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Background: Pancreatic cancer remains one of the deadliest malignancies,
largely due to its late diagnosis and lack of effective therapeutic targets.

Materials and methods: Using traditional machine learning methods, including
random-effects meta-analysis and forward-search optimization, we developed a
robust signature validated across 14 publicly available datasets, achieving a
summary AUC of 0.99 in training datasets and 0.89 in external validation
datasets. To further validate its clinical relevance, we analyzed 55 peripheral
blood samples from pancreatic cancer patients and healthy controls using qPCR.

Results: This study identifies and validates a novel five-gene transcriptomic
signature (LAMC2, TSPAN1, MYO1E, MYOF, and SULF1) as both diagnostic
biomarkers and potential drug targets for pancreatic cancer. The differential
expression of these genes was confirmed, demonstrating their utility in
distinguishing cancer from normal conditions with an AUC of 0.83. These
findings establish the five-gene signature as a promising tool for both early,
non-invasive diagnostics and the identification of actionable drug targets.

Conclusion: A five-gene signature is established robustly and has utility in
diagnostics and therapeutic targeting. These findings lay a foundation for
developing diagnostic tests and targeted therapies, potentially offering a
pathway toward improved outcomes in pancreatic cancer management.
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1 Introduction

Pancreatic cancer persists as one of the most lethal malignancies worldwide, with a
devastating 5-year survival rate of less than 9% (Zhao and Liu, 2020). This poor prognosis is
largely attributed to late-stage diagnosis and limited therapeutic options, underscoring the
urgent need for both early detection methods and novel therapeutic targets (Mizrahi et al.,
2020). Despite significant advances in cancer research, the identification of reliable
biomarkers and effective drug targets for pancreatic cancer has proven challenging,

OPEN ACCESS

EDITED BY

Juan Su,
Nanjing Agricultural University, China

REVIEWED BY

Huang Tao,
Huazhong University of Science and
Technology, China
Rui Wang,
The First Affiliated Hospital of Xi’an Jiaotong
University, China

*CORRESPONDENCE

Xiaoyan Wang,
cathywxy@sjtu.edu.cn

Zhougui Ling,
lzg228@163.com

Yangyang Tang,
59971472@qq.com

†These authors have contributed equally to this
work and share first authorship

RECEIVED 03 December 2024
ACCEPTED 20 December 2024
PUBLISHED 09 January 2025

CITATION

Wang X, Yu P, Jia W, Wan B, Ling Z and Tang Y
(2025) Integrating traditional machine learning
with qPCR validation to identify solid drug
targets in pancreatic cancer: a 5-gene
signature study.
Front. Pharmacol. 15:1539120.
doi: 10.3389/fphar.2024.1539120

COPYRIGHT

© 2025 Wang, Yu, Jia, Wan, Ling and Tang. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 09 January 2025
DOI 10.3389/fphar.2024.1539120

https://www.frontiersin.org/articles/10.3389/fphar.2024.1539120/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1539120/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1539120/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1539120/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1539120/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2024.1539120&domain=pdf&date_stamp=2025-01-09
mailto:cathywxy@sjtu.edu.cn
mailto:cathywxy@sjtu.edu.cn
mailto:lzg228@163.com
mailto:lzg228@163.com
mailto:59971472@qq.com
mailto:59971472@qq.com
https://doi.org/10.3389/fphar.2024.1539120
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2024.1539120


primarily due to its complex molecular heterogeneity and the rapid
development of drug resistance (Costello et al., 2012; Mottini et al.,
2024). Traditional approaches to biomarker and drug target
discovery have relied heavily on tissue-based analyses, which,
while informative, present significant limitations including
invasiveness and the challenge of repeated sampling (Batis et al.,
2021). Recent advances in molecular biology and bioinformatics
have opened new avenues for discovery, particularly through the
analysis of large-scale genomic datasets (Clark and Lillard, 2024; Shi
et al., 2024). However, the translation of computationally identified
targets to clinically viable options remain a significant challenge,
with many promising candidates failing in later validation stages.

The emergence of liquid biopsy approaches, particularly blood-
based testing, has revolutionized cancer diagnostics by offering a
minimally invasive method for disease monitoring (Fu et al., 2024;
Shegekar et al., 2023; Chen et al., 2024). This approach is particularly
relevant for pancreatic cancer, where traditional tissue acquisition is
often complicated by anatomical location and associated risks.
However, the development of reliable blood-based markers
requires robust validation across multiple platforms and patient
cohorts. Machine learning approaches have demonstrated
remarkable potential in identifying complex molecular signatures
from large-scale datasets (Glaab et al., 2021). Traditional machine
learning methods, particularly those focusing on feature selection
andmeta-analysis, offer several advantages over newer deep learning
approaches, including interpretability and the ability to handle
heterogeneous data sources. These methods are particularly
valuable in biomarker discovery, where understanding the
biological relevance of selected features is crucial for downstream
drug development. Previous studies have attempted to identify gene
signatures for pancreatic cancer, but most have suffered from several
limitations: (1) small sample sizes leading to poor generalizability,
(2) lack of independent validation in different patient cohorts, (3)

limited validation in easily accessible biological samples such as
blood, and (4) insufficient evaluation of the identified genes as
potential therapeutic targets (Strijker et al., 2019). Additionally,
many studies have focused solely on diagnostic potential without
considering the therapeutic implications of their findings (Kirkegård
et al., 2017).

Our study addresses these limitations through a comprehensive
approach that combines traditional machine learning methods with
experimental validation. By analyzing 14 independent pancreatic
cancer datasets comprising 845 samples, we aimed to identify a
robust gene signature that could serve both diagnostic and
therapeutic purposes. Our approach employs random-effects
meta-analysis and forward-search optimization to ensure the
selected genes demonstrate consistent differential expression
across multiple cohorts, reducing the risk of dataset-specific
artifacts. Importantly, we extend beyond computational
prediction by validating our findings in peripheral blood samples
from 55 subjects, addressing a critical gap in the field–the need for
minimally invasive diagnostic tools. This validation step not only
confirms the clinical utility of our signature but also demonstrates
the potential of these genes as therapeutic targets, as their expression
is detectable in peripheral blood.

Our study’s unique strength lies in its dual focus on both
diagnostic and therapeutic applications. The identified five-gene
signature (LAMC2, TSPAN1, MYO1E, MYOF, and SULF1)
represents not just a diagnostic tool but also a set of potential
drug targets. Each of these genes has been implicated in various
aspects of cancer biology, suggesting their potential as
therapeutic targets. LAMC2, for instance, plays a crucial role
in cancer cell invasion and metastasis, while SULF1 is involved
in multiple signaling pathways critical for tumor progression.
The present study aims to validate this signature through a
rigorous, multi-step approach that combines computational
analysis with experimental validation. Our findings could
significantly impact both the early detection of pancreatic
cancer and the development of targeted therapies, potentially
addressing two of the most critical challenges in pancreatic
cancer management.

2 Materials and methods

2.1 Data sources and computational analysis

We systematically searched and identified 14 prospective
pancreatic cancer studies from the GEO database (http://www.
ncbi.nlm.nih.gov/geo/). The datasets included GSE15471,
GSE16515, GSE23397, GSE28735, GSE32676, GSE39751,
GSE55643, GSE56560, GSE60979, GSE62165, GSE62452,
GSE63111, GSE71989, GSE91035, and GSE15932, encompassing
a total of 845 subjects (Table 1). We performed a random split of
these datasets, allocating 50% to a training and validation set, with
two prospect independent test sets (GSE91035, GSE15932) reserved
for external validation (Table 1). Also, we collect in-house validation
dataset. All transcriptomic data underwent normalization using the
GC-Robust Multi-array Average (gcRMA) algorithm, followed by
log2 transformation of gene expression values prior to analysis. To
minimize between-trial variance, we employed the DerSimonian-

TABLE 1 Demographic of the datasets in training and external validation.

GEO ID Sample size Sample type Description

GSE15471 36 tumor tissue Training

GSE23397 21 tumor tissue Training

GSE39751 24 tumor tissue Training

GSE56560 35 tumor tissue Training

GSE62165 131 tumor tissue Training

GSE63111 35 tumor tissue Training

GSE71989 22 tumor tissue Training

GSE16515 52 tumor tissue Validation

GSE28735 90 tumor tissue Validation

GSE32676 32 tumor tissue Validation

GSE55643 53 tumor tissue Validation

GSE60979 93 tumor tissue Validation

GSE62452 130 tumor tissue Validation

GSE91035 59 tumor tissue Validation

GSE15932 32 peripheral blood Validation
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Laird random-effects method to combine gene expression effect
sizes using Hedges’ g effect size calculations. Through this analysis,
we identified significant genes based on effect size (ES > 2) and
Fisher’s method false discovery rate (FDR < 0.01).

2.2 Patient recruitment and sample
collection

Between January 2023 and December 2023, we recruited
55 participants for this study. The study group comprised
30 patients with histologically confirmed pancreatic ductal
adenocarcinoma and 25 healthy controls (Supplementary
Table S1). Inclusion criteria for pancreatic cancer patients
included: age between 18–75 years, histologically confirmed
pancreatic ductal adenocarcinoma, no prior cancer treatment,
and adequate organ function. Exclusion criteria encompassed:
presence of other malignancies, severe organ dysfunction, active
infection, autoimmune diseases, or a history of chronic or heavy
alcohol consumption. Healthy controls were age- and gender-
matched individuals with no history of cancer or chronic
diseases. All blood samples were collected under standardized
conditions to minimize variability. Specifically, blood was
drawn in the early morning between 7:00 and 9:00 a.m. after
an overnight fast of at least 8 h. This study was approved by the
ethical committee of The Fourth Affiliated Hospital of Guangxi
Medical University (Approval No. KY2023309), and all
participants signed informed consent forms prior to
enrollment.

2.3 Blood sample processing and RNA
extraction

Peripheral blood samples (5 mL) were collected in EDTA tubes
from all participants following standard venipuncture procedures.
Blood samples were processed within 2 h of collection. Total RNA
was isolated using the TRIzol LS reagent (Invitrogen) following the
manufacturer’s protocol. RNA quality and quantity were assessed
using a NanoDrop spectrophotometer and Agilent
2100 Bioanalyzer. Only samples with RNA integrity number
(RIN) > 7 were used for subsequent analysis.

2.4 Quantitative PCR analysis

First-strand cDNA was synthesized from 1 μg of total RNA
using the SuperScript III First-Strand Synthesis System
(Invitrogen). Quantitative PCR was performed using SYBR
Green Master Mix (Applied Biosystems) on an ABI 7900HT
Real-Time PCR System. Each reaction was performed in
triplicate. GAPDH served as the internal control for
normalization. The primer sequences for the five target genes
(LAMC2, TSPAN1, MYO1E, MYOF, and SULF1) were designed
and validated for specificity and efficiency (Supplementary Table
S2). PCR conditions included initial denaturation at 95°C for
10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.
Relative gene expression was calculated using the 2-ΔΔCt method.

2.5 Gene expression data and
statistics analyses

All transcriptomic data were normalized using the GC-Robust
Multi-array Average (gcRMA) algorithm (Wu and Irizarry, 2004). A
log2 transformation was applied to all gene expression before
analysis. To underestimates the between-trial variance, we used
the DerSimonian-Laird random-effects combine gene expression
effect sizes via Hedges’g effect size (Henmi and Copas, 2010;
Enzmann, 2015). Moreover, based on gene effect size (ES > 2),
and Fisher’s method false discovery rate (FDR < 0.01), we identified
a subset of genes as the pancreatic cancer signature.

2.6 Creation of pancreatic cancer signature

To construct the pancreatic cancer signature, we employed the
forward search algorithm available in the MetaIntegrator R package,
which facilitates the selection of an optimal gene set for diagnostic
purposes. Forward search is a stepwise feature selection method that
incrementally builds a gene set by maximizing diagnostic performance,
measured by theweighted area under the receiver operating characteristic
curve (AUC). As a starting point, we ran a forward search using the
MetaIntegrator R package to identify the parsimonious gene set best
suited for diagnostic ability (Haynes et al., 2017). The process starts by
identifying the single gene with the highest individual discriminative
ability, determined by its weighted AUC across datasets. This gene serves
as the foundation of the model. Subsequently, the algorithm iteratively
evaluates all remaining genes and adds the one that provides the greatest
incremental improvement to the overall weighted AUC when combined
with the previously selected genes. This stepwise addition of genes
continues until no further gene can significantly improve the
weighted AUC beyond a predefined threshold. At each iteration, the
pancreatic cancer signature was calculated using the following formula:
Pancreatic Cancer Signature = Mean (expression of upregulated
genes)−Mean (expression of downregulated genes). This algorithm
ensures that the final gene set is both minimal and robust, avoiding
overfitting and maintaining diagnostic accuracy across diverse datasets.

3 Results

3.1 The five diagnostic biomarkers of
pancreatic cancer in six training datasets

We achieved a systematic search for data on transcriptome-wide
expression between normal and pancreatic cancer tissue. According to
the previously described method (ES > 2, FDR < 0.01), 23 genes were
significantly upregulated, while 48 genes were significantly
downregulated (Figure 1A). After forward search and backward
search, we identified a set of five differentially expressed genes
(LAMC2, TSPAN1, MYO1E, MYOF, SULF1) in Cancer/Normal
that was optimized for diagnostic ability (Figures 1B–F). The
pancreatic cancer signature was calculated for each sample by Mean
(upregulated genes) – Mean (downregulated genes) (Figure 1G). The
pancreatic cancer signature (five diagnostic biomarkers) distinguished
cancer from normal subjects with a summary area under the curve
(AUC) = 0.99 [95% CI 0.94–1] in six training datasets (Figure 1H).
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3.2 Validation of the five diagnostic
biomarkers in six external dataset of
pancreatic cancer patients

We further verified the pancreatic cancer signature in the six-
validation set. For each dataset, we computed the effect size and
meta-score by the previously described method (Figures 2A–F). A
summary area under the curve (AUC) = 0.89 [95% CI 0.76–0.96]
differential cancer from normal subjects by the pancreatic cancer
signature in six training datasets (Figure 2G).

3.3 Validation of the five diagnostic gene
biomarkers in cancer/benign and peripheral
blood dataset

To further evaluate the diagnostic power, a two prospects
independent test set was performed. In the first prospect dataset
(GSE91035), we calculated the meta-score in the normal, benign,
and pancreatic cancer groups, respectively (Figure 3A).
Interestingly, the meta score was proportional to the severity of
pancreatic cancer. There were significant differences between the

FIGURE 1
Identification and training validation of the five-gene signature for pancreatic cancer diagnosis. (A) Workflow diagram showing the systematic
approach for signature identification. (B–F) Forest plots showing standardized mean differences (log2 scale) for individual genes (LAMC2, TSPAN1,
MYO1E, MYOF, SULF1) across six training datasets. (G) Violin plot showing meta-score distribution between normal and tumor samples in GSE62165. (H)
Summary ROC curves showing diagnostic performance across training datasets with individual and combined AUCs.
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Benign and pancreatic cancer groups (p < 0.01). Since there is no
significant difference between the normal and the benign group, a
separation trend can be seen (p = 0.065) (Figure 3B). The pancreatic
cancer signature distinguished normal from benign subjects with
AUC = 0.74 [95% CI 0.54–0.95] and distinguished normal from
cancer in in-house validation cohort with AUC = 0.83 [95% CI
0.71–0.96] (Figures 3C, D).

4 Discussion

Our study presents a comprehensive analysis establishing a
novel five-gene signature for pancreatic cancer diagnosis and
therapeutic targeting, with validation across multiple datasets and
platforms. The robust performance of this signature, particularly in
peripheral blood samples, represents a significant advance in non-
invasive pancreatic cancer diagnostics and potential therapeutic
development. The exceptional performance of our signature in
both training (AUC = 0.99) and validation datasets (AUC =
0.89) demonstrates its robust diagnostic capability across diverse
patient populations. Notably, the successful validation in peripheral
blood samples (AUC = 0.83) suggests potential clinical utility as a
non-invasive diagnostic tool. This is particularly significant for
pancreatic cancer, where early detection remains challenging due
to anatomical location and non-specific symptoms.

Each gene in our signature plays crucial biological roles in cancer
progression. LAMC2, encoding a laminin subunit, is a critical

component of the laminin-5 complex involved in regulating cell
adhesion, migration, and tumor microenvironment remodeling.
Elevated LAMC2 expression promotes pancreatic cancer invasion
and metastasis by enhancing AKT-dependent NHE1 activity (Wang
et al., 2020). TSPAN1, a tetraspanin family member, modulates cell
surface protein trafficking and signaling, contributing to cancer cell
proliferation and chemoresistance through pathways such as EGFR
and integrin-mediated signaling (Garcia-Mayea et al., 2022).
MYO1E and MYOF, involved in actin-based intracellular
trafficking and vesicle transport, respectively, play key roles in
cancer cell membrane dynamics and migration. Dysregulation of
these genes has been linked to enhanced metastatic potential and
altered intracellular signaling in pancreatic cancer (Chung et al.,
2019). SULF1, an extracellular heparan sulfate endosulfatase,
regulates key growth factor pathways such as FGF2 and VEGF,
impacting angiogenesis and tumor progression (Nagamine et al.,
2012). These genes collectively influence the tumor
microenvironment, facilitating processes such as immune evasion,
extracellular matrix degradation, and angiogenesis.

In addition to their biological relevance, we compared the
diagnostic performance of our five-gene signature to CA19-9, the
most used biomarker for pancreatic cancer. While CA19-9
demonstrates high specificity for pancreatic cancer, its sensitivity
is limited, particularly in early-stage disease (Azizian et al., 2020). In
contrast, our gene signature achieved comparable diagnostic
accuracy with AUC = 0.83 in peripheral blood samples, offering
the advantage of a non-invasive, molecular-based approach.

FIGURE 2
External validation of the five-gene signature in independent datasets. (A–E) Forest plots showing standardized mean differences (log2 scale) for
each signature gene across six validation datasets. (F) Violin plot showing meta-score distribution between normal and tumor samples in GSE28735. (G)
Summary ROC curves demonstrating diagnostic performance across validation datasets with individual and combined AUCs.
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Furthermore, CA19-9 is influenced by non-cancerous conditions
such as cholestasis, which may lead to false-positive results. The
integration of our signature with CA19-9 could potentially enhance
diagnostic precision by combining molecular and traditional
markers. Future studies should explore the combined utility of
these biomarkers.

The validation of our signature in peripheral blood samples
addresses a critical need in pancreatic cancer management. Current
diagnostic methods often rely on invasive procedures or imaging
techniques with limited sensitivity for early-stage disease. Our
blood-based approach could facilitate regular screening and
monitoring, potentially enabling earlier detection and improved

treatment outcomes. The ability to detect these markers in blood
also suggests their potential utility in monitoring treatment response
and disease progression.

Our study’s dual focus on diagnostics and therapeutic targeting
represents a novel approach in biomarker development. While most
previous studies have focused solely on diagnostic applications, our
identification of genes with known roles in cancer biology opens new
avenues for targeted therapy development. The consistent
differential expression of these genes across multiple datasets and
their detection in peripheral blood suggests their fundamental
importance in pancreatic cancer pathogenesis. The use of
machine learning approaches, particularly random-effects meta-

FIGURE 3
Clinical validation of the five-gene signature in peripheral blood samples. (A) Violin plot showing meta-score distribution across benign, chronic
pancreatitis, normal, and PDAC groups in GSE91035 dataset. (B) ROC curve showing discrimination between normal and benign samples. (C) ROC curve
for GSE15932 peripheral blood validation. (D) ROC curve from in-house validation cohort demonstrating diagnostic performance in distinguishing
pancreatic cancer from healthy controls.
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analysis and forward-search optimization enabled robust signature
development while minimizing dataset-specific biases. This
methodological approach could serve as a template for similar
biomarker discovery efforts in other cancers. The successful
validation across multiple independent datasets and platforms
strengthens the generalizability of our findings.

However, several limitations warrant discussion. First, while our
blood-based validation included 55 subjects, larger prospective
studies are needed to fully establish clinical utility. Second, the
relationship between tissue and blood expression levels requires
further investigation to optimize blood-based testing protocols.
Third, functional studies are needed to fully understand the
therapeutic potential of targeting these genes. Future directions
should include prospective validation in larger, diverse patient
cohorts, particularly focusing on early-stage disease detection.
Investigation of the mechanistic roles of these genes in pancreatic
cancer progression could inform therapeutic development
strategies. Finally, longitudinal studies are needed to explore the
utility of the gene signature in monitoring disease progression and
treatment response. Additionally, studies examining the signature’s
utility in monitoring treatment response and predicting prognosis
would expand its clinical applications.

5 Conclusion

Our study establishes a robust five-gene signature with
demonstrated utility in both diagnostics and therapeutic
targeting. The successful validation in peripheral blood samples
represents a significant step toward non-invasive pancreatic cancer
detection. Our findings provide a foundation for future development
of both diagnostic tests and targeted therapies, potentially improving
outcomes in this devastating disease.
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