatically.
Compared with several state-of-the-art models based on different
fusion methods of pharmacogenomics features and classifiers, the
DGANet exhibited the highest performance in AUROC and
AUPRC (Table 6). Case studies provide specific examples that

further demonstrate the validity and practicality of the GDANet
(Supplementary Table S3).

Despite being a preliminary study, our proposed DGANet
model still has room for improvement in terms of accuracy and
effectiveness. One limitation is DGANet’s inability to fully elucidate
the diverse nature of drug-gene interactions and gene-disease
associations, which is critical as the complex biological processes
underlying drug responses are heavily influenced by specific gene
expression variations. Another limitation is the lack of a
comprehensive description of biological diversity within the
currently utilized pharmacogenomics data, which poses a
significant obstacle for all ADR prediction research methods.

5 Conclusion

In this study, we proposed DGANet, a new CNN-based model
that integrates CGI and drug-perturbed GE changes (GE) into drug
feature, GDA into ADR feature, and has achieved compelling results.
The result showed that the two noval characteristics (CGI and GDA)
we proposed both have an enhancing effect on the model. However,
this study represents a preliminary investigation. By leveraging
pharmacogenomics information and predicting adverse drug
reactions, DGANet contributes to understanding how drugs
influence gene expression and biological pathways that may lead
to adverse reactions, offering valuable insights for drug safety
research. Nevertheless, its mechanism is still unclear and further
research is needed. More factors related to ADRs, such as gender,
phenotype, dosage, etc., should be taken into account. With the
latest advances in genomics and precision medicine, as well as
regulatory guidance in pharmacogenomics, we believe that
pharmacogenomics biomarkers will become increasingly common
in all therapeutic fields. We anticipate that with ongoing data
updates and the expansion of available databases, a richer pool of
pharmacogenomics information will become accessible for future
research into ADR prediction methods. In future studies, we plan to
integrate more pharmacogenomics information into our model,
such as Chemical–GO enriched associations, Chemical–pathway
enriched associations and so on. The aim will be to find a more
effective algorithm and corresponding feature construction methods
to predict ADR more effectively and accurately.

TABLE 6 Performance comparison of different models in the ADR prediction task with pharmacogenomics data.

Dataset Model Drug
Features

ADR
Features

#Drug
/ADR

AUROC (%) AUPRC (%) ACC (%)

LINCS L1000 &SIDER Wang et al.’s Method GO + CS — 791/1,053 85.40 — —

MMNN.Sum CS+[GEX,
META]

— 791/1,053 87.70 59.20 —

STITCH& SIDER DruGNN Drug-Gene graph — 1,341/360 — — 86.30

LINCS L1000 &SIDER&
ADReCS

BiMPADR Drug fingerprints
+GE

ADR-Gene association 656/751 89.4 — 81.9

LINCS L1000 &SIDER&CTD DGANet CGI MESH + GDA 453/1,019 92.30 91.87 85.57

CS + GE
+DSAs

MESH + GDA + DSAs 453/1,019 92.76 92.49 85.95

The best performance is highlighted in bold.
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