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Objective: This study aims to evaluate the association between the white blood
cell-to-platelet ratio (WPR) and 28-day all-cause mortality among patients
experiencing cardiac arrest.

Methods: Utilizing data from 748 cardiac arrest patients in the Medical
Information Mart for Intensive Care-IV (MIMIC-IV) 2.2 database, machine
learning algorithms, including the Boruta feature selection method, random
forest modeling, and SHAP value analysis, were applied to identify significant
prognostic biomarkers. Key patient characteristics, encompassing demographic
data, comorbidities, hematological and biochemical indices, and vital signs, were
extracted using PostgreSQL Administration Tool (pgAdmin) software. The Cox
proportional hazards model assessed the impact of WPR on mortality outcomes,
while Kaplan-Meier survival curves and restricted cubic spline (RCS) analysis
further validated the findings. Subgroup analyses stratified the prognostic
value of WPR by demographic and clinical factors.

Results: WPR demonstrated the highest prognostic significance among the
variables studied, showing a strong association with 28-day all-cause
mortality. In the unadjusted Model 1, hazard ratios (HRs) for WPR quartiles
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ranged from 1.88 (95% CI: 1.22–2.90) in Q2 to 3.02 (95% CI: 2.04–4.47) in Q4
(Ptrend <0.05). Adjusted models (Models 2–4) confirmed the robustness of these
associations, even after accounting for demographic and clinical covariates.
Kaplan-Meier and RCS analyses revealed a significant U-shaped relationship
between WPR and mortality risk. Subgroup analyses indicated that elevated
WPR was particularly associated with increased mortality in males, elderly
patients, married individuals, and those with chronic pulmonary disease.

Conclusion: WPR serves as an independent and reliable prognostic biomarker for
28-day mortality in cardiac arrest patients. Its integration into clinical decision-
makingmay enhance the early identification of high-risk patients and guide tailored
therapeutic interventions.

KEYWORDS

cardiac arrest (CA), cardiopulmonary resuscitation (CPR), white blood cell to platelet ratio
(WPR), 8-day all-cause mortality, prognosis

Introduction

Cardiac arrest (CA) is a critical medical emergency that poses a
significant threat to human health and survival (Zhong et al., 2023).
And CA is a significant global health issue, affecting over
300,000 individuals annually in the United States alone
(Benjamin et al., 2019). Worldwide, the incidence of out-of-
hospital cardiac arrest (OHCA) varies between 20 and 140 per
100,000 population annually, with survival rates often below 10% in
many regions (Berdowski et al., 2010). In Europe, similar patterns
have been observed, with an estimated 275,000 cases of OHCA
reported annually (Gräsner et al., 2016). These figures underscore
the need for effective intervention and prognostic markers to
improve outcomes. This stark contrast highlights disparities in
healthcare infrastructure, public awareness, and emergency
response systems, emphasizing the urgent need for targeted
research and tailored strategies in different regions.

The sudden loss of effective circulation and respiratory function
can lead to immediate life-threatening situations, and timely
intervention is crucial for improving patient outcomes. Despite
advancements in emergency medical services and post-
resuscitation care (Penketh and Nolan, 2022), the 28-day all-
cause mortality rate among CA patients remains high (Li et al.,
2023). This high mortality is largely attributable to post-cardiac
arrest syndrome, a multifaceted condition involving ischemia-
reperfusion injury, systemic inflammatory responses, and brain
injury, which underscores the need for effective prognostic
markers to guide clinical management (drie et al., 2002; Nolan
et al., 2021). Identifying predictors of mortality and understanding
the underlying biological mechanisms are essential for improving
clinical management and patient prognosis.

The white blood cell/platelet ratio (WPR) is increasingly
recognized as a valuable biomarker in various medical
conditions, including cardiovascular diseases. WPR reflects the
balance between pro-inflammatory and anti-inflammatory white
blood cells, which is essential for maintaining immune homeostasis
and responding to stressors like infections or tissue injury. In the
context of CA, the immune response significantly influences disease
severity and recovery outcomes, with elevatedWPR often associated
with poorer prognosis and higher mortality risk (Çiçek et al., 2016;
Gasparyan et al., 2019; Mayne et al., 2022). Platelets, in addition to

their role in hemostasis, have emerged as key mediators in
inflammation through the release of cytokines and interaction
with immune cells, making their inclusion in a biomarker ratio
such as WPR highly relevant in critical illnesses (Koupenova
et al., 2018).

Previous studies have indicated that changes in white blood cell
ratios, such as the neutrophil-to-lymphocyte ratio (NLR) and the
monocyte-to-lymphocyte ratio (MLR), are associated with the
severity of various inflammatory and cardiovascular diseases and
predict poor outcomes (Mayne et al., 2022; Phan et al., 2020; Bg
et al., 2021; Suner and Carr, 2020; Wang et al., 2023). However, the
relationship between the WPR and 28-day all-cause mortality in CA
patients has not been extensively studied. And these ratios
predominantly focus on the inflammatory axis without
integrating hematological parameters like platelet counts, which
also reflect the coagulative and inflammatory states critical to CA
pathophysiology. WPR has the potential to bridge this gap by
combining inflammatory and coagulative biomarkers into a
single prognostic parameter, yet its utility in CA has not been
systematically evaluated.

With the advent of machine learning, we now have the capability to
analyze complex datasets and identify patterns thatmay not be apparent
through traditional statistical methods (Ogunjobi et al., 2024; Kang
et al., 2022; Feng et al., 2023). Machine learning algorithms can handle
large volumes of clinical data (Chattopadhyay, 2024) to uncover subtle
relationships between variables, such as white blood cell ratios and
patient outcomes after CA. Unlike traditional multivariable regression,
machine learning can model nonlinear interactions and account for the
multifactorial nature of critical illnesses, offering a more nuanced
understanding of prognostic markers like WPR (Rajkomar et al.,
2019). This advantage is particularly relevant in CA, where
heterogeneous patient profiles and multifaceted pathophysiology
complicate risk stratification.

CA patients often experience a state of stress due to abnormal
activation of the immune system and the massive release of various
cytokines. However, it remains unclear whether the WPR is
associated with poor outcomes in critically ill CA patients
(Cunningham et al., 2022). Furthermore, existing studies on
prognostic markers in CA are often limited by small sample
sizes, lack of external validation, and reliance on traditional
statistical approaches. This study addresses these gaps by
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employing machine learning techniques on a large, well-curated
dataset to explore the prognostic value of WPR in predicting 28-day
all-cause mortality.

TheWPR was selected as the biomarker of interest in this study due
to its unique ability to integrate inflammatory and coagulative
parameters, both of which play central roles in the pathophysiology
of CA. CA triggers systemic responses such as ischemia-reperfusion
injury and inflammatory cytokine surges, where white blood cells
mediate immune responses and platelets, beyond their hemostatic
role, actively participate in inflammation through cytokine release and
immune cell interaction. WPR captures this interplay, offering a holistic
measure of the inflammatory-coagulative balance, which is critical for
assessing outcomes in critically ill patients (Zhang et al., 2023).
Furthermore, previous studies have highlighted the prognostic value
of hematological ratios like the neutrophil-to-lymphocyte ratio (NLR)
and platelet-to-lymphocyte ratio (PLR) in cardiovascular and
inflammatory diseases, underscoring the utility of such biomarkers in
reflecting systemic physiological changes (Tudurachi et al., 2023). Unlike
thesemarkers,WPRbridges a gap in existing research by addressing both
inflammation and coagulation. This makes WPR a robust and
comprehensive biomarker for evaluating the prognosis of CA patients.

Therefore, this study aims to evaluate the relationship between
the WPR and adverse outcomes in critically ill CA patients. By
employing machine learning techniques to retrospectively analyze a
cohort of CA patients, we aim to investigate the correlation between
white blood cell ratios and 28-day all-cause mortality. Through this
approach, we hope to identify potential prognostic indicators that
can help in the early identification of high-risk patients and guide
more personalized treatment strategies. By integrating WPR into a
machine learning framework, this study seeks to contribute novel
insights into the interplay between inflammation, coagulation, and
survival outcomes, ultimately informing future research and clinical
decision-making.

Methods

Data source

This study used data from MIMIC-IV 2.2, an electronic health
record dataset comprising over 50,000 patients admitted to the
intensive care units (ICUs) at Beth Israel Deaconess Medical
Center (BIDMC) in Boston, Massachusetts, from 2008 to 2019.
The Institutional Review Board of BIDMC approved the waiver of
informed consent and the sharing of research resources.

The sample size for this study was determined based on previous
research and statistical power analysis. To ensure adequate power to
detect significant differences in 28-day mortality rates, we used a
conservative effect size based on the expected differences in white
blood cell/platelet ratio (WPR) between groups with different
mortality outcomes. A power of 80% and a significance level of
0.05 were chosen, which is standard for clinical studies of this nature.

Inclusion and exclusion criteria

The inclusion and exclusion criteria are shown in Table 1.
Exclusion of Patients with No ACLS Treatment: The exclusion of

patients who did not receive Advanced Cardiovascular Life Support
(ACLS) treatment is critical for the integrity of the study. ACLS is a
standardized, evidence-based approach to managing CA that
includes advanced airway management, medication
administration, and defibrillation. Patients who do not receive
ACLS treatment may not undergo the same intensive
resuscitation efforts, potentially leading to different outcomes that
are not comparable to those in the study population. Excluding these
patients ensures that the study specifically focuses on individuals
who received consistent, high-standard care, thereby minimizing
variability in treatment and improving the reliability of our results.
This exclusion criterion allows us to more accurately assess the
impact of inflammatory biomarkers like WPR in patients who
underwent full resuscitation efforts, which is a critical aspect of
the study’s design and objective.

Data analysis

Data extraction
Data extraction was performed using pgAdmin software. Patient

characteristics collected included age, gender, insurance, marital
status, race, hospital stay duration, wbc, basophils_abs, eosinophils_
abs, lymphocytes_abs, monocytes_abs, neutrophils_abs, basophils,
eosinophils, lymphocytes, monocytes, neutrophils, hematocrit,
hemoglobin, mch, mchc, mcv, platelet, rbc, rdw, scr_baseline,
myocardial_infarct, congestive_heart_failure, peripheral_vascular_
disease, cerebrovascular_disease, dementia, chronic_pulmonary_
disease, rheumatic_disease, peptic_ulcer_disease, mild_liver_
disease, diabetes_without_cc, diabetes_with_cc, paraplegia, renal_
disease, malignant_cancer, severe_liver_disease, metastatic_solid_
tumor, aids, albumin, aniongap, bicarbonate, bun, calcium, chloride,
creatinine, glucose, sodium, potassium, crp, alt, alp, ast, amylase,
bilirubin_total, bilirubin_direct, bilirubin_indirect, ck_cpk, ck_mb,
ld_ldh, lactate, apsiii, heart_rate, sbp, dbp, spo2, urineoutput_24 h,
neurologic, cardiovascular, renal, pulmonary, gcs, urineoutput,
hourly_patient_fluid_removal, ventilation_duration. Relevant
blood combination index calculation formulas are as follows:
NLR = neutrophils/lymphocytes, LMR = lymphocytes/monocytes,
PLR = platelet/lymphocytes, NMR = neutrophils/monocytes,
WPR = wbc/platelet, MCV = hematocrit/rbc, MCH =
hemoglobin/rbc, MCHC = hemoglobin/hematocrit, RDW_CV =
rdw/MCV, HHR = hemoglobin/hematocrit, HBR =
hemoglobin/rbc.

Cox model with Boruta, RF, and SHAP analysis
We used the Cox proportional hazards model to assess the

impact of each feature on survival time. During feature selection, the
Boruta algorithm, based on 500 random forest trees, was employed
to identify the most relevant features for survival analysis. The
Boruta algorithm outputs features as confirmed, tentative, or
rejected, guiding subsequent model construction and
interpretation. Additionally, the Random Survival Forest (RSF)
method was used to explore factors influencing patient survival.
Data were retrieved from MIMIC-IV 2.2, including patient hospital
stay (time to event or last follow-up time) and event status (survival
or death). Analysis was performed using the randomForestSRC
package in R. A random forest survival model (rfsrc function)
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was constructed with survival time and event status as primary
endpoints. Predictive variables included Neutrophil-to-Lymphocyte
Ratio (NLR), Lymphocyte-to-Monocyte Ratio (LMR), Platelet-to-
Lymphocyte Ratio (PLR), Neutrophil-to-Monocyte Ratio (NMR),
WPR, Mean Corpuscular Volume (MCV), Mean Corpuscular
Hemoglobin (MCH), Mean Corpuscular Hemoglobin
Concentration (MCHC), Red Cell Distribution Width-Coefficient
of Variation (RDW_CV), Heart rate reserve (HHR), and High
Bleeding Risk (HBR). Cross-validation and resampling methods
were used to avoid overfitting and validate model predictive
performance. SHAP values were introduced to understand
feature impact mechanisms, calculated using the treeshap
package, revealing each feature’s contribution to individual
predictions. SHAP value visualization helped interpret model
predictions and feature importance, uncovering specific impact
pathways of different features on patient prognosis.

Statistical analysis
Since this study is a retrospective analysis, no sample size

calculation was performed. Variables with more than 20%
missing data were excluded. For variables with less than 20%
missing data, the random forest algorithm was used to impute
missing values. Random forest, a robust machine learning
method, constructs multiple decision trees and aggregates their
predictions to handle missing information. Patients were divided
into four groups based on WPR quartiles. Normally distributed
continuous variables were expressed as mean (standard deviation
[SD]) and analyzed using analysis of variance (ANOVA). Non-
normally distributed variables were analyzed using the Mann-
Whitney U test or Kruskal–Wallis test. Categorical variables were
expressed as numbers and percentages and analyzed using the χ2 test
or Fisher’s exact test. Kaplan-Meier survival curves and log-rank
tests were used to compare in-hospital and 28-day survival rates
across WPR groups. Proportional hazards regression models (Cox
regression models) were used to assess hazard ratios (HR) and 95%
confidence intervals (95% CI). Model 1 was unadjusted; Model
2 adjusted for age, gender, insurance, marital status, heart rate, sbp,
dbp, and spo2. Model 3 further adjusted for age, gender, insurance,
marital status, wbc, basophils_abs, eosinophils_abs, lymphocytes_
abs, monocytes_abs, neutrophils_abs, basophils, eosinophils,
lymphocytes, monocytes, neutrophils, hematocrit, hemoglobin,
mch, mchc, mcv, platelet, rbc, rdw, albumin, aniongap,
bicarbonate, bun, calcium, chloride, creatinine, glucose, sodium,
potassium, crp, alt, alp, ast, amylase, bilirubin_total, bilirubin_
direct, bilirubin_indirect, ck_cpk, ck_mb, ld_ldh, lactate, apsiii,
heart_rate, sbp, dbp, spo2, urineoutput_24 h, and gcs. Model
4 included adjustments for age, gender, insurance, marital status,
wbc, basophils_abs, eosinophils_abs, lymphocytes_abs, monocytes_
abs, neutrophils_abs, basophils, eosinophils, lymphocytes,
monocytes, neutrophils, hematocrit, hemoglobin, mch, mchc,
mcv, platelet, rbc, rdw, peripheral_vascular_disease,
cerebrovascular_disease, dementia, chronic_pulmonary_disease,
rheumatic_disease, peptic_ulcer_disease, mild_liver_disease,
diabetes_with_cc, paraplegia, renal_disease, malignant_cancer,
severe_liver_disease, metastatic_solid_tumor, aids, albumin,
aniongap, bicarbonate, bun, calcium, chloride, creatinine, glucose,
sodium, potassium, crp, alt, alp, ast, amylase, bilirubin_total,
bilirubin_direct, bilirubin_indirect, ck_cpk, ck_mb, ld_ldh,

lactate, apsiii, heart_rate, sbp, dbp, spo2, urineoutput_24h. Two-
tailed p-value <0.05 was considered statistically significant.
Statistical analyses were performed using R software (version 4.3.1).

Restricted cubic spline curve
In this study, we collected survival data (outcome variable);

WPR (continuous predictor variable); and age, gender, insurance,
marital status, wbc, basophils_abs, eosinophils_abs, lymphocytes_
abs, monocytes_abs, neutrophils_abs, basophils, eosinophils,
lymphocytes, monocytes, neutrophils, hematocrit, hemoglobin,
mch, mchc, mcv, platelet, rbc, rdw, peripheral_vascular_disease,
cerebrovascular_disease, dementia, chronic_pulmonary_disease,
rheumatic_disease, peptic_ulcer_disease, mild_liver_disease,
diabetes_with_cc, paraplegia, renal_disease, malignant_cancer,
severe_liver_disease, metastatic_solid_tumor, aids, albumin,
aniongap, bicarbonate, bun, calcium, chloride, creatinine, glucose,
sodium, potassium, crp, alt, alp, ast, amylase, bilirubin_total,
bilirubin_direct, bilirubin_indirect, ck_cpk, ck_mb, ld_ldh,
lactate, apsiii, heart_rate, sbp, dbp, spo2, urineoutput_24 h usage
(covariates). Restricted cubic spline (RCS) Cox regression models
were used to examine the potential nonlinear relationship between
changes inWPR and survival. The number of knots ranged from 3 to
7, and the RCS model with the lowest Akaike Information Criterion
(AIC) value was selected.

Subgroup analysis
Subgroup analysis was performed according to WPR quartiles.

Patients were divided into two groups by age (<65 years, ≥65 years).
Other subgroups included gender, insurance, marital status,
peripheral_vascular_disease, cerebrovascular_disease, dementia,
chronic_pulmonary_disease, rheumatic_disease, peptic_ulcer_
disease, mild_liver_disease, diabetes, paraplegia, renal_disease,
malignant_cancer, severe_liver_disease, metastatic_solid_tumor,
aids. Cox proportional hazards regression analysis was conducted
for each subgroup, reporting hazard ratios (HRs) and 95%
confidence intervals (CIs).

In this study, we employed machine learning techniques to
analyze the data and identify significant predictors of 28-day
mortality. Initially, the dataset was pre-processed to handle
missing values and outliers. The primary variables included
inflammatory biomarkers (such as NLR, LMR, and WPR) and
clinical parameters. A random forest survival model (using the
rfsrc function in the randomForestSRC package in R) was built
with survival time and event status (survival or death) as the primary
endpoints. This method enabled us to evaluate the importance of
various predictors in relation to patient survival.

Machine learning process

To improve clarity, we have separated the machine learning
methodology into a distinct section. The machine learning model
was constructed using the randomForestSRC package in R, a
powerful tool for analyzing survival data. The random forest
survival model (rfsrc function) was used to predict the
relationship between survival time and event status (survival or
death). The features selected for the model included NLR, LMR,
PLR, WPR, and other hematological parameters. The random forest
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algorithm was trained on the dataset, and its performance was
assessed using cross-validation techniques to ensure robustness
and generalizability. The importance of each variable was
determined based on its contribution to the model’s
predictive accuracy.

To evaluate the performance of the machine learning model, we
employed k-fold cross-validation. This method divides the dataset into
k equally sized subsets (or “folds”). The model is then trained on k-1
folds, while the remaining fold is used as a test set to evaluate the
model’s performance. This process is repeated k times, with each fold
serving as the test set once. The final performance metric is averaged
over all folds to provide a more robust estimate of model accuracy,
reducing the risk of overfitting and ensuring that the model generalizes
well to unseen data. For this study, we used 5-fold cross-validation,
meaning the dataset was divided into 5 subsets. In each iteration, 80% of
the data was used for training, and 20% was used for testing. This
approach helps mitigate the risk of selection bias and ensures that every
observation is used for both training and testing.

Handling of potential confounding factors

In this study, we carefully considered potential confounding factors,
such as comorbidities and medications, which could influence the
relationship between hematological markers (e.g., WPR, NLR, PLR)
and patient outcomes. To minimize bias and ensure the robustness of
our findings, we applied the following strategies:

1. Comorbidities: Key comorbidities, such as hypertension,
diabetes, coronary artery disease, and chronic kidney
disease, were recorded for all participants. These conditions
are known to significantly influence both hematological
markers and patient survival outcomes. We controlled for
these variables in our analysis by including them as
covariates in the multivariable regression models. This
approach allows us to isolate the effect of the hematological
markers on outcomes while accounting for the potential
influence of these comorbidities.

2. Medications: Medications administered during hospitalization,
including anticoagulants, antihypertensive drugs, and diabetic
treatments, can also affect both hematological profiles and
patient outcomes. To address this, we carefully documented all
medications taken by the participants during their hospital
stay. We included medication use as a covariate in our
statistical models to control for any confounding effects
these treatments may have had on the relationship between
hematological markers and 28-day mortality.

3. Statistical Adjustment: In addition to including comorbidities
and medications in our multivariable models, we used
propensity score matching (PSM) to further balance
confounders between different patient groups. PSM helps
reduce bias by matching patients with similar characteristics
(e.g., age, gender, comorbidities) but different outcomes,
allowing for a more accurate estimate of the relationship
between WPR and mortality.

By accounting for these confounding factors, we aimed to ensure
that the observed relationships between hematological markers and

outcomes were not driven by underlying medical conditions or
treatments.

Factors influencing 28-day mortality

Several factors contribute to the occurrence of 28-day mortality
in patients after CA. In addition to hematological markers like the
white blood cell-to-platelet ratio (WPR), the following factors have
been consistently associated with increased mortality risk:

1. Age: Older age is a well-established risk factor for poor
outcomes in CA patients. Studies have shown that elderly
patients have higher mortality rates, often due to reduced
physiological reserve and the presence of comorbidities like
heart failure, diabetes, and renal dysfunction.

2. Initial Rhythm: The initial cardiac rhythm upon presentation is
a key determinant of survival. Patients presenting with
shockable rhythms such as ventricular fibrillation or
pulseless ventricular tachycardia tend to have better survival
rates compared to those with non-shockable rhythms (e.g.,
asystole or pulseless electrical activity).

3. Comorbidities: Pre-existing conditions such as coronary artery
disease, hypertension, diabetes, and chronic kidney disease
significantly influence mortality rates. These comorbidities
often exacerbate the systemic response to CA, making
recovery more difficult and increasing the risk of multi-
organ failure.

4. Neurological Status: The neurological outcome, assessed by
tools such as the Glasgow Coma Scale (GCS) upon hospital
admission, is a crucial predictor of 28-day mortality. Severe
neurological impairment is associated with poor long-term
survival, as brain injury often leads to systemic complications
and worse overall recovery.

5. Time to Resuscitation: The time from collapse to the initiation
of cardiopulmonary resuscitation (CPR) is another critical
factor. Faster initiation of CPR and defibrillation
significantly improves survival rates, while prolonged time
to treatment increases the likelihood of adverse outcomes,
including irreversible brain damage.

6. Acidosis and Hypoxia: Metabolic acidosis and hypoxia during
and after resuscitation are associated with increased mortality.
Correcting acid-base imbalances and ensuring adequate
oxygenation are essential for improving survival and recovery.

Results

COX + Boruta + RF + SHAP screening of
prognostic hematological parameters

In this study, our primary objective was to evaluate the
prognostic implications of various hematological markers in
patients who experienced CA. Using advanced methodologies
such as the Boruta algorithm, random forest modeling, and
SHAP (Shapley Additive Explanations) value analysis, we
assessed the influence of multiple hematological parameters on
patient outcomes, as shown in the figure. The Boruta algorithm
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identified several key features, including the WPR, mean
corpuscular hemoglobin concentration (MCHC), red cell
distribution width-coefficient of variation (RDW-CV), and
lymphocyte to monocyte ratio (LMR). These markers appear to
be strongly associated with the inflammatory response and immune

status of the patient, and they may serve as critical biomarkers for
adverse outcomes in CA cases (Figure 1A). In the random forest
model, WPR, MCHC, mean corpuscular volume (MCV), and high
hemoglobin ratio (HHR) emerged as variables with high predictive
importance. Of these, WPR exhibited the greatest prognostic

FIGURE 1
Figure (A) Boruta feature importance; Figure (B) Variable importance from random forest analysis; Figure (C): SHAP values.
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significance, highlighting its potential role in reflecting both immune
function and the risk of infection (Figure 1B). SHAP analysis further
elucidated the contribution of individual features to the model’s
predictions. While high WPR values were positively correlated with
worse prognoses, lower MCHC values also indicated a poor clinical
outcome. This analysis provided a detailed breakdown of how each
feature influenced the overall predictive model, underscoring WPR
as a particularly relevant marker for prognosis in CA (Figure 1C).

Together, these findings demonstrate that hematological
parameters, particularly WPR, play a significant role in
predicting survival outcomes in CA patients. The values of these
biomarkers are closely tied to survival probabilities, offering vital
insights for clinical decision-making. To further clarify the
prognostic value of WPR, additional analyses were performed.

Baseline characteristics and differential
analysis of WPR

Data from 748 patients diagnosed with CA were extracted from
theMIMIC-IV database and categorized into four quartiles based on
the WPR (Group 1: 187 patients, Group 2: 186 patients, Group 3:
188 patients, Group 4: 187 patients). As shown in Table 2, no
statistically significant differences were observed in age (mean
65.88 years ±16.44, F = 1.69, p = 0.167) or length of hospital stay
(8.22–10.22 days, F = 1.53, p = 0.204). However, the overall mean
white blood cell count was 11.32 ± 6.14, with Group 4 showing
significantly higher values (F = 161.27, p < 0.001). Significant
intergroup differences were also noted in absolute eosinophil
count (F = 6.75, p < 0.001), absolute lymphocyte count (F =
9.43, p < 0.001), and both absolute and relative neutrophil counts
(F = 68.04, F = 19.76, respectively, both p < 0.001). Hematocrit levels
did not differ significantly among the groups (F = 1.11, p = 0.346),
while hemoglobin levels approached significance (F = 2.57, p =

0.054). Platelet counts varied significantly, with the highest mean
observed in Group 1 (203.96 ± 93.10, F = 45.87, p < 0.001).

Significant differences were also identified in key biochemical
markers, including the anion gap (F = 21.04, p < 0.001), bicarbonate
(F = 35.42, p < 0.001), blood urea nitrogen (F = 3.23, p = 0.022),
calcium (F = 7.45, p < 0.001), chloride (F = 3.61, p = 0.013), glucose
(F = 20.50, p < 0.001), potassium (F = 4.82, p = 0.002), C-reactive
protein (F = 23.54, p < 0.001), and liver enzymes (ALT: F = 8.62, p <
0.001; AST: F = 11.95, p < 0.001), as well as amylase (F = 13.81, p <
0.001) and lactate (F = 25.82, p < 0.001). Group 4, in particular,
exhibited more severe deviations across several physiological and
biochemical parameters, indicating an elevated health risk in these
patients. The results of the ANOVA F-tests and associated p-values
reveal significant intergroup differences in various key physiological
and biochemical parameters. These variations likely reflect
underlying disparities in health status, treatment outcomes, or
demographic characteristics among the patient groups. The
findings provide important statistical evidence to guide clinical
decision-making and inform future research.

Baseline characteristics and differential
analysis of relevant hematological
parameters

This report provides a detailed analysis of the hematological
indicators of 748 participants, revealing significant statistical
differences among the groups, highlighting potential health
conditions and pathological changes (Table 3). The neutrophil-
to-lymphocyte ratio (NLR) data showed that the average value in
Group 4 was 8.33 ± 7.94, significantly higher than the 5.84 ±
4.28 observed in Groups 1, 2, and 3 (F = 4.57, p = 0.004),
indicating a possibly more severe inflammatory state in Group 4.
The average lymphocyte-to-monocyte ratio (LMR) in Group 4 was
2.61 ± 2.27, compared to 1.92 ± 0.79 in Group 2 (F = 4.90, p = 0.002),
reflecting different levels of immune activation and risk of
thrombosis or inflammatory response. Additionally, this suggests
a higher risk of infection.The mean corpuscular volume (MCV),
mean corpuscular hemoglobin (MCH), and mean corpuscular
hemoglobin concentration (MCHC) in Group 4 were 9.34 ± 0.80,
3.04 ± 0.27, and 0.33 ± 0.02, respectively (F values were 4.64, 11.34,
and 6.80, respectively, all p < 0.001). The red cell distribution width
coefficient of variation (RDW CV) and high hemoglobin ratio
(HHR) also showed significant differences (F = 3.03 and 6.80,
p < 0.05), indicating potential hematological disorders and
malnutrition.These detailed numerical data and significant results
provide a solid foundation for clinical research and indicate
important directions for future treatment strategies and health
management.

28-Day all-cause mortality and in-
hospital mortality

Regarding 28-day mortality and in-hospital mortality, the
mortality rate was higher in quartile 4 (Table 4). In the Cox
regression analysis, using quartile 1 as the reference, the risk of
death significantly increased in quartiles 3 and 4 (Table 5). The

TABLE 1 Inclusion and exclusion criteria.

Criteria type Description

Inclusion criteria

Age ≥18 years

Diagnosis Medical records confirming cardiac arrest

Time Window Patients who experienced a cardiac arrest event within the
past 12 months

Exclusion Criteria

Age <18 years

Incomplete Data Patients missing baseline WPR or other key clinical
parameters

Non-Cardiac Arrest Patients without confirmed cardiac arrest events

No ACLS
Treatment

Patients who did not receive advanced cardiovascular life
support (ACLS) treatment

Outside Time
Window

Patients who experienced cardiac arrest events outside the
12-month time window

Outcomes:

Primary Outcome: 28-day all-cause mortality.

Secondary Outcome: In-hospital mortality.
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TABLE 2 Baseline characteristics and differential analysis of WPR.

Variables Total
(n = 748)

Q1
(n = 187)

Q2
(n = 186)

Q3
(n = 188)

Q4 (n = 187) Statistic P

Age, Mean ± SD 65.88 ± 16.44 64.78 ± 14.46 66.77 ± 15.42 67.60 ± 16.85 64.35 ± 18.64 F = 1.69 0.167

Hospital Stay Duration, Mean ± SD 9.18 ± 11.90 9.99 ± 11.92 8.22 ± 12.91 8.28 ± 7.88 10.22 ± 13.97 F = 1.53 0.204

Wbc, Mean ± SD 11.32 ± 6.14 7.09 ± 3.00 9.23 ± 3.31 11.52 ± 4.18 17.41 ± 7.37 F = 161.27 <0.001

Basophils Abs, Mean ± SD 0.03 ± 0.02 0.03 ± 0.02 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 F = 4.64 0.003

Eosinophils Abs, Mean ± SD 0.18 ± 0.18 0.23 ± 0.23 0.18 ± 0.13 0.15 ± 0.13 0.17 ± 0.20 F = 6.75 <0.001

Lymphocytes Abs, Mean ± SD 1.44 ± 0.59 1.40 ± 0.51 1.36 ± 0.38 1.38 ± 0.57 1.64 ± 0.77 F = 9.43 <0.001

Monocytes Abs, Mean ± SD 0.73 ± 0.27 0.68 ± 0.22 0.76 ± 0.20 0.72 ± 0.27 0.75 ± 0.35 F = 3.53 0.015

Neutrophils Abs, Mean ± SD 8.84 ± 4.38 6.65 ± 3.23 7.40 ± 2.30 9.41 ± 4.25 11.89 ± 5.16 F = 68.04 <0.001

Basophils, Mean ± SD 0.35 ± 0.34 0.44 ± 0.59 0.39 ± 0.17 0.31 ± 0.19 0.26 ± 0.19 F = 11.34 <0.001

Eosinophils, Mean ± SD 1.93 ± 1.79 2.79 ± 2.54 2.00 ± 1.18 1.57 ± 1.33 1.37 ± 1.44 F = 25.40 <0.001

Lymphocytes, Mean ± SD 14.46 ± 6.10 17.44 ± 6.30 14.62 ± 4.00 13.40 ± 7.09 12.36 ± 5.34 F = 26.76 <0.001

Monocytes, Mean ± SD 7.16 ± 2.54 8.02 ± 2.51 8.04 ± 1.96 6.72 ± 2.40 5.85 ± 2.56 F = 37.96 <0.001

Neutrophils, Mean ± SD 74.15 ± 8.65 70.36 ± 8.99 74.04 ± 5.54 75.90 ± 9.42 76.29 ± 8.80 F = 19.76 <0.001

Hematocrit, Mean ± SD 33.45 ± 6.59 32.75 ± 5.92 33.42 ± 5.96 33.92 ± 6.98 33.70 ± 7.37 F = 1.11 0.346

Hemoglobin, Mean ± SD 10.83 ± 2.30 10.45 ± 2.10 10.82 ± 2.08 11.03 ± 2.36 11.00 ± 2.59 F = 2.57 0.054

Platelet, Mean ± SD 203.96 ± 93.10 258.01 ± 120.34 211.34 ± 75.04 189.83 ± 66.36 156.75 ± 69.79 F = 45.87 <0.001

Rbc, Mean ± SD 3.66 ± 0.77 3.63 ± 0.73 3.67 ± 0.69 3.70 ± 0.79 3.63 ± 0.84 F = 0.37 0.778

Rdw, Mean ± SD 15.28 ± 2.05 15.51 ± 2.31 15.20 ± 2.00 15.22 ± 2.02 15.19 ± 1.84 F = 1.00 0.390

Scr Baseline, Mean ± SD 1.28 ± 1.23 1.44 ± 1.68 1.22 ± 0.90 1.28 ± 1.19 1.17 ± 0.98 F = 1.68 0.169

Albumin, Mean ± SD 3.03 ± 0.44 3.14 ± 0.46 3.13 ± 0.38 3.00 ± 0.41 2.86 ± 0.45 F = 17.52 <0.001

Aniongap, Mean ± SD 16.02 ± 4.99 14.64 ± 3.76 15.12 ± 4.52 16.05 ± 4.61 18.27 ± 6.02 F = 21.04 <0.001

Bicarbonate, Mean ± SD 23.04 ± 4.99 25.03 ± 4.70 24.15 ± 4.32 22.57 ± 4.95 20.39 ± 4.71 F = 35.42 <0.001

Bun, Mean ± SD 32.97 ± 22.70 29.62 ± 19.89 31.51 ± 19.45 34.52 ± 24.41 36.23 ± 25.91 F = 3.23 0.022

Calcium, Mean ± SD 8.62 ± 0.95 8.80 ± 0.74 8.77 ± 0.88 8.46 ± 0.98 8.46 ± 1.12 F = 7.45 <0.001

Chloride, Mean ± SD 102.90 ± 6.20 101.96 ± 5.58 102.40 ± 6.17 103.46 ± 6.36 103.78 ± 6.54 F = 3.61 0.013

Creatinine, Mean ± SD 1.95 ± 1.88 1.97 ± 2.31 1.72 ± 1.53 1.97 ± 1.88 2.16 ± 1.71 F = 1.69 0.168

Glucose, Mean ± SD 154.03 ± 70.20 131.86 ± 59.82 141.94 ± 50.43 159.25 ± 63.53 182.98 ± 90.09 F = 20.50 <0.001

Sodium, Mean ± SD 138.94 ± 4.79 139.06 ± 4.42 138.83 ± 4.80 138.81 ± 4.62 139.06 ± 5.32 F = 0.15 0.927

Potassium, Mean ± SD 4.36 ± 0.73 4.25 ± 0.71 4.29 ± 0.62 4.38 ± 0.66 4.51 ± 0.89 F = 4.82 0.002

Crp, Mean ± SD 92.98 ± 35.40 77.72 ± 34.81 89.58 ± 32.03 99.44 ± 36.95 105.13 ± 31.51 F = 23.54 <0.001

Alt, Mean ± SD 213.58 ± 591.15 130.63 ± 414.58 118.35 ± 216.79 215.29 ± 575.74 389.54 ± 896.93 F = 8.62 <0.001

Alp, Mean ± SD 113.44 ± 79.69 114.07 ± 74.42 117.21 ± 90.77 111.93 ± 80.57 110.59 ± 72.24 F = 0.24 0.866

Ast, Mean ± SD 335.95 ± 950.45 196.53 ± 785.03 157.99 ± 415.36 314.18 ± 876.64 674.27 ± 1,378.66 F = 11.95 <0.001

Amylase, Mean ± SD 115.57 ± 67.45 113.66 ± 41.20 97.56 ± 57.11 110.74 ± 81.01 140.25 ± 75.96 F = 13.81 <0.001

Bilirubin Total, Mean ± SD 0.90 ± 0.93 0.79 ± 0.79 0.81 ± 0.67 0.86 ± 0.73 1.15 ± 1.33 F = 6.42 <0.001

Bilirubin Direct, Mean ± SD 1.75 ± 0.98 1.77 ± 0.85 1.61 ± 0.94 1.73 ± 1.18 1.88 ± 0.89 F = 2.51 0.058

Bilirubin Indirect, Mean ± SD 0.96 ± 0.41 0.93 ± 0.31 0.86 ± 0.35 0.93 ± 0.40 1.12 ± 0.49 F = 15.72 <0.001

(Continued on following page)
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Kaplan-Meier curves illustrate the mortality risk. According to the
Cox proportional hazards regression model, the inflection point was
located at quartile 1, where the risk of death was minimal, thus
demonstrating consistency between the two outcomes.

Restricted cubic spline curve

RCS analysis was adjusted for age, gender, insurance, marital
status, wbc, basophils_abs, eosinophils_abs, lymphocytes_abs,
monocytes_abs, neutrophils_abs, basophils, eosinophils,
lymphocytes, monocytes, neutrophils, hematocrit, hemoglobin,
mch, mchc, mcv, platelet, rbc, rdw, peripheral_vascular_disease,
cerebrovascular_disease, dementia, chronic_pulmonary_disease,
rheumatic_disease, peptic_ulcer_disease, mild_liver_disease,
diabetes_with_cc, paraplegia, renal_disease, malignant_cancer,
severe_liver_disease, metastatic_solid_tumor, aids, albumin,
aniongap, bicarbonate, bun, calcium, chloride, creatinine, glucose,
sodium, potassium, crp, alt, alp, ast, amylase, bilirubin_total,
bilirubin_direct, bilirubin_indirect, ck_cpk, ck_mb, ld_ldh,
lactate, apsiii, heart_rate, sbp, dbp, and spo2. RCS analysis for
28-day all-cause mortality (Figure 2A) and in-hospital mortality

(Figure 2B) both indicated a U-shaped association between WPR
and mortality risk.

KM survival analysis
In this study, we utilized Kaplan-Meier survival curves to analyze

the impact of different WPR levels in CA patients. By distinguishing
between high and low WPR groups based on the median WPR, we
compared the survival probabilities of patients with high (H group) and
low (L group)WPR levels. We found that the in-hospital mortality and
28-day in-hospital mortality were significantly lower in the high WPR
group compared to the low WPR group throughout the observation
period (p = 1.6e-9 and p = 1.8e-10, respectively). Specifically, the hazard
ratios for the high WPR group were 2.68 and 2.46 (Figures 3A, B),
indicating that patients with highWPR levels had a significantly higher
risk of death compared to those with low WPR levels.

Association between WPR and 28-
day mortality

In this study, the relationship between WPR quartiles and
survival rates in CA patients was analyzed through four models

TABLE 2 (Continued) Baseline characteristics and differential analysis of WPR.

Variables Total
(n = 748)

Q1
(n = 187)

Q2
(n = 186)

Q3
(n = 188)

Q4 (n = 187) Statistic P

Ck Cpk, Mean ± SD 1,353.44 ± 7,765.71 733.26 ±
2022.74

631.94 ±
1,092.47

1,117.14 ±
1733.19

2,928.81 ±
15,180.25

F = 3.59 0.013

Ck Mb, Mean ± SD 30.44 ± 56.01 13.99 ± 15.95 18.74 ± 23.72 33.61 ± 55.71 55.35 ± 87.31 F = 22.38 <0.001

Ld Ldh, Mean ± SD 679.85 ± 1,014.33 517.75 ± 932.11 462.39 ± 673.73 641.87 ± 785.21 1,096.45 ±
1,393.62

F = 15.95 <0.001

Lactate, Mean ± SD 3.50 ± 2.94 2.84 ± 2.31 2.87 ± 2.05 3.24 ± 2.57 5.04 ± 3.90 F = 25.82 <0.001

Apsiii, Mean ± SD 64.05 ± 27.92 58.00 ± 24.41 57.39 ± 22.48 65.22 ± 28.49 75.54 ± 31.64 F = 18.29 <0.001

Heart Rate, Mean ± SD 88.03 ± 14.66 84.34 ± 12.02 84.17 ± 10.97 90.04 ± 16.18 93.52 ± 16.53 F = 19.52 <0.001

Sbp, Mean ± SD 121.82 ± 18.60 118.64 ± 14.59 124.55 ± 20.15 124.61 ± 17.68 119.49 ± 20.68 F = 5.65 <0.001

Mbp, Mean ± SD 82.43 ± 14.35 78.63 ± 11.02 84.65 ± 15.54 84.97 ± 12.96 81.46 ± 16.41 F = 8.35 <0.001

Temperature, Mean ± SD 36.36 ± 0.79 36.57 ± 0.58 36.48 ± 0.58 36.33 ± 0.93 36.06 ± 0.92 F = 15.48 <0.001

Spo2, Mean ± SD 95.56 ± 5.17 96.59 ± 2.64 96.71 ± 3.23 95.57 ± 5.27 93.37 ± 7.42 F = 17.89 <0.001

Urineoutput 24 h, Mean ± SD 236.13 ± 227.58 213.45 ± 156.77 245.28 ± 327.23 244.30 ± 200.47 241.48 ± 189.27 F = 0.83 0.476

Neurologic, Mean ± SD 1.23 ± 1.70 1.09 ± 1.53 0.92 ± 1.37 1.27 ± 1.75 1.65 ± 2.02 F = 6.46 <0.001

Cardiovascular, Mean ± SD 1.14 ± 1.18 0.85 ± 0.87 1.12 ± 1.10 1.22 ± 1.23 1.38 ± 1.40 F = 6.69 <0.001

Renal, Mean ± SD 3.01 ± 1.51 2.81 ± 1.40 2.85 ± 1.42 2.98 ± 1.58 3.41 ± 1.57 F = 6.30 <0.001

Pulmonary, Mean ± SD 1.38 ± 1.20 1.09 ± 1.07 1.15 ± 1.07 1.50 ± 1.20 1.78 ± 1.30 F = 14.20 <0.001

Gcs, Mean ± SD 14.31 ± 1.69 14.20 ± 1.76 14.36 ± 1.73 14.55 ± 1.06 14.11 ± 2.03 F = 2.53 0.056

Urineoutput, Mean ± SD 240.44 ± 233.93 221.69 ± 180.52 251.70 ± 328.97 250.09 ± 204.78 238.30 ± 191.85 F = 0.65 0.580

Hourly Patient Fluid Removal,
Mean ± SD

146.75 ± 71.61 129.12 ± 57.55 139.77 ± 57.63 159.60 ± 81.56 158.42 ± 81.41 F = 8.28 <0.001

Ventilation Duration, Mean ± SD 36.13 ± 40.22 32.05 ± 31.42 29.73 ± 34.57 40.19 ± 44.41 42.47 ± 47.16 F = 4.46 0.004

F, ANOVA.

SD, standard deviation.
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with progressively adjusted variables. The first model (Model 1) was
unadjusted and showed that the highest quartile (Q4) had the
highest risk of death (HR = 2.68, p < 0.001) compared to the
reference group (Q1). As the models progressed (from Model 2 to
Model 4), additional adjustments were made for age, gender,
insurance, marital status, and various physiological and
biochemical indicators. Although the hazard ratios slightly
decreased, they remained statistically significant, indicating a
persistent negative association between WPR and patient survival
across diverse clinical and biochemical contexts. Model 4, the most
comprehensive model, included a wide range of clinical and
biochemical indicators as well as various disease states as
adjusting variables. This model continued to show that patients
in the Q4 group had a significantly higher risk of death compared to
the reference group (HR = 2.63, p = 0.013). These results underscore
the potential of high WPR as an independent predictor of poor
prognosis in CA patients, with its impact remaining significant even
after adjusting for multiple factors.

Association between WPR and in-
hospital mortality

This study explored the relationship between WPR and 28-day
all-cause mortality in CA patients. The results indicated that patients
with higher WPR had a significantly increased 28-day all-cause
mortality rate (Table 6). In the unadjustedModel 1, the hazard ratios
(HR) for theWPR quartiles ranged from 1.88 (95% CI: 1.22–2.90) in
Q2 to 3.02 (95% CI: 2.04–4.47) in Q4 (Ptrend <0.05 for all). After
adjusting for age, gender, insurance status, marital status, heart rate,
systolic blood pressure, diastolic blood pressure, and blood oxygen
saturation in Model 2, the adjusted HRs were 1.78 (95% CI:
1.15–2.77) for Q2 and 2.70 (95% CI: 1.81–4.03) for Q4
(Ptrend <0.05 for all).Further adjustments for various
biochemical indicators and clinical parameters in Models 3 and
4 yielded consistent results, with the highest WPR group (Q4)
having HRs of 3.08 (95% CI: 1.39–6.84) and 3.15 (95% CI:
1.43–6.95), respectively (Ptrend <0.05 for all). In summary, a

higher WPR is significantly associated with increased 28-day all-
cause mortality in CA patients, suggesting that WPR could be an
important prognostic indicator for outcome assessment.

Subgroup and sensitivity analysis

The results of the subgroup analysis for 28-day all-cause
mortality are presented in Table 7. In this study, we conducted a
detailed subgroup analysis to investigate the impact of the WPR on
the survival rate of CA patients, considering factors such as gender,
age, insurance type, marital status, and various health
conditions.The findings revealed that a high WPR was
significantly associated with an increased risk of death in male
patients (HR = 2.26, p = 0.005), while this association was not
significant in female patients (HR = 1.5, p = 0.232). For age,
the ≥65 years old group showed a marginally significant high
risk (p = 0.01), but there was no significant impact in younger
patients (HR = 1.73, p = 0.128). Among insurance types, Medicaid
beneficiaries exhibited a higher hazard ratio, although it lacked
statistical significance (HR = 6.46, p = 0.107). In married patients,
the risk associated withWPR was significantly increased (HR = 2.45,
p = 0.007), whereas no significant association was observed in other
marital statuses. In patients with chronic lung disease, a high WPR
was significantly associated with a higher risk of death (HR = 2.48,
p = 0.001). These results indicate that the impact of WPR is
influenced by multiple factors, including gender, age, marital
status, and health conditions. Specifically, high WPR is related to
significantly increased mortality risk in male, married, elderly
patients, and those with chronic lung disease. This finding
underscores the importance of considering a wide range of
patient backgrounds and health statuses in the clinical
management of CA patients, to more accurately assess risk and
formulate appropriate treatment strategies.

Adjust
wbc, basophils_abs, eosinophils_abs, lymphocytes_abs,

monocytes_abs, neutrophils_abs, basophils, eosinophils,

TABLE 3 Baseline characteristics and differential analysis of hematological parameters.

Variables Total (n = 748) Q1 (n = 187) Q2 (n = 186) Q3 (n = 188) Q4 (n = 187) Statistic P

NLR, Mean ± SD 7.10 ± 7.68 6.33 ± 10.32 5.84 ± 4.28 7.87 ± 6.70 8.33 ± 7.94 F = 4.57 0.004

LMR, Mean ± SD 2.29 ± 1.86 2.45 ± 2.34 1.92 ± 0.79 2.20 ± 1.53 2.61 ± 2.27 F = 4.90 0.002

PLR, Mean ± SD 19.27 ± 25.88 23.32 ± 42.14 16.54 ± 11.03 20.61 ± 23.26 16.57 ± 14.68 F = 3.09 0.027

NMR, Mean ± SD 12.68 ± 10.81 10.41 ± 9.09 10.45 ± 7.09 13.47 ± 8.63 16.36 ± 15.39 F = 13.63 <0.001

MCV, Mean ± SD 9.19 ± 0.69 9.08 ± 0.71 9.15 ± 0.56 9.20 ± 0.66 9.34 ± 0.80 F = 4.64 0.003

MCH, Mean ± SD 2.97 ± 0.25 2.89 ± 0.28 2.96 ± 0.21 2.99 ± 0.22 3.04 ± 0.27 F = 11.34 <0.001

MCHC, Mean ± SD 0.32 ± 0.02 0.32 ± 0.02 0.32 ± 0.02 0.33 ± 0.02 0.33 ± 0.02 F = 6.80 <0.001

RDW CV, Mean ± SD 1.67 ± 0.28 1.72 ± 0.34 1.67 ± 0.25 1.67 ± 0.26 1.64 ± 0.25 F = 3.03 0.029

HHR, Mean ± SD 0.32 ± 0.02 0.32 ± 0.02 0.32 ± 0.02 0.33 ± 0.02 0.33 ± 0.02 F = 6.80 <0.001

HBR, Mean ± SD 2.97 ± 0.25 2.89 ± 0.28 2.96 ± 0.21 2.99 ± 0.22 3.04 ± 0.27 F = 11.34 <0.001

F, ANOVA.

SD, standard deviation.
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lymphocytes, monocytes, neutrophils, hematocrit, hemoglobin,
mch, mchc, mcv, platelet, rbc, rdw, paraplegia, renal_disease,
malignant_cancer, severe_liver_disease, metastatic_solid_tumor,
aids, albumin, aniongap, bicarbonate, bun, calcium, chloride,
creatinine, glucose, sodium, potassium, crp, alt, alp, ast, amylase,
bilirubin_total, bilirubin_direct, bilirubin_indirect, ck_cpk, ck_mb,
ld_ldh, lactate, apsiii, heart_rate, sbp, dbp, spo2, urineoutput_24 hr.

Discussion

CA is one of the most critical conditions in clinical practice,
characterized by extremely high mortality rates. Even with timely
and effective cardiopulmonary resuscitation (CPR), survival rates
remain low. In recent years, numerous studies have demonstrated
that hematological and biochemical indicators can effectively predict
the prognosis of CA.

TheWPR has garnered attention as a new inflammatory marker.
This study used a retrospective cohort analysis to investigate the
relationship between WPR and 28-day all-cause mortality in CA
patients, and to evaluate the impact of various hematological
indicators on the prognosis of CA.

The WPR has been increasingly recognized as a valuable
prognostic marker in critically ill patients, including those who

have experienced CA. WPR combines two key components of the
immune and coagulation systems—white blood cells (whichmediate
inflammation) and platelets (which contribute to clotting and
inflammation). These two systems play crucial roles in
determining patient outcomes after severe events like CA, where
systemic inflammation and hemostatic imbalance are common. In
the context of CA, WPR is particularly relevant because elevated
levels of both white blood cells and platelets are often associated with
adverse outcomes, including poor recovery and increased mortality.
Inflammatory markers, such as white blood cell count, reflect the
body’s immune response to stressors like tissue injury and ischemia,
which are common in CA. Similarly, platelets, beyond their role in
coagulation, contribute to inflammation by releasing cytokines and
interacting with immune cells. High WPR, therefore, serves as an
indicator of an exaggerated inflammatory and coagulative response,
both of which are implicated in multi-organ failure and poor
survival following CA.

Our study demonstrates that higher WPR is significantly
associated with 28-day all-cause mortality in CA patients. This
finding aligns with previous research, which has shown that
elevated WPR predicts poor outcomes in other critical
conditions. By measuring WPR, clinicians can identify patients at
higher risk of mortality and tailor their treatment strategies
accordingly. Elevated WPR may signal the need for more

TABLE 4 28-day all-cause mortality and in-hospital mortality.

Variables Total (n = 748) Q1 (n = 187) Q2 (n = 186) Q3 (n = 188) Q4 (n = 187) Statistic P

28-day all-cause mortality, n(%) χ2 = 48.75 <0.001
Alive 475 (63.50) 148 (79.14) 132 (70.97) 106 (56.38) 89 (47.59)

Dead 273 (36.50) 39 (20.86) 54 (29.03) 82 (43.62) 98 (52.41)

28 days, n (%) χ2 = 54.42 <0.001
Alive 483 (64.57) 153 (81.82) 133 (71.51) 106 (56.38) 91 (48.66)

Dead 265 (35.43) 34 (18.18) 53 (28.49) 82 (43.62) 96 (51.34)

χ2, Chi-square test.

TABLE 5 Cox regression model (28-day all-cause mortality).

Variables Model1 Model2 Model3 Model4

HR (95%CI) Ptrend HR (95%CI) Ptrend HR (95%CI) P HR (95%CI) Ptrend

WPR quantile

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 1.64 (1.09–2.48) 0.019 1.54 (1.01–2.36) 0.045 1.79 (1.06–3.01) 0.028 1.79 (1.06–3.01) 0.028

Q3 2.29 (1.56–3.35) <0.001 2.02 (1.36–3.02) <0.001 2.82 (1.58–5.04) <0.001 2.79 (1.57–4.96) <0.001

Q4 2.68 (1.85–3.89) <0.001 2.45 (1.67–3.59) <0.001 2.57 (1.19–5.55) 0.016 2.63 (1.22–5.64) 0.013

HR: Hazard Ratio, CI: Confidence Interval.

Model1: Crude.

Model2: Adjust: age, gender, insurance, marital_status, heart_rate, sbp, dbp, spo2.

Model3: Adjust: age, gender, insurance, marital_status, wbc, basophils_abs, eosinophils_abs, lymphocytes_abs, monocytes_abs, neutrophils_abs, basophils, eosinophils, lymphocytes,

monocytes, neutrophils, hematocrit, hemoglobin, mch, mchc, mcv, platelet, rbc, rdw, albumin, aniongap, bicarbonate, bun, calcium, chloride, creatinine, glucose, sodium, potassium, crp, alt,

alp, ast, amylase, bilirubin_total, bilirubin_direct, bilirubin_indirect, ck_cpk, ck_mb, ld_ldh, lactate, apsiii, heart_rate, sbp, dbp, spo2, urineoutput_24 h, gcs.

Model4: Adjust: age, gender, insurance, marital_status, wbc, basophils_abs, eosinophils_abs, lymphocytes_abs, monocytes_abs, neutrophils_abs, basophils, eosinophils, lymphocytes,

monocytes, neutrophils, hematocrit, hemoglobin, mch, mchc, mcv, platelet, rbc, rdw, peripheral_vascular_disease, cerebrovascular_disease, dementia, chronic_pulmonary_disease, rheumatic_

disease, peptic_ulcer_disease, mild_liver_disease, diabetes_with_cc, paraplegia, renal_disease, malignant_cancer, severe_liver_disease, metastatic_solid_tumor, aids, albumin, aniongap,

bicarbonate, bun, calcium, chloride, creatinine, glucose, sodium, potassium, crp, alt, alp, ast, amylase, bilirubin_total, bilirubin_direct, bilirubin_indirect, ck_cpk, ck_mb, ld_ldh, lactate, apsiii,

heart_rate, sbp, dbp, spo2, urineoutput_24 h.
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aggressive or targeted interventions aimed at managing
inflammation and preventing further deterioration in these high-
risk patients.

We employed a series of methods for data analysis and feature
selection. Initially, detailed patient information was extracted using
pgAdmin software, including age, gender, insurance, marital status,
length of hospital stay, white blood cell count, platelet count, and
various biochemical and hematological indicators. The Cox
proportional hazards model was used to evaluate the impact of
each feature on survival time.

In the feature selection stage, we used the Boruta (Adrie et al.,
2002) algorithm and random forest algorithm (Erol et al., 2019),
both machine learning-based methods, to effectively identify
features most relevant to prognosis. We analyzed data from
500 random forest trees, identifying WPR, mean corpuscular
hemoglobin concentration (MCHC), red cell distribution width
coefficient of variation (RDW-CV), and lymphocyte to monocyte

ratio (LMR) as key features. To further understand the impact
mechanisms of these features, we introduced SHAP value
analysis. SHAP values can explain the contribution of each
feature to the model’s prediction results. By calculating SHAP
values using the treeshap package, we visualized the importance
and influence paths of each feature in the model. WPR consistently
ranked highest in importance across Boruta, RF, and SHAP analyses.

For further analysis, we examined data from 748 CA patients,
divided into four groups based on WPR quartiles. The study found
that age (mean 65.88 years ±16.44, F = 1.69, p = 0.167) and length of
hospital stay (8.22–10.22 days, F = 1.53, p = 0.204) did not show
significant statistical differences. However, white blood cell count
was significantly higher in the fourth group (F = 161.27, p < 0.001),
suggesting a stronger inflammatory response in the high WPR
group. Other significantly different indicators included absolute
eosinophil count, absolute lymphocyte count, and absolute and
relative neutrophil counts (all p < 0.001). This may be due to the

FIGURE 2
(A) RCS Results for 28-Day Mortality The curve represents the estimated adjusted hazard ratios, with the shaded bands indicating the 95%
confidence intervals. The vertical dashed line indicates the lowest point of the curve, representing the minimum hazard ratio. The horizontal dashed line
represents a hazard ratio of 1.0, HR =Hazard Ratio; CI = Confidence Interval; (B) RCS Results for In-Hospital Mortality The curve represents the estimated
adjusted hazard ratios, with the shaded bands indicating the 95% confidence intervals. The vertical dashed line indicates the lowest point of the
curve, representing the minimum hazard ratio. The horizontal dashed line represents a hazard ratio of 1.0, HR = Hazard Ratio; CI = Confidence Interval.

FIGURE 3
(A) KM Survival Curve for 28-Day In-Hospital Mortality,The Kaplan-Meier curve displays the survival rates within 28 days for patients with high and
low levels of WPR; (B) KM Survival Curve for In-Hospital Mortality, The Kaplan-Meier curve displays the survival rates within 28 days for patients with high
and low levels of WPR.
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cessation of forward arterial blood flow during CA, leading to zero
oxygen flow to tissues, causing systemic ischemia and metabolic
failure. CPR can only partially counteract this, achieving 25% of pre-
arrest cardiac output. In patients achieving return of spontaneous
circulation (ROSC), reperfusion causes a surge in reactive oxygen
species (ROS) and sterile inflammation (Adrie et al., 2002). Sterile
inflammation recruits pro-inflammatory immune cells, with
ischemic tissues releasing damage-associated molecular patterns
recognized by the innate immune system, triggering the post-CA
inflammatory cascade. Other triggers include lipopolysaccharides
(LPS) translocating into the bloodstream due to ischemic gut
mucosa, leading to increased white blood cells, which are closely
associated with adverse reactions and poor prognosis in CA
(Cunningham et al., 2022).

Moreover, for hematological parameters, hematocrit did not
show significant differences (F = 1.11, p = 0.346), but hemoglobin
levels approached significance (F = 2.57, p = 0.054). MCH and
MCHC exhibited significant differences (MCH F = 13.64, p < 0.001;
MCHC F = 9.43, p < 0.001), suggesting these indicators have
potential value in assessing the prognosis of CA. Platelet count
showed significant variations among groups, with Group 1 having
the highest count (F = 45.87, p < 0.001). MCHC reflects the average
concentration of hemoglobin in a given volume of red blood cells,
currently considered a reliable indicator of iron load in red blood
cells. Low MCHC is most commonly caused by anemia or iron
deficiency, but kidney function may influence MCHC
measurements through volume control. Theoretically, osmotic
changes in congestive conditions might affect the relative
concentration of hemoglobin within red blood cells, explaining
the observation of low MCHC in later-stage renal insufficiency,
making patients more prone to fluid retention. Changes in
hemoglobin and red blood cell parameters might be related to
insufficient tissue oxygen supply, as CA-induced myocardial
arrest reduces oxygen delivery. Furthermore, changes in MCH
and MCHC might reflect adjustments in hemoglobin content and
concentration within red blood cells, possibly related to stress

response and metabolic regulation in the body. Significant
differences in platelet count suggest differences in coagulation
function and stress response among patients, correlating with
prognosis and survival rates.

In the Cox proportional hazards model analysis, we found that
WPR was significantly associated with 28-day all-cause mortality in
CA patients. In the unadjustedModel 1, hazard ratios (HR) forWPR
quartiles ranged from 1.88 (95% CI: 1.22–2.90) in Q2 to 3.02 (95%
CI: 2.04–4.47) in Q4 (Ptrend <0.05). In Model 2, adjusted for age,
gender, insurance status, marital status, heart rate, systolic blood
pressure, diastolic blood pressure, and blood oxygen saturation, the
HRs were 1.78 (95% CI: 1.15–2.77) for Q2 and 2.70 (95% CI:
1.81–4.03) for Q4 (Ptrend <0.05). Further adjustments in Models
3 and 4 for various biochemical indicators and clinical parameters
still yielded significant results, with the highest WPR group (Q4)
having HRs of 3.08 (95% CI: 1.39–6.84) and 3.15 (95% CI:
1.43–6.95), respectively (Ptrend <0.05). In summary, higher WPR
is significantly associated with 28-day all-cause mortality in CA
patients, suggesting that WPR could be an important
prognostic indicator.

To further understand the impact of WPR on prognosis, we
conducted a restricted cubic spline (RCS) analysis. The RCS analysis
showed a U-shaped association between WPR and mortality risk,
further validating the relationship between high WPR and poor
prognosis. Kaplan-Meier curves also indicated that low WPR was
associated with higher survival rates (Zelniker et al., 2021).

We conducted subgroup analyses based on gender, age,
insurance type, marital status, and health conditions to explore
the impact of WPR on survival rates across different subgroups. The
results showed that high WPR was significantly associated with
increased mortality risk in male patients (HR = 2.26, p = 0.005),
while the association was not significant in female patients (HR =
1.5, p = 0.232). For age, the ≥65 years group showed a marginally
significant high risk (p = 0.01), but there was no significant impact in
younger patients (HR = 1.73, p = 0.128). Among insurance types,
Medicaid beneficiaries exhibited a higher hazard ratio, although it

TABLE 6 Cox regression model (in-hospital mortality).

Variables Model1 Model2 Model3 Model4

HR (95%CI) Ptrend HR (95%CI) Ptrend HR (95%CI) Ptrend HR (95%CI) Ptrend

WPR quantile

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 1.88 (1.22–2.90) 0.004 1.78 (1.15–2.77) 0.01 2.09 (1.22–3.57) 0.007 2.09 (1.22–3.57) 0.007

Q3 2.58 (1.73–3.84) <0.001 2.26 (1.49–3.43) <0.001 3.26 (1.79–5.94) <0.001 3.22 (1.77–5.85) <0.001

Q4 3.02 (2.04–4.47) <0.001 2.70 (1.81–4.03) <0.001 3.08 (1.39–6.84) 0.006 3.15 (1.43–6.95) 0.004

HR: Hazard Ratio, CI: Confidence Interval.

Model1: Crude.

Model2: Adjust: age, gender, insurance, marital_status, heart_rate, sbp, dbp, spo2.

Model3: Adjust: age, gender, insurance, marital_status, wbc, basophils_abs, eosinophils_abs, lymphocytes_abs, monocytes_abs, neutrophils_abs, basophils, eosinophils, lymphocytes,

monocytes, neutrophils, hematocrit, hemoglobin, mch, mchc, mcv, platelet, rbc, rdw, albumin, aniongap, bicarbonate, bun, calcium, chloride, creatinine, glucose, sodium, potassium, crp, alt,

alp, ast, amylase, bilirubin_total, bilirubin_direct, bilirubin_indirect, ck_cpk, ck_mb, ld_ldh, lactate, apsiii, heart_rate, sbp, dbp, spo2, urineoutput_24h, gcs.

Model4: Adjust: age, gender, insurance, marital_status, wbc, basophils_abs, eosinophils_abs, lymphocytes_abs, monocytes_abs, neutrophils_abs, basophils, eosinophils, lymphocytes,

monocytes, neutrophils, hematocrit, hemoglobin, mch, mchc, mcv, platelet, rbc, rdw, peripheral_vascular_disease, cerebrovascular_disease, dementia, chronic_pulmonary_disease, rheumatic_

disease, peptic_ulcer_disease, mild_liver_disease, diabetes_with_cc, paraplegia, renal_disease, malignant_cancer, severe_liver_disease, metastatic_solid_tumor, aids, albumin, aniongap,

bicarbonate, bun, calcium, chloride, creatinine, glucose, sodium, potassium, crp, alt, alp, ast, amylase, bilirubin_total, bilirubin_direct, bilirubin_indirect, ck_cpk, ck_mb, ld_ldh, lactate, apsiii,

heart_rate, sbp, dbp, spo2, urineoutput_24h.
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TABLE 7 Subgroup analysis of 28-day mortality.

Variable Count Percent HR Lower Upper Q1 Q2 Q3 Q4 p-Value P For interaction

Overall 748 100 1.88 1.22 2.9 40 68.4 72.8 60.3 004

gender 0.528

Male 459 61.4 2.26 1.29 3.99 34.9 73.8 78 57.7 005

Female 289 38.6 1.5 0.77 2.94 47.8 60.4 68.7 64.5 0.232

age 0.841

≥65 420 56.1 25 1.19 3.54 46.6 84.5 82.6 68 01

<65 328 43.9 1.73 0.85 3.51 31.7 50.9 56.6 52.1 0.128

insurance 0.512

Medicaid 42 5.6 6.46 0.67 62.33 12.5 65.7 81.2 40 0.107

Medicare 382 51.1 1.7 0.93 3.11 51.6 65.7 69.2 60.2 083

Other 324 43.3 1.85 0.97 3.53 35.8 74.5 72.8 65.8 06

marital_status 0.326

DIVORCED 45 6 1.59 0.14 17.6 33.3 33.3 38.5 85 0.705

MARRIED 373 49.9 2.45 1.28 4.67 35.2 74.3 72.1 60.6 007

SINGLE 246 32.9 1.77 0.86 3.64 40.4 61.6 74.5 49.1 0.123

WIDOWED 84 11.2 0.86 0.29 2.57 70.3 100 84 76.5 0.792

myocardial_infarct 0.561

No 521 69.7 1.6 0.98 2.6 49.8 66.6 71.1 60.8 061

Yes 227 30.3 3.36 1.3 8.7 19.4 84.1 76.5 59.9 013

congestive_heart_failure 0.29

No 381 50.9 1.92 1.1 3.35 53.2 75.5 78.9 72.4 022

Yes 367 49.1 1.79 0.9 3.54 24.3 61 65 41.6 095

peripheral_vascular_disease 066

No 636 85 1.55 0.98 2.46 42.8 67.3 72.5 58.9 062

Yes 112 15 11.13 1.45 85.11 20 72.8 73.8 70.7 02

cerebrovascular_disease 019

No 642 85.8 1.48 0.94 2.34 43.8 64.8 73.8 59.1 091

Yes 106 14.2 15.64 21 121.4 20 84.4 68.8 67.7 009

dementia 0.898

No 718 96 1.86 1.2 2.89 40.6 68.6 70.3 59.9 006

Yes 30 4 2.44 0.25 23.65 33.3 65.7 100 72.2 0.441

chronic_pulmory_disease 069

No 561 75 2.48 1.45 4.23 38.7 70.8 74.6 65.3 001

Yes 187 25 11 0.46 2.23 40.5 63.1 69.7 47.6 0.976

rheumatic_disease 068

No 717 95.9 1.9 1.22 2.94 39.3 69.9 72 60.4 004

Yes 31 4.1 1.92 0.17 21.33 100 33.3 85.7 60 0.595

peptic_ulcer_disease 0.807

No 728 97.3 1.89 1.22 2.94 40.5 68.4 72.7 61 004

Yes 20 2.7 1.71 0.14 20.83 37.5 25 50 50 0.674

mild_liver_disease 0.49

No 645 86.2 1.95 1.22 3.11 38.8 72.3 74.5 58 005

Yes 103 13.8 1.52 0.49 4.72 44 45.2 68.9 75.4 0.468

diabetes_without_cc 0.179

No 557 74.5 1.44 0.88 2.36 51.2 66.3 77.2 59.8 0.147

Yes 191 25.5 3.72 1.46 9.47 15 77.5 56.5 60.7 006

diabetes_with_cc 0.732

No 625 83.6 1.77 1.1 2.85 45.7 67.9 74.9 63 018

Yes 123 16.4 2.6 0.91 7.42 19.6 74.1 40.2 33.1 074

(Continued on following page)
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lacked statistical significance (HR = 6.46, p = 0.107). In married
patients, the risk associated with WPR was significantly increased
(HR = 2.45, p = 0.007), whereas no significant association was
observed in other marital statuses. In patients with chronic lung
disease, high WPR was significantly associated with a higher risk of
death (HR = 2.48, p = 0.001).

These results indicate that the impact of WPR is influenced by
multiple factors, including gender, age, marital status, and health
conditions. Specifically, high WPR is related to significantly
increased mortality risk in male, married, elderly patients, and
those with chronic lung disease.

The study results suggest that the impact of WPR on survival
rates varies significantly across different subgroups. The higher
risk for cardiovascular diseases in males might be due to higher
smoking rates, unhealthy dietary habits, and lower utilization of
healthcare services. Additionally, lower estrogen levels in males
might lead to weaker cardiovascular protection. High WPR is
associated with increased mortality risk (HR = 1.5), but it is not
statistically significant (p = 0.232). This could be due to
insufficient sample size or the physiological differences in
cardiovascular risk in females, such as stronger cardiovascular
protection from estrogen (Sandroni et al., 2018; Noppens et al.,
2009). High WPR shows a marginally significant increase in
mortality risk (p = 0.01). Elderly people often have multiple
health issues (e.g., chronic diseases, reduced immune function),
which may increase inflammatory responses, thus making the
association between WPR and mortality more pronounced.
Although high WPR also shows a trend towards increased
mortality risk (HR = 1.73), it is not statistically significant
(p = 0.128). The relatively lower baseline health risks in
younger individuals might mitigate the impact of WPR on
mortality rates. A higher hazard ratio (HR = 6.46) is observed,
although it is not statistically significant (p = 0.107). This might
reflect poorer health status, fewer medical resources, and
economic difficulties negatively impacting health outcomes
among Medicaid beneficiaries. High WPR significantly

increases mortality risk (HR = 2.45, p = 0.007). Married status
usually provides better social support and mental health, but in
cases of highWPR, it might indicate more severe health problems
under high stress and disease burden. Other marital statuses do
not show significant differences, reflecting the complexity and
diversity of health impacts across different marital statuses. High
WPR is significantly associated with higher mortality risk (HR =
2.48, p = 0.001). Chronic lung disease often accompanies long-
term inflammatory responses and immune system activation
(Benjamin et al., 2019), which may enhance the association
between WPR and mortality.

Our study’s findings, which identify a significant relationship
between the white blood cell-to-platelet ratio (WPR) and 28-day all-
cause mortality in CA patients, are consistent with several key
studies that have explored the prognostic value of WPR in
critically ill populations. For instance, a study showed that WPR
is associated with poor outcomes, including higher mortality rates,
in critically ill patients, making it a reliable marker for predicting
adverse outcomes. Similarly, researchers found that elevated WPR
was significantly linked to poor prognosis in patients with acute
coronary syndrome, reinforcing the utility of WPR across different
cardiovascular conditions (Zhang et al., 2019). Furthermore, A study
emphasized the value of WPR in predicting poor outcomes in sepsis
and septic shock patients, which share common inflammatory
pathways with CA (Schupp et al., 2023). These studies
collectively underscore the potential of WPR as a robust, easily
accessible biomarker for predicting mortality in various critical
conditions, including CA.

Although this study reveals the important role of WPR in the
prognosis of CA, there are still some limitations. First, this is a
single-center retrospective study, which might introduce
selection bias. Second, although we adjusted for multiple
potential confounders, other unknown factors could not be
entirely ruled out. Therefore, more multicenter, large-sample
prospective studies are needed in the future to further validate
our findings.

TABLE 7 (Continued) Subgroup analysis of 28-day mortality.

Variable Count Percent HR Lower Upper Q1 Q2 Q3 Q4 p-Value P For interaction

paraplegia 0.167

No 715 95.6 1.88 1.21 2.92 40.8 68.2 69 62.4 005

Yes 33 4.4 2.12 0.29 15.41 42.9 60 87.5 31.4 0.458

rel_disease 0.326

No 493 65.9 1.59 0.94 2.7 46.9 69.4 69.4 62.4 082

Yes 255 34.1 2.61 1.22 5.59 31.6 67.9 80.3 53.7 013

malignt_cancer 0.759

No 691 92.4 1.84 1.16 2.9 43.5 71.6 72.5 58.8 009

Yes 57 7.6 29 0.59 7.43 26.7 48.6 81 75.7 0.254

severe_liver_disease 0.417

No 725 96.9 1.83 1.18 2.85 39.8 67.7 70.2 58.7 007

Yes 23 3.1 3.47 0.38 31.35 33.3 79.2 100 100 0.268

metastatic_solid_tumor 0.267

No 729 97.5 23 1.29 3.19 34.7 68 72.6 59.6 002

Yes 19 2.5 0.66 0.14 3.11 100 75 66.7 62.5 0.602
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Conclusion

In conclusion, this study found that WPR is significantly
associated with 28-day all-cause mortality in CA patients,
suggesting that WPR could be an important prognostic indicator.
Future research should further explore the value of WPR in different
patient groups to provide more evidence for clinical
decision-making.
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