
Accurate identification of snoRNA
targets using variational graph
autoencoder to advance the
redevelopment of traditional
medicines

Zhina Wang1,2, Yangyuan Chen3, Hongming Ma1,2, Hong Gao1,2,
Yangbin Zhu3*, Hongwu Wang4 and Nan Zhang1,2*
1Department of Pulmonary and Critical Care Medicine II, Emergency General Hospital, Beijing, China,
2Department of Oncology, Emergency General Hospital, Beijing, China, 3School of Data Science and
Artificial Intelligence, Wenzhou University of Technology, Wenzhou, China, 4Respiratory Disease Center,
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China

Existing studies indicate that dysregulation or abnormal expression of small
nucleolar RNA (snoRNA) is closely associated with various diseases, including
lung cancer. Furthermore, these diseases often involve multiple targets, making
the redevelopment of traditional medicines highly promising. Accurate prediction
of potential snoRNA therapeutic targets is essential for early disease intervention
and the redevelopment of traditional medicines. Additionally, researchers have
developed artificial intelligence (AI)-based methods to screen and predict
potential snoRNA therapeutic targets, thereby advancing traditional drug
redevelopment. However, existing methods face challenges such as
imbalanced datasets and the dominance of high-degree nodes in graph
neural networks (GNNs), which compromise the accuracy of node
representations. To address these challenges, we propose an AI model based
on variational graph autoencoders (VGAEs) that integrates decoupling and
Kolmogorov-Arnold Network (KAN) technologies. The model reconstructs
snoRNA-disease graphs by learning snoRNA and disease representations,
accurately identifying potential snoRNA therapeutic targets. By decoupling
similarity from node degree, the model mitigates the dominance of high-
degree nodes, enhances prediction accuracy in scenarios like lung cancer,
and leverages KAN technology to improve adaptability and flexibility to new
data. Case studies revealed that snoRNA SNORA21 and SNORD33 are abnormally
expressed in lung cancer patients and are strong candidates for potential
therapeutic targets. These findings validate the proposed model’s
effectiveness in identifying therapeutic targets for diseases like lung cancer,
supporting early screening and treatment, and advancing the redevelopment
of traditional medicines. Data and experimental findings are archived in: https://
github.com/shmildsj/data.
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Introduction

SnoRNA is a type of non-coding RNA, typically 60 to
300 nucleotides long, and predominantly found in eukaryotic cells
(Esteller, 2011). Based on function, snoRNAs are categorized into two
types: box C/D and box H/ACA (Liao et al., 2010). Numerous studies
have demonstrated that snoRNA plays a crucial regulatory role. For
instance, snoRNA regulates the methylation of rRNA and tRNA
(Kiss-László et al., 1996), and is also involved in mRNA splicing
(Kishore and Stamm, 2006). SnoRNA can bind to specific proteins to
prevent enzyme cleavage and facilitate related RNA processing
(Esteller, 2011). Furthermore, growing evidence suggests that
snoRNA is a key factor in the occurrence and progression of
various diseases. For example, dysregulation of snoRNA may
promote various diseases, including gastric cancer (Wang et al.,
2019). SnoRNA downregulation may lead to brain cavernous
malformations (Qi et al., 2016), and promote lung cancer (Liao
et al., 2010) or tumor development (Krishnan et al., 2016).
Similarly, a significant increase in snoRNA levels may promote the
progression of various cancers (Zheng et al., 2015). Thus, studying the
regulatory mechanisms of snoRNA is crucial for advancing disease
treatment strategies. Clinical trials can help accurately uncover the
regulatory mechanisms of specific snoRNAs in diseases. However,
these methods often depend on long-term experiments and
observations, as well as costly equipment.

Fortunately, previous research has accumulated substantial data,
enabling data scientists to uncover new regulatory mechanisms of
snoRNA in diseases. For instance, X et al. developed the MNDR
database, which is based on the regulatorymechanisms ofmammalian
ncRNA in diseases (Ning et al., 2021). Chen and Zhang et al.
integrated and updated the RNA-disease association databases
RNADisease v4.0 and ncRPheno, making them publicly accessible
(Chen et al., 2023; Zhang W. et al., 2020). These databases contain
SDA data and have the potential to advance the development of
related computationalmethods. For example, Sun et al. collected high-
quality SDA data from the MNDR database, integrated snoRNA and
disease similarity networks, and predicted unknown SDAs using
matrix completion (Sun et al., 2022). Hu et al. gathered known
SDAs from RNADisease v4.0 and ncRPheno, constructed
snoRNA-disease networks, and applied subgraph extraction and
graph collaborative filtering to identify unknown SDAs (Hu et al.,
2024). Overall, relatively few computational methods directly explore
SDAs. And these models depend on complex feature extraction and
classification processes, which significantly limit their broad
applicability. However, numerous studies focus on potential
interactions in biological networks, which are fundamentally
similar to SDA prediction tasks. Advanced methods primarily
include deep learning, GNNs, and graph autoencoder techniques.

The rapid development of deep learning is evident in its
widespread application in bioinformatics (Wang Y. et al., 2023;
Wang R. et al., 2024; Wang R. et al., 2023; Zhuo et al., 2023),
particularly in exploring potential interactions within biological
networks, achieving notable success. For instance, Zhou et al.
automatically extracted sequence features of lncRNA and
proteins using the Transformer architecture, integrated them to
obtain representations of lncRNA-protein pairs, and predicted
unknown lncRNA-protein interactions via multi-layer
perceptrons (Zhou et al., 2023). Wei et al. incorporated data

augmentation, feature alignment, and other techniques into a
self-supervised learning framework, extracting precise node
representations to efficiently predict unknown food-drug
interactions (Wei et al., 2024a). Liu et al. applied meta-path
technology to extract features of circular RNA and diseases,
integrated them to obtain representations of circular RNA-disease
pairs, and predicted unknown circular RNA-disease associations
using contrastive learning and MLP (Liu et al., 2023a). Then, Liu
et al. proposed a novel method for predicting gene regulatory
networks, refining the topological network from both global and
local perspectives, and accounting for edge importance to enhance
prediction performance (Liu et al., 2023b). Additionally, Wei et al.
employed an integrated deep learning framework, incorporating
clustering-based parameter fine-tuning, to significantly enhance the
accuracy of drug-target interaction prediction (Wei et al., 2024b).
Moreover, Wei demonstrated that large language models have a
significant impact on drug repositioning (Wei et al., 2024c). Deep
learning technology effectively extracts deep node representations,
operates independently of manually designed features, and swiftly
and accurately infers potential interactions within biological
networks. However, a major drawback of these methods is their
neglect of the topological information in known biological networks.

Graph neural networks (GNNs) uncover the structure of
topological networks via message propagation mechanisms. GNNs
have emerged in bioinformatics fields like property prediction (Wang
et al., 2024b; Ma et al., 2024a; Wang et al., 2024c) and gene detection
(Ma et al., 2024b;Wang et al., 2024d), challenging traditional machine
learning and deep learning approaches. Similarly, GNN technologies
play a crucial role in predicting interactions within biological
networks. For example, Zhuo et al. used two graph convolutional
networks to extract node representations of lncRNA and proteins,
followed by pairwise learning to train predictors for identifying
unknown lncRNA-protein interactions (Zhuo et al., 2022). Wei
et al. subsequently applied sampling to enhance the GCN model’s
performance in handling sparse data (Wei et al., 2023a). Liao et al.
employed an autoencoder to extract representations of miRNA and
diseases and used GCN to predict unknown miRNA-disease
associations (Liao et al., 2023). Wei et al. applied a graph
collaborative filtering model and multi-perspective contrastive
learning to enhance node representations, aiming to accurately
predict unknown miRNA-drug sensitivity (Wei et al., 2023b).
Furthermore, Zhou et al. noted that message propagation across
the entire graph may lead to “over-smoothing” and adopted a
subgraph enhancement strategy to improve microbial-drug
interaction predictions by focusing on local features (Zhou et al.,
2024a). Building on this, Zhou et al. adopted an energy-constrained
diffusion mechanism to extract global node representations of drugs
and proteins, uncovering potential drug-protein relationships and
accurately predicting unknown interactions (Zhou et al., 2024b).
Additionally, Li et al. integrated multi-source similarity networks
of miRNA and diseases to enhance model performance in predicting
miRNA-disease interactions (Li Z. et al., 2024). GNN technology
explores the topological information of biological networks via
message propagation mechanisms, significantly enhancing
interaction analysis within these networks. However, methods
related to GNN often overlook the intrinsic information of the
nodes. Additionally, the dominance of high-degree nodes in
message propagation within GNNs can limit model performance.
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The integration of self-supervised learning strategies with GNN
technology has driven the development of graph autoencoders,
widely applied to uncover potential information in biological
networks. For instance, Zhou et al. proposed a method utilizing
the graph autoencoder framework and edge masking to predict
potential interactions between small molecules and miRNAs (Zhou
et al., 2024c). This method first masks edges in the small molecule-
miRNA graph using a Bernoulli distribution, then applies a GNN
encoder and inner product decoder to reconstruct the masked
graph. Zhou et al. subsequently masked paths in the miRNA-
drug graph and trained the miRNA-drug association predictor
using graph autoencoder technology (Zhou et al., 2024d). Zhang
et al. subsequently integrated multi-source similarity networks and
employed graph autoencoders along with polyloss technology to
infer unknown lncRNA-protein interactions (Zhang et al., 2024a).
Graph autoencoders are becoming increasingly crucial in biological
network research due to their self-supervised nature, simplicity, and
efficiency. Like GNN models, GAE-related models also encounter
issues with message propagation dominated by high-degree nodes.

In summary, these advanced models have demonstrated success in
interaction prediction within biological networks and should be capable
of handling snoRNA-disease prediction tasks. However, these models
face several significant challenges. First, thesemodels, particularly graph-
based models, have an inherent limitation due to their message
propagation mechanism. Studies have shown that nodes with high
degrees tend to have large embedding norms, which dominate message
propagation and hinder GNNmodels from extracting accurate snoRNA
or disease representations. Second, extremely sparse or isolated snoRNA
or disease nodes often exist in the snoRNA-disease graph, leading to
unpredictable results during gradient backpropagation. To address these
issues, we incorporate L2 regularization and decoupling techniques into
the variational graph autoencoder framework, proposing a snoRNA-
disease association prediction model, named DK-SDA, to mitigate these
challenges and enhance prediction performance. Our contributions can
be summarized as follows:

(1) We proposed an SDA prediction model within the VGAE
framework, yielding reliable results.

(2) We employed graph-regularized convolutional networks to
extract snoRNA and disease representations, mitigating the
issue of sparse nodes causing unpredictable gradient
propagation.

(3) We applied decoupling technology to separate snoRNA-
disease similarity from the node degrees of snoRNA or
disease, thus mitigating the dominant effect of high-degree
nodes on message propagation.

(4) We conducted multiple experiments on public datasets, and the
results confirmed the model’s high efficiency in lung cancer
research, providing strong support for early screening
and treatment.

Materials and methods

Data preparation

This study utilized two datasets collected by previous research
(Hu et al., 2024) to evaluate the performance of the proposed and

comparison models. The first dataset was sourced from the
RNADisease v4.0 (Chen et al., 2023) database, where
experimentally verified and predicted SDAs were extracted, with
duplicates and missing data removed. The final dataset included
471 snoRNAs, 84 diseases, and 1,095 SDAs. The dataset was then
divided into training and test sets in a 4:1 ratio. The second dataset
was sourced from the ncRPheo database (Zhang W. et al., 2020).
After data cleaning, it contained 82 diseases, 13 snoRNAs, and
439 SDAs. This dataset was used as an external test set to evaluate
model performance under isolation conditions.

Method

This study proposes a snoRNA-disease association prediction
model within the VGAE framework, aiming to efficiently predict
unknown snoRNA-disease pairs from observed SDAs. Compared to
other advanced interaction prediction models in biological networks,
this model presents two key differences. First, the model addresses
sparse nodes in the snoRNA-disease network, which can undermine
the reliability of the extracted embeddings. Then, L2 regularization is
applied to process node representations in both the initial and
intermediate layers to alleviate the difficulty in predicting low-
degree node embeddings during gradient backpropagation. Second,
the model addresses the dominant effect of high-degree nodes on
message propagation. Therefore, decoupling technology is introduced
to separate snoRNA-disease similarity from node norms, thereby
enhancing the reliability of message propagation. The following
sections will elaborate on the relevant principles and techniques.

Preliminary
In this study, the snoRNA-disease network is represented as

G = <V,E,X>, where V = Vs∪Vd denotes the set of snoRNA and
disease nodes, E∈Vs × Vd denotes the observed SDAs, and
X = Xs∪Xd denotes the initial feature set of snoRNA and disease
nodes. A graph convolutional network (GCN) is used as an encoder
within the VGAE framework to perform operations such as message
propagation and node embedding extraction. Recently, studies have
focused on the L2 norm of node embeddings across various fields.
For example, in translation, uncommon words are often assigned
lower L2 norms (Kobayashi et al., 2020). In image processing or
computer vision, low-quality images tend to have lower L2 norms
for their corresponding embeddings (Liu et al., 2017). Subsequent
studies have employed L2 regularization to reduce quantization
error between large and small norms (Ranjan et al., 2017). Zhang
et al. noted that L2 regularization can alleviate the instability
between large and small norms during gradient backpropagation
(Zhang D. et al., 2020). Additionally, Zheng et al. have applied
L2 regularization in GCNs to mitigate the over-smoothing problem
during message propagation (Zheng et al., 2018).

Model framework
Figure 1 depicts the DK-SDA model’s architecture, which

encompasses (A) snoRNA-disease network construction, (B)
sampling process (C) adjacency matrix reconstruction based on
snoRNA-disease similarity, and (D) adjacency matrix
reconstruction based on node degree. In Module A, data
retrieved from the database constructs the snoRNA-disease
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network. Module C initiates with Bernoulli sampling as per Module
B. If the SDAs are established based on snoRNA-disease similarity,
the process concludes; otherwise, it transitions to Module D for
adjacency matrix reconstruction based on node degree.

L2-normalization in GCN
To mitigate the issue of unpredictable gradient propagation

caused by sparse nodes, we introduced L2 regularization in GCN
based on previous work (Ahn and Kim, 2021). Specifically,
L2 regularization is applied before GCN performs message
propagation. For a snoRNA or disease node a, its initial feature
is represented as xa, which is mapped to a trainable weight matrix as:

ha � g xaW( ) � xaW, (1)
Next, L2 regularization is applied to ha as defined in Equation 2:

na � t
ha
ha‖ ‖, (2)

where t represents the scaling parameter, set to 1.8 by default. Based
on the regularized representation, GCN performs message
propagation and outputs the embedding of node a:

za � 1
da + 1

na + ∑
b∈Na

1������������
da + 1

�����
db + 1

√√ nb, (3)

FIGURE 1
DK-SDA model’s architecture, comprising: (A) construction of the snoRNA-disease network, (B) the sampling process, (C) reconstruction of the
adjacency matrix based on snoRNA-disease similarity, and (D) reconstruction of the adjacency matrix based on node degree.
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where Na represents the set of neighbor nodes of node a, and da

represents the degree of node a. Notably, in the subsequent process,
the similarity between snoRNA and disease and the norms of
snoRNA or disease nodes are decoupled. The similarity and node
norms are sampled from the embeddings extracted by GCN, and the
GCN corresponding to the node norm does not execute Equation 3.
Then the operation of this GCN can be formalized as Equation 4:

GNCN X,A, t( ) � tD̂
−1
2 ÂD̂

−1
2g XW( ), (4)

where D̂ represents the degree matrix and Â represents the
adjacency matrix with self-loop.

Variational graph autoencoder (VGAE) framework
Generally, the node embedding matrix Z output by GCN can be

used with an inner product decoder to reconstruct the snoRNA-
disease network A � g(ZZT). However, studies suggest that
variational graph autoencoders (VGAE) (Kipf and Welling, 2016)
offer greater advantages. The implementation of VGAE is
straightforward, consisting primarily of two components: a GNN
encoder and a decoder. The GCN encoder serves as an inference
model, sampling and deriving the variational posterior of node
embeddings based on an approximate Gaussian distribution. The
snoRNA-disease network is then reconstructed using the decoder. In
the GCN encoder, the posterior of node embeddings is difficult to
derive directly and is typically approximated using a Gaussian
distribution (Kipf and Welling, 2016) as Equation 5:

q Z|A,X( ) � ∏n

a�1q za A,X|( ), (5)
where

q(za A,X| ) � N za
∣∣∣∣μa, diag σ2a( )( ), (6)

and

μa � GNCNμa A, X, t( ), σa � GCNσa A, X( ). (7)

In Equations 6 and 7, μa and σa share the first layer parameters.
And μa undergoes regularization, while σa does not. Both μa and σa

perform the propagation process independently. Equation 7 are used
for feature extraction based on snoRNA-disease similarity. This
study also incorporates an encoder based on node degree. However,
unlike Equation 7, the mean and variance based on node degree are
calculated without applying Equation 3.

Kolmogorov-Arnold Network (KAN)
The Multilayer Perceptron (MLP) has been instrumental in the

field of deep learning due to its strong ability to approximate
nonlinear functions. However, MLP faces unavoidable challenges,
including large parameter sizes and limited flexibility. To address
these challenges, KAN technology was developed (Liu et al., 2024).
The core concept of the Kolmogorov-Arnold representation
theorem is that any multivariate continuous function can be
expressed as a composition of continuous univariate functions:

f h1, . . . , hn( ) � ∑2n+1
v�1

πv ∑n
u�1

ωv,u hu( )⎛⎝ ⎞⎠, (8)

In Equation 8 theorem establishes the theoretical foundation
that any multivariate continuous function can be represented as the

sum of continuous univariate functions. KAN technology leverages
this theory to efficiently approximate complex functions. In this
framework, ωv,u( ) functions as a univariate transformation of each
input variable hu, whereωv,u: [0, 1] → R and πv: R → R. Given that
all functions are univariate, each can be parameterized as b-spline
curves with local basis function coefficients that can be optimized.

Building on the structure of the multi-layer perceptron (MLP), a
deeper KAN architecture is constructed by stacking L layers:

KAN h( ) � ΘL+ΘL−1+/+Θ1( )h, (9)
where Θi denotes the parameters of the i-th layer. Therefore, KAN
can externally stack multiple layers, similar to MLP, to extract deep
features as Equation 9. Internally, the univariate function within
KAN offers greater flexibility to the model. This study employs the
KAN network architecture in the second layer of the node degree-
based encoder.

KANs offer a novel approach that enhances flexibility and
interpretability compared to traditional MLPs by using spline
functions as edge weights. This design allows KANs to better
capture the underlying features driving snoRNA-disease interactions,
thereby enhancing themodel’s interpretability. Researchers can analyze
the spline function coefficients to understand how the network
processes input data and makes predictions, making KANs a more
transparent alternative to other neural network architectures.

Decoupling node similarity and degree
In typical VGAE-based methods, message propagation relies on

both node similarity and norm. When these two factors are
misaligned, the norm often dominates message propagation.
Several studies have shown that in networks or graphs, the
embedding norm of low-degree nodes is typically low, while
high-degree nodes have higher norms (Cho, 2024). According to
prior studies (Cho, 2024), there are two conditions under which
snoRNA and disease can be considered associated. The first
condition is a high degree of association between snoRNA and
disease, indicated by high similarity. This is referred to as snoRNA-
disease similarity. The second condition is when a snoRNA or
disease node has a high degree, indicating its popularity, which
increases the likelihood of forming associations with other nodes,
though they may remain undiscovered. This is referred to as node
degree. However, when establishing an association between snoRNA
and disease, it is difficult to determine which condition applies due
to the lack of precise prior knowledge. Therefore, for each snoRNA-
disease pair, this study employs Bernoulli distribution sampling
based on snoRNA-disease similarity to determine which condition
applies for establishing SDAs.

Therefore, this study employed the previously established
method (Cho, 2024), extracting node embeddings based on
snoRNA-disease similarity and node degree, followed by
constructing individual decoders. For snoRNA a or disease b,
sampling is conducted based on similarity to derive the potential
node embedding as Equation 10:

zsa ~ N us, σs( ), zsb ~ N us, σs( ), (10)
where us and σs are calculated using Equation 7. For snoRNA a or
disease b, sampling is conducted based on node degree to derive the
potential node embedding as Equation 11:
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zda ~ N ud, σd( ), zdb ~ N ud, σd( ), (11)

where ud and σd are calculated using Equation 7. Notably, Equation
3 is not applied at this stage.

For any snoRNA-disease pair <a,b>, a two-stage approach is
employed to establish their association:

(1) SnoRNA-disease similarity: Establish SDAs based on the
Bernoulli distribution.

Aa,b ~ Bernoulli σ fs zsa, z
s
b( )( )( ), (12)

where σ represents the SIGMOD function, f s() measures the
similarity between snoRNA and disease, and the normalized
inner product can be used.

(2) Node Degree: If no association is established after the initial
sampling, continue sampling as follows.

Aa,b ~ Bernoulli σ fd zda, z
d
b( )( )( ), (13)

where f d() measures node popularity, and the addition operation
can be used.

This process achieves the decoupling of snoRNA-disease
similarity and node degree. Firstly, f s() specifically explains the
rationale for establishing a connection based on snoRNA-disease
similarity. And f d() specifically explains the rationale for
establishing a connection based on degree.

Optimization
The goal of this study is to reconstruct the snoRNA-disease

network using the decoder under two conditions, represented by the
adjacency matrix A, with the corresponding posterior probability
formalized as Equation 14:

p A|Z( ) � ∏
a
∏

b
p Aa,b

∣∣∣∣za, zb( ), (14)

By integrating the embedding loss values for snoRNA-disease
similarity and node degree, the following can be derived as
Equation 15:

L φ,ψ;A( ) � Eqφ Zs,d A,X|( ) log pψ A |Zs,d( )[ ] − KL(qφ Zd I,A|( )
×
�����p Zd( )) − KL qφ Zs X,A|( )

�����p Zs( )( ),
(15)

were Zs,d represents the node embedding matrix derived for
snoRNA-disease similarity and node degree. These are SDAs
reconstructed under different conditions. KL() denotes KL
divergence, a distance metric. Both p(Zs) and p(Zd) follow
Gaussian priors p(za) � N(za | 0, I), where I denotes identity
matrix. And q(Zs) and q(Zd) follow the posterior estimates of
the Gaussian distribution, with q(za|xa,A) following. Notably, In
the case of node degree, the focus is on the node itself rather than
the feature vector X.

The first term of the above optimization objective can be further
decomposed as follows:

Eqφ Zs,d A,X|( ) log ps
ψ A |Zs( )[ ]ps + Eqφ Zs,d A,X|( ) log pd

ψ A |Zd( )[ ]qs,
(16)

where psψ(A |Zs) and log pdψ(A |Zd) follow Equations 12, 13,
respectively, representing similarity and node degree. And ps and
qs � 1 − ps are Bernoulli parameters, representing the probabilities
of establishing SDAs based on snoRNA-disease similarity and node
degree, respectively. Finally, the corresponding parameters are
learned using the EM algorithm.

Results

Experimental setup

This study evaluated the performance of the proposed DK-SDA
model and comparison models using the RNADisease (Chen et al.,
2023) and ncRPheo (Zhang W. et al., 2020) datasets. Six GNN-based
comparison models were selected: NIMCGCN (Li et al., 2020),
AMHMDA (Ning et al., 2023), NSAMDA (Zhao et al., 2022),
iPiDA-GCN (Hou et al., 2022), VGAMF (Ding et al., 2021), and
IGCNSDA (Hu et al., 2024). The NIMCGCN model was originally
developed for miRNA-disease association prediction. Two GCNs
were used to extract features from miRNA and disease similarity
networks, followed by matrix completion to identify potential MDAs.
Similarly, the AMHMDA model used two GCNs to extract features
from miRNA and disease similarity networks, predicting potential
MDAs via hypergraphs and hierarchical attention mechanisms. The
NSAMDA model employed nearest neighbor and graph attention
network (GAT) techniques to extract features from the miRNA-
disease heterogeneous graph, predicting unknownMDAs via an inner
product decoder. The VGAMF model employs VGAE technology to
extract features from miRNA and disease similarity networks, using
matrix decomposition to predict potential MDAs. The iPiDA-GCN
model uses GCN to identify unknown piRNA-disease associations.
The IGCNSDAmodel employs graph collaborative filtering to predict
potential SDAs. NIMCGCN, AMHMDA, NSAMDA, and VGAMF
were originally designed for MDA prediction, while iPiDA-GCN was
developed for piRNA-disease association prediction. In this study, the
inputs for these methods were changed to the RNADisease and
ncRPheo datasets. All models used the same training, test, and
external test sets. As in previous studies (Wei et al., 2024d; Zhang
et al., 2024b), we primarily used AUC, AUPR, Accuracy (ACC),
Precision (PRE), Sensitivity (SEN), and F1-Score (F1) metrics to
evaluate model performance.

Our strategy manages the imbalance between positive and
negative samples during model training. Specifically, we use a
technique to randomly select an equal number of negative samples
to match the positive samples in each training batch. This method
ensures the model trains on a balanced dataset, crucial for preventing
bias towards predicting non-interacting classes. Additionally, to
further mitigate class imbalance risk, we employ stratified sampling
during the cross-validation process. This strategy maintains a
balanced distribution of positive and negative classes across
different folds, enhancing the model’s generalizability and robustness.

Performance comparison

Table 1 presents the results of all models on the RNADisease
database. It is evident that the AMHMDA, NIMCGCN,
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NSAMDA, and VGAMF models perform poorly, likely due to
their reliance on feature extraction from similarity networks.
Determining an appropriate threshold for similarity networks
is challenging, often resulting in the extraction of biased features.
Comparatively, the performance of the NSAMDA and VGAMF
models shows slight improvement. This improvement may be
attributed to the use of nearest neighbor and GAT technologies in
the NSAMDA model. The VGAMF model employs VGAE
technology, which is better suited for SDA prediction tasks.
The iPiDA_GCN and IGCNSDA models directly perform SDA
prediction on the snoRNA-disease graph, leading to further
performance improvements. Notably, the proposed model
achieved 95.84% AUC, 97.23% AUPR, and 92.01% ACC,
significantly outperforming all competing models. This
superior performance may result from the proposed model’s
use of the VGAE framework with decoupling technology,
which mitigates the dominance of high-degree nodes in
message propagation.

Additionally, the proposed model incorporates KAN technology
to enhance its flexibility and adaptability. Additionally, we tested the
models’ adaptability to new data and evaluated their performance on
external datasets. Specifically, all models were trained on the
complete RNADisease dataset and subsequently tested on the
external ncRPheo dataset. Table 2 presents the independent
testing results of all models on external datasets. The results
show that the proposed model significantly outperforms all
competing models, except in the AUPR metric. These results
demonstrate that the proposed DK-SDA model exhibits strong
adaptability to new data.

Performance evaluation

A 5-fold cross-validation experiment was conducted to further
evaluate the model’s performance and minimize the impact of
random factors. Table 3 presents the 5-fold cross-validation
results of the proposed model on the RNADisease database. The
proposed DK-SDA model performs well, achieving an average of
95.84% AUC, 97.23% AUPR, 92.01% ACC, 93.65% PRE, 90.14%
SEN, and 91.86% F1. Additionally, the results for each fold are
relatively stable, exhibiting small fluctuations. This further
demonstrates that the proposed DK-SDA model exhibits strong
adaptability and reliability.

Parameter experiments

Several sets of parameter experiments were conducted to
evaluate the impact of parameter changes on the performance of
the proposed model. First, the impact of varying hidden layer
dimensions on model performance was tested. The hidden layer
refers to the linear mapping layer in Equation 1, where the mapped
features are used to generate regularized feature vectors. In the
experiment, all other variables were held constant, with only the
hidden layer dimension changed. The results are presented in
Figure 2. The results indicate that when the hidden layer
dimension is within the range [64,256], model performance
gradually improves. When the hidden layer dimension exceeds
256, model performance slightly decreases. This may occur
because smaller dimensions cannot fully extract features, while
larger dimensions may cause information redundancy, limiting
model performance. Therefore, a compromise hidden layer
dimension can be selected to ensure the model’s adaptability
to new data.

Secondly, we evaluated the impact of various encoders on model
performance. The encoder is positioned in the second feature
extraction layer of the node degree-based structure. First, the
model applies a linear mapping layer to transform input features,
followed by feeding them into the second feature extraction layer.
We explore the model’s performance with different encoders in the
second feature extraction layer, including KAN, MLP, GCN, GAT,
SAGE, and GIN. In the experiment, all other variables were held
constant, with only the encoder being modified. The results are
presented in Figure 3. The results indicate that the model performs
well when KAN is used as the encoder. Overall, the model’s
performance decreases when using GNN, suggesting that high-
degree nodes may dominate the message propagation process.

Statistical significance analysis

In this study, we employed the one-way analysis of variance
(ANOVA) technique (St andWold, 1989) to systematically compare
the AUC performance of various snoRNA target prediction models
on the snoRNA-disease association dataset, as shown in Figure 4.
The results indicated that the proposed model was significantly
superior on the dataset, achieving a p-value as low as 1.0e-07 when
compared to most competing models, demonstrating its high
statistical significance. Overall, the p-values between the model

TABLE 1 Results of all models on the RNADisease dataset (%).

Models/Metrics AUC AUPR ACC

AMHMDA 65.72 72.44 65.06

NIMCGCN 68.03 66.55 61.41

NSAMDA 70.23 75.88 68.26

VGAMF 73.04 76.65 68.09

iPiDA_GCN 81.01 81.73 70.54

IGCNSDA 84.38 87.44 78.31

Ours 95.84 97.23 92.01

TABLE 2 Results of all models on external testing set (%).

Models/Metrics AUC AUPR ACC

AMNMDA 50.10 49.45 48.97

NIMCGCN 70.84 77.81 52.05

NSAMDA 50.72 67.26 69.11

VGAMF 70.69 70.49 64.57

iPiDA_GCN 61.82 61.85 66.51

IGCNSDA 71.42 87.46 72.90

Ours 80.33 81.92 75.17
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and all reference models were well below the significance threshold
of 0.05, confirming its superior performance. This analysis not only
underscored the model’s superior performance but also highlighted
its stability and reliability across diverse datasets. Importantly, the
findings provide robust evidence supporting the use of decoupled
representation learning and KAN technology to enhance model
generalizability.

Case analysis

This study focuses on lung cancer, examining snoRNAs
SNORD33 and SNORD78 through three case studies to evaluate
the model’s performance in realistic scenarios. Lung cancer, a
prevalent and serious disease, has high morbidity and mortality
rates. Factors such as environmental pollution, smoking, and
genetic mutations contribute to the onset and progression of lung
cancer. Dysregulation of snoRNA in vivo can lead to tumorigenesis,
manifested by cancer cell proliferation and altered gene expression.
For instance, abnormal expression of SNORD78 has been linked to
the initiation and progression of lung cancer (Zheng et al., 2015).

Research indicates that inhibiting SNORD78 expression can curb
cancer cell proliferation, suggesting its potential as a target for lung
cancer therapy. Investigating lung cancer-related snoRNAs is likely to
advance the development of novel therapeutic strategies.

SNORD33, typically located in the nucleolus, primarily
facilitates the chemical modification of rRNA, such as guiding
rRNA methylation (Mannoor et al., 2012). Dysregulation of
SNORD33, whether through overexpression or underexpression,
may contribute to cancer or inflammation development. Research
has demonstrated that SNORD33 dysregulation disrupts rRNA
methylation, resulting in abnormal protein complex synthesis.
This disruption aids the growth and survival of lung cancer cells.
Furthermore, SNORD33 dysregulation may facilitate cell metastasis
and hasten lung cancer progression (Zhang et al., 2023). Similarly,
SNORD78, a snoRNA with functions akin to SNORD33, promotes
lung cancer cell growth, thus accelerating lung cancer progression.

In the first case study, we excluded all snoRNAs associated with
lung cancer from the training set, and trained the model on the
remaining data. Subsequently, the trained model predicted the
likelihood of association between lung cancer and all snoRNAs,
selecting the top 20 for further analysis. The results are detailed in

TABLE 3 Results of 5-fold cross validation of DK-SDA model on RNADisease dataset (%).

Test set AUC AUPR ACC PRE SEN F1

1 94.12 96.28 90.41 91.94 88.58 90.23

2 95.19 96.87 92.01 93.40 90.41 91.88

3 95.73 97.18 92.24 93.84 90.41 92.09

4 96.94 97.80 92.69 94.31 90.87 92.56

5 97.20 98.03 92.69 94.74 90.41 92.52

Average 95.84 ± 1.27 97.23 ± 0.71 92.01 ± 0.94 93.65 ± 1.08 90.14 ± 0.89 91.86 ± 0.95

FIGURE 2
Model performance at different hidden layer dimensions.
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Table 4. 18 of the predicted snoRNAs were validated using the
RNADisease v4.0 database (Chen et al., 2023). Although
SNORA21 has not been validated in the database, multiple studies
suggest a strong association with lung cancer (Li L. et al., 2024). In the
second and third case studies, we employed a similar approach to assess
the association of SNORD33 and SNORD78 with various diseases,

selecting the top 10 diseases for each. Results are presented in Tables 5,
6. For SNORD33, eight predicted diseases, excluding Prostate
Neoplasm and Gliomas, were validated in the RNADisease
v4.0 database (Chen et al., 2023). Similarly, for SNORD78, eight
predicted diseases, excluding Osteosarcoma and Melanoma, were
confirmed in the RNADisease v4.0 database. Additionally, in the

FIGURE 3
Results of the model with different encoders.

FIGURE 4
Statistical significance analysis of multiple methods based on AUC.
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second and third case studies, both SNORD33 and SNORD78 appear to
be associated with lung cancer and related diseases. Furthermore,
integrating findings from immune escape mechanism research can
aid the development and optimization of lung cancer immunotherapies
(Li et al., 2023). These results demonstrate the suitability of the
proposed DK-SDA method for snoRNA therapeutic target
prediction, facilitating the exploration of disease pathogenesis and
the development of new treatment strategies.

Conclusion

SnoRNA dysregulation significantly contributes to disease onset and
progression, making accurate identification of snoRNA therapeutic
targets essential for redevelopment of traditional medicines. Timely

identification of potential snoRNA therapeutic targets facilitates early
disease screening and the development of novel treatment strategies.
Existing GNN-based deep learning methods reveal network topology
and accurately predict potential snoRNA therapeutic targets. However,
these methods encounter significant challenges. Datasets are often
imbalanced due to limitations in data collection. During message
propagation in GNNs, high-degree nodes often dominate, hindering
accurate node representation learning. To address these challenges, this
study proposes an effective snoRNA therapeutic target prediction model
within the VGAE framework, integrating decoupling and KAN
techniques. The model learns snoRNA and disease representations
within the VGAE framework, reconstructing the snoRNA-disease
graph to identify potential therapeutic targets. The decoupling
technique separates similarity from node degree, mitigating the
dominance of high-degree nodes in information propagation and
enhancing the accuracy of snoRNA therapeutic target prediction,
particularly for diseases like lung cancer. Additionally, the model
integrates KAN technology to enhance flexibility and adaptability to
new data. Moreover, the model indicates that snoRNA SNORA21,
SNORD78 and SNORD33 may play a critical role in lung cancer.
Experimental results demonstrate the model’s high efficiency in
disease research, particularly in lung cancer studies, providing
valuable references for early screening and the redevelopment of
traditional medicines.

This study integrates the decoupling of node similarity and node
degree with KAN technology within the VGAE architecture, enhancing
the accuracy of snoRNA therapeutic target predictions. However, there
are several potential limitations in this study. First, KAN technology has
high computational complexity. Future work will focus on exploring
parallel designs for KAN. Secondly, the proposed model does not
account for the sequence, structure, function, and other biological data
of snoRNA, nor does it include clinical information on the disease and
specific targets, which limits the model’s performance. To address this,
we plan to integrate large language models in the future to extract and
combine multimodal data, enhancing the discovery of potential

TABLE 4 Top 20 predicted snoRNAs with potential associations with lung
cancer.

snoRNA RNADisease snoRNA RNADisease

SNORD28 Confirmed SNORD14D Confirmed

SNORD88B Confirmed SNORD18B Confirmed

SNORD11B Confirmed SNORD113-8 Confirmed

SNORD112 Confirmed SNORD78 Confirmed

SNORD46 Confirmed SNORD114-12 Confirmed

SNORD104 Confirmed SNORD51 Confirmed

SNORD54 Confirmed SNORD103A Confirmed

SNORD78 Confirmed SNORD1C Confirmed

SNORD76 Confirmed SNORA21 Unconfirmed

SNORD72 Confirmed SNORD21 Unconfirmed

TABLE 5 Top 10 predicted diseases with potential associations with SNORD33.

Disease RNADisease Disease RNADisease

Lung Non-Small Cell Carcinoma Confirmed Lung Cancer Confirmed

Lung Carcinoma Confirmed Colorectal Cancer Confirmed

Gastric Cancer Confirmed Rheumatoid Arthritis Confirmed

Traumatic Brain Injury Confirmed Prostate Neoplasm Unconfirmed

Prostate Cancer Confirmed Glioma Unconfirmed

TABLE 6 Top 10 predicted diseases with potential associations with SNORD78.

Disease RNADisease Disease RNADisease

Lung Non-Small Cell Carcinoma Confirmed Colorectal Cancer Confirmed

Lung Cancer Confirmed Prostate Cancer Confirmed

Clear Cell Renal Cell Carcinoma Confirmed Gastric Cancer Confirmed

Hepatocellular Carcinoma Confirmed Osteosarcoma Unconfirmed

Head And Neck Squamous Cell Carcinoma Confirmed Melanoma Unconfirmed
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snoRNA therapeutic targets. Additionally, the model faces challenges
when encountering snoRNA targets that deviate from established
topological patterns or are previously unobserved. To improve the
model’s adaptability to out-of-distribution data and capture interaction
patterns differing from traditional topological structures, methods such
as transfer learning and meta-learning can be employed.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Author contributions

ZW: Funding acquisition, Investigation, Methodology,
Validation, Writing–original draft. YC: Formal Analysis,
Investigation, Writing–review and editing. HM: Data curation,
Formal Analysis, Writing–review and editing. HG: Formal
Analysis, Investigation, Writing–review and editing. YZ:
Methodology, Supervision, Writing–review and editing. HW:
Supervision, Validation, Writing–review and editing. NZ:
Methodology, Supervision, Validation, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahn, S. J., and Kim, M. (2021). “Variational graph normalized autoencoders,” in
Proceedings of the 30th ACM international conference on information and knowledge
management.

Chen, J., Lin, J., Hu, Y., Ye, M., Yao, L., Wu, L., et al. (2023). RNADisease v4. 0: an
updated resource of RNA-associated diseases, providing RNA-disease analysis,
enrichment and prediction. Nucleic Acids Res. 51 (D1), D1397–D1404. doi:10.1093/
nar/gkac814

Cho, Y.-S. (2024). “Decoupled variational graph autoencoder for link prediction,” in
Proceedings of the ACM on web conference 2024.

Ding, Y., Lei, X., Liao, B., and Wu, F.-X. (2021). Predicting miRNA-disease
associations based on multi-view variational graph auto-encoder with matrix
factorization. IEEE J. Biomed. health Inf. 26 (1), 446–457. doi:10.1109/JBHI.2021.
3088342

Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet. 12 (12),
861–874. doi:10.1038/nrg3074

Hou, J., Wei, H., and Liu, B. (2022). iPiDA-GCN: identification of piRNA-disease
associations based on Graph Convolutional Network. PLOS Comput. Biol. 18 (10),
e1010671. doi:10.1371/journal.pcbi.1010671

Hu, X., Zhang, P., Liu, D., Zhang, J., Zhang, Y., Dong, Y., et al. (2024). IGCNSDA:
unraveling disease-associated snoRNAs with an interpretable graph convolutional
network. Briefings Bioinforma. 25 (3), bbae179. doi:10.1093/bib/bbae179

Kipf, T. N., and Welling, M. (2016). Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308.

Kishore, S., and Stamm, S. (2006). The snoRNAHBII-52 regulates alternative splicing
of the serotonin receptor 2C. science 311 (5758), 230–232. doi:10.1126/science.1118265

Kiss-László, Z., Henry, Y., Bachellerie, J.-P., Caizergues-Ferrer, M., and Kiss, T.
(1996). Site-specific ribose methylation of preribosomal RNA: a novel function for small
nucleolar RNAs. Cell 85 (7), 1077–1088. doi:10.1016/s0092-8674(00)81308-2

Kobayashi, G., Kuribayashi, T., Yokoi, S., and Inui, K. (2020). “Attention is not only a
weight: analyzing transformers with vector norms,” in 2020 conference on empirical
methods in natural language processing, EMNLP 2020.

Krishnan, P., Ghosh, S., Wang, B., Heyns, M., Graham, K., Mackey, J. R., et al. (2016).
Profiling of small nucleolar RNAs by next generation sequencing: potential new players
for breast cancer prognosis. PloS one 11 (9), e0162622. doi:10.1371/journal.pone.
0162622

Li, J., Zhang, S., Liu, T., Ning, C., Zhang, Z., and Zhou, W. (2020). Neural inductive
matrix completion with graph convolutional networks for miRNA-disease association
prediction. Bioinformatics 36 (8), 2538–2546. doi:10.1093/bioinformatics/btz965

Li, L., Zhang, Z., Xu, W., Wang, J., and Feng, X. (2024b). The diagnostic value of
serum exosomal SNORD116 and SNORA21 for NSCLC patients. Clin. Transl. Oncol.,
1–10. doi:10.1007/s12094-024-03606-1

Li, X., Meng, X., Chen, H., Fu, X., Wang, P., Chen, X., et al. (2023). Integration of
single sample and population analysis for understanding immune evasion mechanisms
of lung cancer. NPJ Syst. Biol. Appl. 9 (1), 4. doi:10.1038/s41540-023-00267-8

Li, Z., Liao, Q., Liu, W., Xu, P., Zhuo, L., Fu, X., et al. (2024a). Multi-source data
integration for explainable miRNA-driven drug discovery. Future Gener. Comput. Syst.
160, 109–119. doi:10.1016/j.future.2024.05.055

Liao, J., Yu, L., Mei, Y., Guarnera, M., Shen, J., Li, R., et al. (2010). Small nucleolar
RNA signatures as biomarkers for non-small-cell lung cancer. Mol. cancer 9, 198–210.
doi:10.1186/1476-4598-9-198

Liao, Q., Ye, Y., Li, Z., Chen, H., and Zhuo, L. (2023). Prediction of miRNA-disease
associations in microbes based on graph convolutional networks and autoencoders.
Front. Microbiol. 14, 1170559. doi:10.3389/fmicb.2023.1170559

Liu, W., Tang, T., Lu, X., Fu, X., Yang, Y., and Peng, L. (2023a). MPCLCDA:
predicting circRNA–disease associations by using automatically selected meta-path and
contrastive learning. Briefings Bioinforma. 24 (4), bbad227. doi:10.1093/bib/bbad227

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L. (2017). “Sphereface: deep
hypersphere embedding for face recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition.

Liu, W., Yang, Y., Lu, X., Fu, X., Sun, R., Yang, L., et al. (2023b). NSRGRN: a network
structure refinement method for gene regulatory network inference. Briefings
Bioinforma. 24 (3), bbad129. doi:10.1093/bib/bbad129

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., et al. (2024). Kan:
Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756.

Ma, X., Fu, X., Wang, T., Zhuo, L., and Zou, Q. (2024a). GraphADT: empowering
interpretable predictions of acute dermal toxicity with multi-view graph pooling and
structure remapping. Bioinformatics 40 (7), btae438. doi:10.1093/bioinformatics/
btae438

Ma, X., Li, Z., Du, Z., Xu, Y., Chen, Y., Zhuo, L., et al. (2024b). Advancing cancer
driver gene detection via Schur complement graph augmentation and independent

Frontiers in Pharmacology frontiersin.org11

Wang et al. 10.3389/fphar.2024.1529128

https://doi.org/10.1093/nar/gkac814
https://doi.org/10.1093/nar/gkac814
https://doi.org/10.1109/JBHI.2021.3088342
https://doi.org/10.1109/JBHI.2021.3088342
https://doi.org/10.1038/nrg3074
https://doi.org/10.1371/journal.pcbi.1010671
https://doi.org/10.1093/bib/bbae179
https://doi.org/10.1126/science.1118265
https://doi.org/10.1016/s0092-8674(00)81308-2
https://doi.org/10.1371/journal.pone.0162622
https://doi.org/10.1371/journal.pone.0162622
https://doi.org/10.1093/bioinformatics/btz965
https://doi.org/10.1007/s12094-024-03606-1
https://doi.org/10.1038/s41540-023-00267-8
https://doi.org/10.1016/j.future.2024.05.055
https://doi.org/10.1186/1476-4598-9-198
https://doi.org/10.3389/fmicb.2023.1170559
https://doi.org/10.1093/bib/bbad227
https://doi.org/10.1093/bib/bbad129
https://doi.org/10.1093/bioinformatics/btae438
https://doi.org/10.1093/bioinformatics/btae438
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1529128


subspace feature extraction. Comput. Biol. Med. 174, 108484. doi:10.1016/j.
compbiomed.2024.108484

Mannoor, K., Liao, J., and Jiang, F. (2012). Small nucleolar RNAs in cancer.
Biochimica Biophysica Acta (BBA)-Reviews Cancer 1826 (1), 121–128. doi:10.1016/j.
bbcan.2012.03.005

Ning, L., Cui, T., Zheng, B., Wang, N., Luo, J., Yang, B., et al. (2021). MNDR v3. 0:
mammal ncRNA–disease repository with increased coverage and annotation. Nucleic
Acids Res. 49 (D1), D160–D164. doi:10.1093/nar/gkaa707

Ning, Q., Zhao, Y., Gao, J., Chen, C., Li, X., Li, T., et al. (2023). AMHMDA: attention
aware multi-view similarity networks and hypergraph learning for miRNA–disease
associations identification. Briefings Bioinforma. 24 (2), bbad094. doi:10.1093/bib/bbad094

Qi, Y., Purtell, L., Fu, M., Lee, N. J., Aepler, J., Zhang, L., et al. (2016). Snord116 is
critical in the regulation of food intake and body weight. Sci. Rep. 6 (1), 18614. doi:10.
1038/srep18614

Ranjan, R., Castillo, C. D., and Chellappa, R. (2017). L2-constrained softmax loss for
discriminative face verification.

St, L., and Wold, S. (1989). Analysis of variance (ANOVA). Chemom. intelligent
laboratory Syst. 6 (4), 259–272. doi:10.1016/0169-7439(89)80095-4

Sun, Z., Huang, Q., Yang, Y., Li, S., Lv, H., Zhang, Y., et al. (2022). PSnoD: identifying
potential snoRNA-disease associations based on bounded nuclear norm regularization.
Briefings Bioinforma. 23 (4), bbac240. doi:10.1093/bib/bbac240

Wang, R., Wang, T., Zhuo, L., Wei, J., Fu, X., Zou, Q., et al. (2024a). Diff-AMP:
tailored designed antimicrobial peptide framework with all-in-one generation,
identification, prediction and optimization. Briefings Bioinforma. 25 (2), bbae078.
doi:10.1093/bib/bbae078

Wang, R., Zhou, Z., Wu, X., Jiang, X., Zhuo, L., Liu, M., et al. (2023b). An effective
plant small secretory peptide recognition model based on feature correction strategy.
J. Chem. Inf. Model. 64 (7), 2798–2806. doi:10.1021/acs.jcim.3c00868

Wang, T., Du, Z., Zhuo, L., Fu, X., Zou, Q., and Yao, X. (2024c). MultiCBlo: enhancing
predictions of compound-induced inhibition of cardiac ion channels with advanced
multimodal learning. Int. J. Biol. Macromol. 276, 133825. doi:10.1016/j.ijbiomac.2024.
133825

Wang, T., Li, Z., Zhuo, L., Chen, Y., Fu, X., and Zou, Q. (2024b). MS-BACL:
enhancing metabolic stability prediction through bond graph augmentation and
contrastive learning. Briefings Bioinforma. 25 (3), bbae127. doi:10.1093/bib/bbae127

Wang, T., Zhuo, L., Chen, Y., Fu, X., Zeng, X., and Zou, Q. (2024d). ECD-CDGI: an
efficient energy-constrained diffusion model for cancer driver gene identification. PLOS
Comput. Biol. 20 (8), e1012400. doi:10.1371/journal.pcbi.1012400

Wang, X., Xu, M., Yan, Y., Kuang, Y., Li, P., Zheng, W., et al. (2019). Identification of
eight small nucleolar RNAs as survival biomarkers and their clinical significance in
gastric cancer. Front. Oncol. 9, 788. doi:10.3389/fonc.2019.00788

Wang, Y., Zhai, Y., Ding, Y., and Zou, Q. (2023a). SBSM-pro: support bio-sequence
machine for proteins.

Wei, J., Li, Z., Zhuo, L., Fu, X., Wang, M., Li, K., et al. (2024a). Enhancing drug–food
interaction prediction with precision representations through multilevel self-supervised
learning. Comput. Biol. Med. 171, 108104. doi:10.1016/j.compbiomed.2024.108104

Wei, J., Wang, L., Zhou, Z., Zhuo, L., Zeng, X., Fu, X., et al. (2024d). BloodPatrol:
revolutionizing blood cancer diagnosis - advanced real-time detection leveraging deep
learning and cloud technologies. IEEE J. Biomed. health Inf., 1–11. doi:10.1109/JBHI.
2024.3496294

Wei, J., Zhu, Y., Zhuo, L., Liu, Y., Fu, X., and Li, F. (2024b). Efficient deep model
ensemble framework for drug-target interaction prediction. J. Phys. Chem. Lett. 15 (30),
7681–7693. doi:10.1021/acs.jpclett.4c01509

Wei, J., Zhuo, L., Fu, X., Zeng, X., Wang, L., Zou, Q., et al. (2024c). DrugReAlign: a
multisource prompt framework for drug repurposing based on large language models.
BMC Biol. 22 (1), 226. doi:10.1186/s12915-024-02028-3

Wei, J., Zhuo, L., Pan, S., Lian, X., Yao, X., and Fu, X. (2023a). Headtailtransfer: an
efficient sampling method to improve the performance of graph neural network method
in predicting sparse ncrna–protein interactions. Comput. Biol. Med. 157, 106783. doi:10.
1016/j.compbiomed.2023.106783

Wei, J., Zhuo, L., Zhou, Z., Lian, X., Fu, X., and Yao, X. (2023b). GCFMCL: predicting
miRNA-drug sensitivity using graph collaborative filtering and multi-view contrastive
learning. Briefings Bioinforma. 24 (4), bbad247. doi:10.1093/bib/bbad247

Zhang, D., Li, Y., and Zhang, Z. (2020b). Deep metric learning with spherical
embedding. Adv. Neural Inf. Process. Syst. 33, 18772–18783. Available at: https://
proceedings.neurips.cc/paper/2020/hash/d9812f756d0df06c7381945d2e2c7d4b-
Abstract.html

Zhang, W., Yao, G., Wang, J., Yang, M., Wang, J., Zhang, H., et al. (2020a).
ncRPheno: a comprehensive database platform for identification and validation of
disease related noncoding RNAs. RNA Biol. 17 (7), 943–955. doi:10.1080/15476286.
2020.1737441

Zhang, X., Liu, M., Li, Z., Zhuo, L., Fu, X., and Zou, Q. (2024a). Fusion of multi-source
relationships and topology to infer lncRNA-protein interactions. Mol. Therapy-Nucleic
Acids 35 (2), 102187. doi:10.1016/j.omtn.2024.102187

Zhang, X., Wang, C., Xia, S., Xiao, F., Peng, J., Gao, Y., et al. (2023). The emerging role
of snoRNAs in human disease. Genes and Dis. 10 (5), 2064–2081. doi:10.1016/j.gendis.
2022.11.018

Zhang, X., Wang, H., Du, Z., Zhuo, L., Fu, X., Cao, D., et al. (2024b). CardiOT:
towards interpretable drug cardiotoxicity prediction using optimal transport and
Kolmogorov-arnold networks. IEEE J. Biomed. health Inf., 1–12. doi:10.1109/jbhi.
2024.3510297

Zhao, H., Li, Z., You, Z.-H., Nie, R., and Zhong, T. (2022). Predicting Mirna-disease
associations based on neighbor selection graph attention networks. IEEE/ACM
Trans. Comput. Biol. Bioinforma. 20 (2), 1298–1307. doi:10.1109/TCBB.2022.
3204726

Zheng, D., Zhang, J., Ni, J., Luo, J., Wang, J., Tang, L., et al. (2015). Small nucleolar
RNA 78 promotes the tumorigenesis in non-small cell lung cancer. J. Exp. and Clin.
Cancer Res. 34, 49–15. doi:10.1186/s13046-015-0170-5

Zheng, Y., Pal, D. K., and Savvides, M. (2018). “Ring loss: convex feature
normalization for face recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition.

Zhou, Z., Du, Z., Jiang, X., Zhuo, L., Xu, Y., Fu, X., et al. (2024d). GAM-MDR:
probing miRNA-drug resistance using a graph autoencoder based on random
path masking. Briefings Funct. Genomics 23, 475–483. elae005. doi:10.1093/bfgp/
elae005

Zhou, Z., Du, Z., Wei, J., Zhuo, L., Pan, S., Fu, X., et al. (2023). MHAM-NPI:
predicting ncRNA-protein interactions based on multi-head attention mechanism.
Comput. Biol. Med. 163, 107143. doi:10.1016/j.compbiomed.2023.107143

Zhou, Z., Liao, Q., Wei, J., Zhuo, L., Wu, X., Fu, X., et al. (2024b). Revisiting
drug–protein interaction prediction: a novel global–local perspective. Bioinformatics 40
(5), btae271. doi:10.1093/bioinformatics/btae271

Zhou, Z., Zhuo, L., Fu, X., Lv, J., Zou, Q., and Qi, R. (2024c). Joint masking and self-
supervised strategies for inferring small molecule-miRNA associations. Mol. Therapy-
Nucleic Acids 35 (1), 102103. doi:10.1016/j.omtn.2023.102103

Zhou, Z., Zhuo, L., Fu, X., and Zou, Q. (2024a). Joint deep autoencoder and subgraph
augmentation for inferring microbial responses to drugs. Briefings Bioinforma. 25 (1),
bbad483. doi:10.1093/bib/bbad483

Zhuo, L., Song, B., Liu, Y., Li, Z., and Fu, X. (2022). Predicting ncRNA–protein
interactions based on dual graph convolutional network and pairwise learning. Briefings
Bioinforma. 23 (6), bbac339. doi:10.1093/bib/bbac339

Zhuo, L., Wang, R., Fu, X., and Yao, X. (2023). StableDNAm: towards a stable and
efficient model for predicting DNA methylation based on adaptive feature correction
learning. BMC genomics 24 (1), 742. doi:10.1186/s12864-023-09802-7

Frontiers in Pharmacology frontiersin.org12

Wang et al. 10.3389/fphar.2024.1529128

https://doi.org/10.1016/j.compbiomed.2024.108484
https://doi.org/10.1016/j.compbiomed.2024.108484
https://doi.org/10.1016/j.bbcan.2012.03.005
https://doi.org/10.1016/j.bbcan.2012.03.005
https://doi.org/10.1093/nar/gkaa707
https://doi.org/10.1093/bib/bbad094
https://doi.org/10.1038/srep18614
https://doi.org/10.1038/srep18614
https://doi.org/10.1016/0169-7439(89)80095-4
https://doi.org/10.1093/bib/bbac240
https://doi.org/10.1093/bib/bbae078
https://doi.org/10.1021/acs.jcim.3c00868
https://doi.org/10.1016/j.ijbiomac.2024.133825
https://doi.org/10.1016/j.ijbiomac.2024.133825
https://doi.org/10.1093/bib/bbae127
https://doi.org/10.1371/journal.pcbi.1012400
https://doi.org/10.3389/fonc.2019.00788
https://doi.org/10.1016/j.compbiomed.2024.108104
https://doi.org/10.1109/JBHI.2024.3496294
https://doi.org/10.1109/JBHI.2024.3496294
https://doi.org/10.1021/acs.jpclett.4c01509
https://doi.org/10.1186/s12915-024-02028-3
https://doi.org/10.1016/j.compbiomed.2023.106783
https://doi.org/10.1016/j.compbiomed.2023.106783
https://doi.org/10.1093/bib/bbad247
https://proceedings.neurips.cc/paper/2020/hash/d9812f756d0df06c7381945d2e2c7d4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d9812f756d0df06c7381945d2e2c7d4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d9812f756d0df06c7381945d2e2c7d4b-Abstract.html
https://doi.org/10.1080/15476286.2020.1737441
https://doi.org/10.1080/15476286.2020.1737441
https://doi.org/10.1016/j.omtn.2024.102187
https://doi.org/10.1016/j.gendis.2022.11.018
https://doi.org/10.1016/j.gendis.2022.11.018
https://doi.org/10.1109/jbhi.2024.3510297
https://doi.org/10.1109/jbhi.2024.3510297
https://doi.org/10.1109/TCBB.2022.3204726
https://doi.org/10.1109/TCBB.2022.3204726
https://doi.org/10.1186/s13046-015-0170-5
https://doi.org/10.1093/bfgp/elae005
https://doi.org/10.1093/bfgp/elae005
https://doi.org/10.1016/j.compbiomed.2023.107143
https://doi.org/10.1093/bioinformatics/btae271
https://doi.org/10.1016/j.omtn.2023.102103
https://doi.org/10.1093/bib/bbad483
https://doi.org/10.1093/bib/bbac339
https://doi.org/10.1186/s12864-023-09802-7
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1529128

	Accurate identification of snoRNA targets using variational graph autoencoder to advance the redevelopment of traditional m ...
	Introduction
	Materials and methods
	Data preparation
	Method
	Preliminary
	Model framework
	L2-normalization in GCN
	Variational graph autoencoder (VGAE) framework
	Kolmogorov-Arnold Network (KAN)
	Decoupling node similarity and degree
	Optimization


	Results
	Experimental setup
	Performance comparison
	Performance evaluation
	Parameter experiments
	Statistical significance analysis
	Case analysis

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


