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Introduction: The Prunella vulgaris L. (PVL) and Taraxacum mongolicum
Hand.-Mazz. (TH) herb pair, which is commonly used in traditional Chinese
medicine (TCM), has been applied for the treatment of breast cancer. Although
its efficacy is validated, the synergistic anti-breast cancer compound combinations
within this herb pair and their underlying mechanisms of action remain unclear.

Methods: This study aimed to identify and validate synergistic anti-breast cancer
compound combinations within the PVL-TH pair using large-scale biomedical
data, artificial intelligence and experimental methods. The first step was to
investigate the anti-breast cancer effects of various PVL and TH extracts using
in vitro cellular assays to identify the most effective superior extracts. These
superior extracts were subjected to liquid chromatography-mass spectrometry
(LC-MS) analysis to identify their constituent compounds. A deep learning-based
prediction model, DeepMDS, was applied to predict synergistic anti-breast
cancer multi-compound combinations. These predicted combinations were
experimentally validated for their anti-breast cancer effects at actual content
ratios found in the extracts. Preliminary bioinformatics analyses were conducted
to explore the mechanisms of action of these superior combinations. We also
compared the anti-breast cancer effects of superior extracts from different
geographical origins and analyzed the contents of compounds to assess their
representation of the anti-tumor effect of the corresponding TCM.

Results: The results revealed that LC-MS analysis identified 27 and 21 compounds
in the superior extracts (50% ethanol extracts) of PVL and TH, respectively. Based
on these compounds, DeepMDS model predicted synergistic anti-breast cancer
compound combinations such as F973 (caffeic acid, rosmarinic acid, p-coumaric
acid, and esculetin), T271 (chlorogenic acid, cichoric acid, and caffeic acid), and
T1685 (chlorogenic acid, rosmarinic acid, and scopoletin) from single PVL, single
TH and PVL-TH herb pair, respectively. These combinations, at their actual
concentrations in extracts, demonstrated superior anti-breast cancer activity
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compared to the corresponding extracts. The bioinformatics analysis revealed that
these compounds could regulate tumor-related pathways synergistically, inhibiting
tumor cell growth, inducing cell apoptosis, and blocking cell cycle progression.
Furthermore, the concentration ratio and total content of compounds in F973 and
T271 were closely associated with their anti-breast cancer effects in extracts from
various geographical origins. The compound combination T1685 could represent
the synergistic anti-breast cancer effects of the PVL-TH pair.

Discussion: This study provides insights into exploring the representative
synergistic anti-breast cancer compound combinations within the complex TCM.

KEYWORDS

artificial intelligence, traditional Chinese medicine, breast cancer treatment, synergistic
combination, Prunella vulgaris L., Taraxacum mongolicum Hand.-Mazz.

1 Introduction

The rising prevalence of breast cancer presents a significant
global health challenge (Hong and Xu, 2022). Current treatments,
such as surgery, radiotherapy, and chemotherapy, often lead to
severe side effects and the development of drug resistance (Pace and
Shulman, 2016). As a result, there is growing interest in synergistic
anti-breast cancer compound combinations from Traditional
Chinese medicine (TCM), which have the potential to overcome
drug-induced resistance and minimize drug toxicity (Jin et al., 2018;
Zhou et al., 2023; Yu et al., 2024). These combinations work
synergistically through multiple compounds, targets, and
pathways to exert their effects (Gezici and Şekeroğlu, 2019; Wang
et al., 2023; Gao et al., 2024). However, due to the vast number of
TCM compounds and their combinations, identifying the most
effective synergistic combinations of anti-breast cancer
compounds within TCM remains a challenge (Hou et al., 2019).

Traditional experimental approaches for assessing the
synergistic compound combinations are often time-consuming
and resource-intensive (MacGowan et al., 1990; Sopirala et al.,
2010). For instance, Jaaks et al. (2022) screened 2025 drug pair
combinations against 125 cancer cell lines using the Genomics of
Drug Sensitivity in Cancer (GDSC) database. They identified only
one combination of TOP1 and CHEK1 inhibitors that exhibited a
synergistic anti-tumor effect in vivo (Jaaks et al., 2022). In contrast,
there has been a growing interest in the prediction of anti-tumor
compound combinations through computational approaches,
including machine learning and deep learning (Bansal et al.,
2014; Chen et al., 2018; Kuru et al., 2022). These techniques,
especially deep learning, have shown superior capabilities in
extracting key features and learning patterns from large-scale
biomedical data, significantly outperforming traditional models
(Baptista et al., 2021; Fan et al., 2021). For instance, DeepSynergy
(Preuer et al., 2018) and AuDNNsynergy (Zhang et al., 2021) utilized
integrated chemical and genomic data to predict the synergy scores
of compound combinations for various cancers. Another deep
learning model is DrugCell, an interpretable model trained with
data from the response of 1,235 tumor cells to 684 drugs. It could
predict treatment responses of human cancer cells and design
effective synergistic compound combinations to improve
treatment outcomes (Kuenzi et al., 2020).

Current computational approaches primarily focus on
predicting compound pairs, so neglecting the difficulty of

screening synergetic multi-compound combinations, particularly
in TCM. In light of recent advancements in deep learning, we
developed DeepMDS (She et al., 2022), a deep neural network
designed to predict synergistic multi-compound combinations
susceptible to a specific molecular subtype of cancer cells.
DeepMDS integrated gene expression profiles of cancer cell lines,
target information, and drug response data to predict pseudo-IC50

values, which served as indicators for the synergistic anti-tumor
effects of compound combinations.

Prunella vulgaris L. (PVL) is a perennial herb from the Labiatae
family, and its dried ear was called Xiakucao in China. PVL was
known for its broad range of pharmacological actions, including
anti-tumor (Kim et al., 2012), anti-oxidant (Chen et al., 2019), anti-
inflammatory and immunological regulatory effects (Guo et al.,
2021). Recent pharmacological studies have provided evidence of
the anti-breast cancer effect of PVL, which has been extensively
employed in the treatment of breast cancer (Gao and Xu, 2019; Luo
et al., 2022). Taraxacum mongolicum Hand.-Mazz. (TH), known as
Pugongying in China, is a perennial herb in Asteraceae family. It has
been widely used to prevent and treat various inflammatory and
infectious diseases (Ge et al., 2021). Investigations showed that TH
has potential in treating various types of cancer, including breast
cancer (Wang et al., 2022), gastric cancer (Zhu et al., 2017), and non-
small cell lung cancer (Kang et al., 2021). Together, the PVL-TH pair
is traditionally used for its heat-clearing and toxin-removing
properties (National Pharmacopoeia Commission, 2020).
According to the Collected Works of Materia Medica, the PVL-
TH pair combined with wine can be used to treat early acute
mastitis. The previous results of animal experiment demonstrated
that PVL-TH increased the level of interleukin-6 (IL-6) in breast
cancer model mice, inhibiting the growth and promoting the
apoptosis of breast cancer cells (Tang et al., 2020). The anti-
tumor activities of the PVL-TH pair are attributed to its
bioactive compounds. For instance, rosmarinic acid increases the
level of apoptotic markers P53 and Caspase-3 and reduces the Bcl2/
Bax ratio (Mahmoud et al., 2021). Luteolin suppresses the
proliferation of breast cancer cells by elevating the expression of
miR-203 and inhibiting Ras/Raf/MEK/ERK signaling (Gao et al.,
2019). However, the task of identifying the most effective synergistic
combinations of anti-breast cancer compounds from PVL-TH pair
remains challenging.

In this study, we used PVL and TH as modeling medicine and
integrated artificial intelligence technology with large-scale
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biomedical data to identify synergistic compound combinations
against breast cancer. This identified superior combinations was
further investigated through in vitro cellular assays validation and a
preliminary analysis of the synergistic mechanisms. In a conclusion,
this study provided a new strategy for effectively analyzing the
superior synergistic combinations of anti-breast cancer compounds
and understanding their complex interactions within TCM.

2 Materials and methods

2.1 Plant material, chemicals and reagents

The dried ears of P. vulgaris L. (PVL, Lot No. 20210116,
collected from Henan province) was purchased from Xinsheng
Chinese Herbal MEDICINE (Anhui, China). The whole plants of
T. mongolicumHand.-Mazz. (TH, Lot No. 20210420, collected from
Anhui province) was purchased from Bozhou Youyuantang
Pharmaceutical (Anhui, China). Scopoletin (ST) and cichoric acid
(CIA) were purchased from Yuanye (Shanghai, China); caffeic acid
(CA), p-coumaric acid (PCA), rosmarinic acid (ROA), esculetin
(ET), rutin (RT), hypericin (HP), quercetin (QT), chlorogenic acid
(CHA) and luteolin (LT) were obtained from Maclin (Shanghai,
China). The purity of each compound is above 98%. Dulbecco
modified Eagle medium/high glucose (DMEM) and Fetal bovine
serum (FBS) were provided by Adamas Life (Shanghai, China). Cell
Counting Kit-8 (CCK-8) was acquired from DOJINDO (Japan).

2.2 Preparation of PVL and TH extracts

PVL and TH were powdered, and ultrasonically extracted
separately using 10 volumes of water or 50% ethanol (w/v) for
40 min at room temperature. The ultrasonication was conducted at a
frequency of 40 kHz with a power setting of 250 W to ensure the
thorough release of active components. The extracts were then
filtrated, and concentrated using a rotary evaporator at 40°C
under vacuum conditions, reducing the volume to a
concentration of 1.0 g/mL (measured by crude drug, the same
below) to eliminate the effect of ethanol on cell viability.
Subsequently, the concentrated extracts were processed through
centrifugation at a speed of 3,700 rpm for a duration of 10 min.
The supernatants were sterilized through a 0.22 μmmembrane, and
then diluted with DMEM medium to create stock solutions at
100 mg/mL. Since the ratio of PVL to TH is usually
recommended to be between 1:2 and 2:1 (Yan et al., 2018; Tang
et al., 2020), the stock solutions of PVL and TH were mixed in
volume ratios of 1:1, 1:2, and 2:1 to obtain mixed stock solutions.
These were further diluted with cell culture medium to prepare a
series of working solutions.

2.3 In vitro anti-tumor effects of the extracts

The human breast cancer cell line MCF-7 were obtained from
the Cell Bank of the Chinese Academy of Sciences (Shanghai, China)
and cultured in DMEM supplemented with 10% fetal bovine serum
(FBS) in a humidified incubator at 37°C with 5% CO2. MCF-7 cells

were seeded into 96-well plates at a density of 5 × 103 cells per well.
After 24 h of culture in cell culture media, the cells were treated with
various groups at different concentration gradients. Each
concentration was tested in triplicate. After 48 h, 10 µL of Cell
Counting Kit-8 (CCK-8) solution was added to each well, and the
plates were incubated at 37°C for 1 h. The absorbance was measured
at 450 nm using a microplate reader to determine cell viability
(Equation 1) and calculate IC50 values. The extract with the lowest
IC50 value was regarded as superior extracts.

cell vaibility %( )

� absorbance of test group − absorbance of blank group
absorbance of control group − absorbance of blank group
× 100% (1)

where the test group was treated with various groups at different
concentration gradients, the control group was treated with DMEM
only, and the blank group, without cells and compounds, was treated
with DMEM to account for background absorbance.

The combination index (CI), based on the Chou-Talalay method
(Chou, 2010), was calculated using CompuSyn software to
investigate the synergistic, additive, or antagonistic effects of anti-
breast cancer compound combinations, where CI > 1 indicates
antagonism, CI = 1 indicates additive effects, and CI <
1 indicates synergy (Equation 2).

CI � DA

IC50,A
+ DB

IC50,B
(2)

where DA and DB represent the concentration of the compounds at a
50% growth inhibition rate when used in combination, and IC50, A

and IC50, B represent the IC50 values of the compound when
used alone.

2.4 Identification of compounds in superior
extracts using LC-MS analysis

PVL and TH powders were extracted with 10 volumes of 50%
ethanol for 40 min, based on previous reports with modification
(Psotová et al., 2003; Wu et al., 2022; Zholdasbayev et al., 2023; Liu
et al., 2024). The extracts were then filtrated and concentrated to a
final concentration of 1.0 g/mL. Subsequently, the extracts were
diluted in ethanol at a ratio of 1:4 and airtightly refrigerated for 24 h.
The mixture was filtered and further concentrated to 100 mg/mL.
Following centrifugation at 12,000 rpm for 10 min, the supernatants
were collected and filtered through a 0.22 μm membrane.

The Liquid Chromatograph (LC) analysis was performed on a
Thermo Hypersil Gold C18 column (100 mm × 2.1 mm, 1.9 μm).
The column temperature was maintained at 45°C; the injection
volume was 2 μL; the flow rate was 0.35 mL/min with gradient
elution. The mobile phase, consisting of acetonitrile (A) and water
(B), was applied with the gradient elution as follows: 0–4 min, 2% A;
4–10 min, 2%–50% A; 10–25 min, 50%–98% A (PVL); 0–10 min,
2%–10% A; 10–18 min, 20%–50% A; 18–30 min, 50%–98% A (TH).

Mass spectrometry (MS) of the samples were conducted in
negative ion mode using the HESI ion source. The data were
screened and matched using Compound discoverver
3.1.0 software. The capillary voltage was set to 3,200 V, with a
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capillary temperature of 320°C. The sheath gas flow rate was
48.75 units, and the auxiliary gas flow rate was 11.88 unit. Full-
scan mass spectra were acquired across a mass-to-charge ratio (m/z)
range of 100–1,000.

2.5 Prediction of synergistic combinations of
anti-breast cancer compounds from PVL
and TH extracts

2.5.1 Expanding compound-target interactions for
input of DeepMDS

Due to the limitations of existing databases, we employed the
compound-target correlation space-based interaction prediction
model (CTCS-IPM) to explore potential interactions between
compounds identified via LC-MS and 1,093 targets. These
predicted interactions subsequently were then used as inputs for
DeepMDS (Rui et al., 2020). Briefly, the data of 50,564 pairs of
interaction consisting of 1,093 targets and 31,880 compounds were
collected from the relevant database. Molecular descriptors were
calculated for these compounds using Molecular Operating
Environment 2020 (MOE, Chemical Computing Group ULC,
Montreal, Canada), and for targets using the Protein Feature
Server (ProFeat). Then, these molecular descriptors were
standardized and analyzed using SPSS software through principal
component analysis (PCA) calculation, resulting in 42 compound
and 237 protein molecular descriptors. The principal components
captured 86.64% and 89.80% of the cumulative variance,
respectively. A threshold for a given compound group of each
target was then established based on a 95% confidence interval of
the Euclidean distance between each compound or target pair. After
calculating the position of compounds and targets in the compound-
protein correlation space, CTCS-IPM was able to infer potential
interactions with a recall rate of 91.18%.

We also integrated known compound-target interactions from
databases such as TCMSP, TCMID, and BindingDB with
predictions from CTCS-IPM. This combined data formed an
expanded interaction network, visualized using Cytoscape
software to analyze network abundance. Subsequently, this
expanded interaction network was used as input for DeepMDS to
predict synergistic compound combinations.

2.5.2 Prediction of synergistic combinations using
DeepMDS model

To identify synergistic combinations of anti-breast cancer
compound in TCM, we have developed DeepMDS model (She
et al., 2022). Briefly, The DeepMDS model was constructed to
predict drug synergy by integrating genomic features of cancer
cell lines and drug-target interaction data. Genomic data were
obtained from ArrayExpress and eBioPortal, while drug-target
data were collected from GDSC, NPACT, DrugBank, PubChem,
and TCMSP. These datasets were combined to generate
201,405 unique samples representing both genomic and drug-
target features. The DeepMDS architecture consisted of an input
layer, two dense hidden layers with 200 and 100 nodes, ReLU
activation functions, and dropout layers to reduce overfitting.
The output layer was designed to predict both classification
outcomes (positive or negative synergy) and regression results

(pseudo-IC50 values). The model was trained using Stochastic
Gradient Descent (SGD) and the Adam optimizer, with a
learning rate of 10−5, batch size of 128, and 200 epochs,
optimizing mean square error (MSE) for regression tasks.

Therefore, this model could offer the predicted pseudo-IC50

values for each combination, which could be used to measure the
synergistic anti-tumor effect of different combinations. In this study,
before predicting compound combinations, a systematic clustering
analysis was conducted on the compounds from TVL and TH
utilizing the within-groups linkage method. This method helped
avoid redundancy which caused by target overlap among the
prediction samples. Compounds were grouped based on Euclidean
distances with a threshold of 5. The selection of compounds followed
two criteria: 1) priority to compounds in separate clusters to ensure
diversity, and 2) in cases where compounds shared a cluster, the one
with the most targets was selected.

Selected compounds were then used to construct both
compound-pair and multi-compound combinations. Each
combination was characterized using 215 genomic features
specific to the given cancer cell line and 1,093 molecular target
features of compounds, serving as individual modeling samples. The
DeepMDS model was employed to predicted the synergy effects of
these combinations on the MCF-7 cancer cell line. The combination
with the lowest pseudo-IC50 value was identified as the superior
synergistic anti-breast cancer combination, henceforth referred to as
the superior combination.

2.6 Content determination of compounds
contained in superior combinations in
herbal extract

To measure the concentrations and ratios of the compounds in
superior combinations for subsequent anti-breast cancer
experiments, the contents of these compounds in the herbal
extracts were determined using high-performance liquid
chromatography (HPLC).

Prunella vulgaris L. were purchased from various regions,
including Henan (Lot No. 20210116, 20210822), Hubei (Lot No.
20210906), Jiangsu (Lot No. 202101926), Sichuan (Lot No.
20220111), and Anhui (lot No. 20220103). Taraxacum
mongolicum Hand.-Mazz. samples were obtained from Henan
(Lot No. 20210814), Anhui (Lot No. 20210420, 20210925),
Shanxi (Lot No. 20210510), Gansu (Lot No. 20210522), and
Hunan (Lot No. 20210826). These herbal samples were
authenticated by Professor Ouyang Zhen of Jiangsu University
and ground into powder for experimental use. The powdered
herbal sample (1.0 g) was extracted with 10 mL of either
ultrapure water or 50% ethanol solution for 40 min in an
ultrasonic bath. The extracts were then filtered and centrifuged at
3,700 rpm for 10 min. Subsequently, the supernatant was collected
and filtered through a 0.22 µm filter membrane for analysis.

For the preparation of calibration standards, 5.0 mg each of
caffeic acid, p-coumaric acid, scopoletin, rosmarinic acid, esculetin,
rutin, hypericin and quercetin were dissolved in 5.0 mL of methanol
to obtain a stock solution of PVL standards at a concentration of
1.0 mg/mL. Similarly, TH standards containing chlorogenic acid,
cichoric acid, caffeic acid and luteolin were prepared at the same
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concentration of 1.0 mg/mL. These stock solutions were then diluted
with methanol to produce a mixed control solution with a
concentration of 100 μg/mL for each compound.

HPLC analysis was performed on an InertSustain™ ODS-C18
column (250 mm × 4.6 mm, 5 μm), with a mobile phase consisting
of acetonitrile (A) and 0.1% acetic acid aqueous solution (B), flowing at a
rate of 1.0 mL/min. The column temperature was maintained at 30°C,
and the injection volume was set to 20 μL. The gradient elution
parameters for PVL were as follows: 0–30 min, 10%–25% A;
30–50 min, 25%–45% A. Chromatograms were obtained with a
detection wavelength of 325 nm for caffeic acid, p-coumaric acid,
scopoletin, and rosmarinic acid, and 360 nm for esculetin, rutin,
hypericin and quercetin. For TH, the gradient elution was set as
0–20 min, 10%–45% A, and 325 nm as the detection wavelength.
Each compound exhibited a good linear relationship within the range
of 1–100 μg/mL, and the average recoveries were 98.63%–102.36%. The
relative standard deviation (RSD) values for the precision, stability, and
repeatability test were all less than 3%, which met the methodological
requirements.

2.7 In vitro cellular validation of the identified
superior combinations

To investigate the anti-breast efficacy of the superior combinations
predicted by DeepMDS, each compound in the superior combinations
was initially dissolved in DMSO as stock solutions at a concentration of
400mM.Working solutions were then prepared by diluting these stock
solutions with cell culture medium, ensuring that the final DMSO
concentration was less than 0.1%. To evaluate their synergistic effects,
the molar ratio of compounds in superior combinations was set
according to the actual content of each compound in the extracts.
This setup aimed to closely simulate the natural proportions found in
the herbal extracts, and to investigate whether these superior
combinations could significantly contribute to the anti-tumor effects
of the extracts. The test solutions for different geographical origins of

PVL and TH were prepared following the method described above,
using 50% ethanol as the extraction solvent.

The anti-breast cancer efficacy of these combinations was
performed on human breast cancer cell line MCF-7 using CCK-8
assay. This cellular viability assay was detailed previously
in Section 2.3.

2.8 Preliminary analysis on the anti-tumor
synergistic mechanism of superior
combinations

To understand the mechanisms underlying the anti-tumor effects of
the superior combinations, we employed Metascape for KEGG pathway
enrichment analysis on the targets of each predicted superior
combination. Briefly, all targets were converted to a uniform Entrez
Gene ID, and theHuman species genewas selectedwith parameters set to
Min Overlap of 3, p-value Cutoff of 0.01, and Min Enrichment of 1.5.
KEGGMapperwas used to acquire the pathwaymaps based on the target
enrichment for each compound in the superior combinations. Then the
synergistic relationships among critical tumor pathways involved in the
superior combinations were examined based on the “pathway in cancer.”
Subsequently, the regulatory relationships between targets and pathways
indicated in the KEGG pathway map were used to construct the
“superior combination compound-target-tumor related pathway”
network, which was performed by Cytoscape 3.7.2 software.
Moreover, this study investigated how each compound synergistically
regulates pathways to play an anti-tumor role.

2.9 Statistical analysis

Statistical differences between two groups were assessed using
the two-tailed Student’s t-test, while differences among multiple
groups were analyzed using one-way ANOVA. In all cases, p-value
of less than 0.05 was considered to represent statistical significance.

FIGURE 1
Comparative effects of Prunella vulgaris L. (PVL) and TaraxacummongolicumHand.-Mazz. (TH) extracts, individually and in combination, on MCF-7
cell viability. (A)Water extracts of PVL and TH, as well as their combinations at ratios of 1:1, 1:2, and 2:1, were evaluated for their impact on cell viability. (B)
Effects of 50% ethanol extracts of PVL and TH, and their combinations at similar ratios, were assessed on MCF-7 cells. Data are presented as mean ± SD
(n = 5).
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TABLE 1 IC50 and CI values of PVL and TH on MCF-7 cells alone or in combination.

Water extract IC50 (mg/mL) CI 50% ethanol extract IC50 (mg/mL) CI

PVL 10.70 — PVL 6.47 —

TH 43.20 — TH 11.68 —

PVL:TH (1:1) 15.91 0.93 PVL:TH (1:1) 9.61 1.15

PVL:TH (1:2) 15.06 0.70 PVL:TH (1:2) 5.96 0.65

PVL:TH (2:1) 9.57 0.67 PVL:TH (2:1) 5.54 0.73

Note: The symbol “—” implied that when PVL, or TH, was used alone, the CI, value could not be calculated.

FIGURE 2
Representative total ion chromatograms of Prunella vulgaris L. (PVL) (A) and Taraxacum mongolicum Hand.-Mazz. (TH) (B) extracts. The
chromatograms illustrate the chemical profiles of the two herbal extracts, and the differences in chromatographic patterns between the two extracts
highlight the unique chemical compositions of PVL and TH.
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3 Results

3.1 The anti-breast cancer effects of extracts
from PVL and TH

The anti-proliferative effects of P. vulgaris L. (PVL) and T.
mongolicum Hand.-Mazz. (TH) extracts on MCF-7 human breast
cancer cells were investigated using a CCK-8 assay. The results
demonstrated that all extracts exhibited a concentration-dependent
inhibition of MCF-7 cell proliferation (Figure 1A). We also
examined the cell toxicity of a 0.1% ethanol solution, and the
results showed that this solution had no significant effect on the
growth of cells (Supplementary Figure S1). Notably, the 50% ethanol
extracts of PVL and TH displayed stronger anti-breast cancer effect
compared to their water counterparts, with IC50 values of 6.47 mg/
mL and 11.68 mg/mL, respectively. When 50% ethanol extracts of
PVL and THwere combined in a 2:1 ratio, the synergistic anti-breast
cancer effect was more potent, achieving an IC50 value of 5.54 mg/
mL and a combination index (CI) of 0.73 (Figure 1B; Table 1).
Therefore, the 50% ethanol extract of PVL and TH was selected as
the superior extract for further investigation.

3.2 Identification of compounds in superior
extracts based on LC-MS

The compounds from PVL and TH were retrieved using the
Traditional Chinese Medicine System Pharmacology Database and

Analysis Platform (TCMSP) and Traditional Chinese Medicine
Integrative Database (TCMID). Data matching was conducted
through Compound Discoverver 3.1.0 software. As shown in
Figure 2, the total ion current chromatogram provided
preliminary attributions of each compound, which were further
validated through database cross-referencing and literature review.

In total, 27 compounds were identified in the PVL extract and
21 in the TH extract (Supplementary Tables S1, S2). The PVL extract
was characterized predominantly by flavonoids, organic acids,
coumarins and terpenoids, while the TH extract was
characterized mainly by organic acids, flavonoids and terpenoids.

3.3 Expansion of compound-target
interaction

Firstly, the known targets of the compounds identified via LC-
MS were retrieved from relevant databases and literature, and
subsequently intersected with 1,093 modeling characteristic
targets. This data intersection yielded 628 compound-target pairs
involving 24 compounds and 262 targets for PVL, and 516 pairs
involving 18 compounds and 252 targets for TH.

Further, the comprehensive interactions between
compounds identified in extracts and the 1,093 modeling
targets were predicted using the CTCS-IPM model. The
resultant expanded compound-target interaction network
incorporated both known and predicted interactions, and was
visualized using Cytoscape software (Supplementary Figure S2).

FIGURE 3
Hierarchical cluster analysis of bioactive compounds identified in PVL (A) and TH (B). The dendrograms demonstrated the clustering of compounds
based on their similarity profiles, showing the distinct chemical compositions of PVL and TH that may contribute to their observed pharmacological
activities.
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This network demonstrated a total of 1,577 compound-target
interactions involving 27 compounds and 373 targets for PVL,
as well as 1,604 interactions involving 21 compounds and
377 targets for TH. These results highlighted the
comprehensive nature of the expanded compounds-targets
interaction network, suggesting that the compounds could
work synergistically against breast cancer through multiple
compounds and targets.

3.4 Prediction of synergistic combinations of
anti-breast cancer compounds in PVL and
TH extracts

We adopt a within-groups linkage clustering method based on
Euclidean distance to cluster the compounds. In PVL, the clustering
analysis showed thatmontanic acid, lignoceric acid and isoorientin fell
into one cluster, while lauric acid and palmitic acid fell into another.
According to the number of their targets, isoorientin, lauric acid and
22 other compounds were used to construct prediction samples of
PVL (Figure 3A). Similarly in TH, palmitic acid, stearic acid and
myristic acid were clustered together, with stearic acid and 18 other
compounds chosen for TH sample construction (Figure 3B).

For PVL, 55,454 combinations ranging from pairs to five-
compound combinations were generated from 24 selected
compounds, which was characterized by a feature matrix of
1,308 × 55,454 (1,308 features and 55,454 prediction samples).
DeepMDS was then utilized to predict the IC50 values for these

combinations on the MCF-7 cell line (Table 2). As a result, the
combination F973, including CA, ROA, PCA, and ET, showed the
lowest IC50 value among the 55,454 combinations. Similarly, TH
yielded 16,663 combinations, with a feature matrix of 1,308 × 16,663
(1,308 features and 16,663 prediction samples). The predicted IC50

values of different combinations using DeepMDS were subsequently
ranked, and the combination T271 (CHA, CIA, and CA) had the
lowest IC50 value, showing its potential synergistic effect againstMCF-
7 cell (Table 2). Extending the analysis to the traditional combination
of PVL and TH used in treating breast cancer (Yan et al., 2018), we
evaluated a total of 87,222 combinations involving 36 compounds,
resulting in a feature matrix of 1,308 × 87,222 (1,308 features and
8,722 prediction samples). The top candidates based on IC50 values
were combinations T1685 (CHA, ROA, ST) and V3589 (CA, RT, LT,
PCA, ROA) (Table 2). These top predicted combinations were
considered as superior combinations for further investigation.

Next, we expanded the combination F973, which included caffeic
acid (CA), rosmarinic acid (ROA), p-coumaric acid (PCA), and
esculetin (ET), by sequentially introducing rutin (RT), scopoletin
(ST), quercetin (QT), and hypericin (HP). Notably, the addition of RT
to F973, forming F973-1, enhanced the anti-breast cancer potential
with a value of −0.4618 (Table 3). However, the addition of more
compounds into F973 potentially reduced the anti-tumor effect, as
higher values suggested impaired synergy.

In contrast, extending the combination V3859 (CA, RT, luteolin
(LT), PCA, and ROA) sequentially with caffeic acid isovaleryl (CIA),
cichoric acid (CHA), and ET increased the value to 1.8148, indicating
reduced anti-breast cancer efficacy. A similar diminishing trend was

TABLE 2 Prediction results of different combinations from PVL, TH and PVL-TH on MCF-7 cells using DeepMDS (part).

Herb Predicted value Group number Anti-breast cancer compound combinations

PVL −1.0739 F973 Caffeic acid; Rosmarinic acid; P-coumaric acid; Esculetin

−1.0717 V31533 P-coumaric acid; Rutin; Lauric acid; Ursolic acid; Stearic acid

−1.0716 V1237 Caffeic acid; Esculetin; Isoquercetrin; Lauric acid; EIC

−1.0714 V11633 Esculetin; Rosmarinic acid; Hyperin; Astragalin; Ethyl caffeate

−1.0709 F8222 Rutin; Lauric acid; Ursolic acid; Oleic acid

−1.0708 V22035 Isoorientin; Kaempferol; Malvidin; Lauric acid; Stearic acid

TH −1.0999 T271 Chlorogenic acid; Cichoric acid; Caffeic acid

−1.0902 V8914 Caffeic acid; Rutin; Ethyl caffeate; Luteolin-7-o-glu; Benzoic acid

−1.0866 V6149 Cichoric acid; Caffeic acid; Arsanin; Ethyl caffeate; 3,4Dicaffeoylquinicacid

−1.0836 V1794 Caffeic acid; Stearic acid; Protocatechuic aldehyde; Benzoic acid; Luteolin-7-o-glu

−1.0835 V9118 Caffeic acid; Taraxinic acid; Stearic acid; Benzoic acid; 3,4Dicaffeoylquinicacid

−1.0833 T111 Arsanin; Luteolin; Protocatechuic aldehyde

PVL-TH −1.1150 T1685 Chlorogenic acid; Rosmarinic acid; Scopoletin

−1.0961 V3859 Caffeic acid; Rutin; Luteolin; P-coumaric acid; Rosmarinic acid

−1.0944 F2398 Caffeic acid; Oleic acid; Cichoric acid; P-coumaric acid

−1.0941 F9448 Esculetin; Scopoletin; Lauric acid; 3,4Dicaffeoylquinicacid

−1.0933 V29066 Scopoletin; Astragalin; Isoquercetrin; Rosmarinic acid; 3,4Dicaffeoylquinicacid

−1.0929 F1485 Caffeic acid; Salviaflaside; EIC; Cichoric acid

Frontiers in Pharmacology frontiersin.org08

Feng et al. 10.3389/fphar.2024.1522787

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1522787


observed with T1685 (CHA, ROA, and ST), where adding six
compounds (CA, CIA, PCA, LT, ET and RT) also leading to
increased values, suggesting a reduction in synergistic
effectiveness (Table 3).

3.5 Content determination of compounds in
PVL and TH extracts

The contents of compounds, which involved in superior
combinations, were determined using an HPLC method in extracts
from PVL (Lot No. 20210116) and TH (Lot No. 20210420). As shown

in Table 4, it revealed that different extraction solvents significantly
affected the yield of compounds from the herbs. For example, the water
extract of PVL contained 2.7 times more caffeic acid than its 50%
ethanol counterpart. In contrast, the level of rosmarinic acid were three
times higher in the 50% ethanol extract than in the water extract. The
comparable results were observed in the TH extracts. The content of
chicoric acid was greater in the aqueous extract compared to the 50%
ethanol extracts, while luteolin was more abundant in the 50%
ethanol extract.

3.6 In vitro validation of anti-breast cancer
effects of superior combinations

Firstly, we investigated the anti-breast cancer effects of the
superior combinations in equal molar proportions and compared
them with the efficacy of individual compounds under identical
conditions (Figures 4A–D). In preliminary experiments of the
9 selected compounds, most were ineffective against MCF-7 cells
at low concentrations (Table 5). However, rosmarinic acid, cichoric
acid, and luteolin exhibited strong inhibitory effects, with IC50

values of 75.82, 68.86, and 59.63 μM, respectively.
The predicted superior combinations, including F973, T271,

T1685 and V3859, could significantly and synergistically inhibit the
proliferation of MCF-7 cells in equal molar proportions. Notably,
T1685 exhibited the strongest anti-breast cancer effect, with an IC50

of 57.22 μM and a CI of 0.32 (Table 6). This result was in accordance
with the lowest prediction value of T1685, confirming the accuracy
of our DeepMDS model.

Next, the molar ratio of compounds in superior combinations
(F973, T271, T1685, and V3859) were adjusted based on their actual
content in PVL and TH extracts (Table 7). As shown in Figure 4E,
combination F973 (CA:ROA:PCA:ET) demonstrated a stronger
anti-proliferative effect than the water extract of PVL (6.25 mg/
mL) with a ratio of 180:109:10:6 (Figure 4E), which was calculated to
have an IC50 value of 71.86 μM and a CI value of 0.39 (Table 7).
However, there was no significant difference in the anti-proliferative
effect between F973 and the 50% ethanol extract at a ratio of 64:305:

TABLE 3 Prediction results of superior combination on MCF-7 cells after
addition of other compounds using DeepMDS.

Predicted values Combinations

−0.9324 T1685-2 (CHA:ROA:ST:CA:CIA)

−0.4618 F973-1 (CA:ROA:PCA:ET:RT)

−0.3310 T1685-3 (CHA:ROA:ST:CA:CIA:PCA)

−0.1312 T1685-1 (CHA:ROA:ST:CA)

−0.0530 F973-2 (CA:ROA:PCA:ET:RT:ST)

0.0112 V3859-1 (CA:RT:LT:PCA:ROA:CIA)

1.8148 V3859-3 (CA:RT:LT:PCA:ROA:CIA:CHA:ET)

1.8148 T1685-4 (CHA:ROA:ST:CA:CIA:PCA:LT)

1.8148 T1685-5 (CHA:ROA:ST:CA:CIA:PCA:LT:ET)

1.8148 T1685-6 (CHA:ROA:ST:CA:CIA:PCA:LT:ET:RT)

1.8148 F973-3 (CA:ROA:PCA:ET:RT:ST:QT)

1.8148 F973-4 (CA:ROA:PCA:ET:RT:ST:QT:HP)

1.8293 T271-1 (CHA:CIA:CA:LT)

1.8865 T271-2 (CHA:CIA:CA:LT:PCA)

1.9002 V3859-2 (CA:RT:LT:PCA:ROA:CIA:CHA)

2.3813 T271-3 (CHA:CIA:CA:LT:PCA:RT)

TABLE 4 Contents of 8 compounds in PVL and TH extracts.

Compounds Contents in PVL extracts (mg/g) Compounds Contents in TH extracts (mg/g)

Water 50% ethanol Water 50% ethanol

Caffeic acid 1.293 0.459 Chlorogenic acid 0.517 0.422

P-coumaric acid 0.066 0.023 Cichoric acid 2.491 2.017

Scopoletin — 0.066 Caffeic acid 0.137 0.359

Rosmarinic acid 1.564 4.397 Luteolin 0.036 0.303

Esculetin 0.039 0.036 P-coumaric acid 0.057 0.035

Rutin 0.04 0.329 Rutin 0.093 0.215

Hyperoside — 0.182

Quercetin 0.043 0.027
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4:5 (Figure 4F), suggesting that the efficacy of F973 closely aligned
with the composition of ethanol-based extracts. Similarly, other
combinations like T271 and V3859 outperformed their
corresponding extracts in anti-proliferative effects (Figures 4G–J).

Notably, T1685 (CHA:ROA:ST) could only be extracted using 50%
ethanol (Figure 4J). This combination showed the strongest
synergistic anti-breast cancer effect with an IC50 value of 21.50 μM
and a CI value of 0.27 (Table 7). These results indicated that these
predicted superior combinations could effectively represent the anti-
tumor effects of the corresponding extracts.

Furthermore, we tested new combinations by incorporating
additional compounds based on their content ratio in herbal
extracts. Results showed that adding compounds to the original
F973 and T271 generally led to reduced anti-proliferation effects
(Figures 4K, L), as indicated by CI values greater than 1 (Table 8).
T1685-6, despite demonstrating the strongest effect among the new
combinations (Figures 4M, N), still performed weaker than the
original T1685 (Table 8). The above findings were consistent with
the predicted results, suggesting that an increase in the number of
active compounds within a TCM combination would not necessarily
translate to improved therapeutic efficacy.

FIGURE 4
Anti-proliferative effects of individual compounds and combinations onMCF-7 breast cancer cells. (A–D) Effects of individual bioactive compounds
and superior synergistic combinations (F973, T271, T1685, and V3859) on MCF-7 cell viability at various concentrations (50, 100, 200, and 400 μM). Each
panel shows how single compounds and their superior combinations contribute to cell growth inhibition. (E–J) Anti-proliferative effects of superior
combinations, standardized to equivalent doses of extracts, on MCF-7 cell viability. The effects of combinations, including PVL, TH, and others, are
compared across different extraction methods (water and ethanol) and dosage levels (6.25, 12.5 mg/mL). (K–N) Evaluation of additive effects when
additional compounds were included with the superior combinations, assessing MCF-7 cell viability across various concentrations. The impact of
combining extracts such as PVL-TH at different ratios is also shown, providing insights into enhanced efficacy or additive benefits. *P < 0.05, **P < 0.01,
***P < 0.001; NS: not significant.

TABLE 5 IC50 values of 9 single compounds on MCF-7 cells.

Compounds IC50

(μM)
Compounds IC50

(μM)

Scopoletin (ST) 6,607.75 P-coumaric acid (PCA) 1,132.03

Caffeic acid (CA) 885.67 Rutin (RT) 826.61

Esculetin (ET) 305.13 Chlorogenic
acid (CHA)

295.18

Rosmarinic acid (ROA) 75.82 Cichoric acid (CIA) 68.86

Luteolin (LT) 59.63 — —
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3.7 Preliminary analysis on the anti-tumor
synergistic mechanisms of superior
combinations

Pathway enrichment analysis was initially conducted on the
targets of combination F973, T271 and T1685 using the KEGG
pathway database. The top 20 enriched pathways of these
combinations were compared, revealing common tumor-related
pathways, including the pathway in cancer, estrogen signaling
pathway, cAMP signaling pathway, and IL-17 signaling pathway
(Figure 5). The combinations of T271 and T1685 were also observed
to be involved in the MAPK signaling pathway and cell cycle.

Furthermore, target data of the superior combinations was
mapped on hsa05200 (pathway in cancer). The enriched tumor-
related pathways, along with their corresponding targets and
compounds, were then visualized in a “compound-target-
pathway” network using Cyoscape software.

For combination F973, this network included 32 targets and
multiple pathways, such as IGF-IGF1R-RAS-ERK, IGF-IGF1R-
PI3K, Cytokine-Jak-STAT, p21-Cell cycle G1/S pathways
(Figure 6A). The “compound-target-pathway” network diagram
of F973 consists of 64 nodes (4 compound nodes, 53 target
nodes and 7 pathway nodes) and 183 edges (Figure 6B).
P-coumaric acid interacts with rosmarinic acid on ESR1 targets
and with caffeic acid on ESR2 targets, influencing the estrogen
signaling pathway. Activation of mER or GPER on the plasma
membrane leads to rapid activation of other signaling pathways,
including the cAMP, MAPK, and PI3K-Akt signaling pathways
(Kulkoyluoglu and Madak-Erdogan, 2016). In the cAMP
signaling pathway, caffeic acid, esculetin and p-coumaric acid
collectively influence the downstream target RHOA, which may
be associated with cell migration. Furthermore, cAMP activates the
MAPK signaling pathway via the Ras-Raf-ERK pathway,
sequentially impacting the cellular growth cycle, and ultimately
leading to abnormal proliferation, migration and differentiation
of breast cells. The PI3K-Akt signaling pathway operates
concurrently with the MAPK signaling pathway, and their
downstream components potentially regulate the NF-κB signaling
pathway, cell cycle, apoptosis, and other related processes (Zhu et al.,
2011). Additionally, F973 could also synergistically block the tumor
cell cycle by down-regulating the expression of cyclins and CDKs
and up-regulating the expression of the CDKs inhibitor CDKI (Zou
and Lin, 2021).

In the cancer pathway map of combination T271, three
compounds were involved in a total of 28 targets and multiple
pathways. These pathways include IGF/FGF-GFR-RAS-ERK, IGF/

FGF-GFR-PI3K, and IKK-NF-kappa B pathways (Figure 6C). The
“compound-target-tumor-related pathway” network of
T271 contains 61 nodes (3 compound nodes, 51 target nodes and
7 pathway nodes) and 174 edges (Figure 6D). Caffeic acid plays a
crucial role in regulating the estrogen signaling pathway via ESR2, as
well as other pathways involving upstream targets such as IGF2 and
RAC1. In addition, chlorogenic acid and cichoric acid significantly
contribute by synergistically regulating the cAMP, MAPK, and
PI3K-Akt signaling pathways. These acids achieve their effects by
targeting both the upstream regulator FGF2 and the downstream
effector MYC. Moreover, cichoric acid could directly act on the key
targets AKT1, IKBKB, CHUK, NFKBIA and RELA to regulate the
NF-κB signaling pathway, which relies on IKK-mediated
phosphorylation of IκBα. Cichoric acid may induce apoptosis in
tumor cells by reducing NF-κB/p65 levels (Torrealba et al., 2020).

For combination T1685, the network mapped 32 targets and
multiple pathways, such as FGF-FGFR-RAS-ERK, FGF-FGFR-
PI3K, and MDM2-p21/p27-Cell cycle G1/S pathways (Figure 6E).
The “compound-target-tumor-related pathway” network of
T1685 contains 65 nodes (3 compound nodes, 55 target nodes
and 7 pathway nodes) and 159 edges (Figure 6F). Chlorogenic
acid regulates cAMP, MAPK, PI3K-Akt, and other signaling
pathways by targeting crucial targets FGF2, RAC1, and MYC.
Additionally, rosmarinic acid complements the action by
targeting MAPK1, IKBKB, JUN, and RELA to synergistically
inhibit the proliferation of tumor cells and induce apoptosis. In
addition, the three compounds work together to regulate the cell
growth cycle by targeting CDKN1B, CDKN1A, and HDAC.

3.8 Comparison of anti-breast cancer
effects among superior extracts from
different geographical origins

Furthermore, we determined the content of compounds in the
superior combinations of PVL and TH from different geographical
origin (Supplementary Tables S3, S4). The concentration ratios and
total contents of the compounds within F973 and T271 were found
to correlate strongly with their anti-breast cancer effects. As shown
in Figure 7A, the inhibitory effect of PVL from Anhui province
(PVL-5) demonstrated the most potent anti-breast cancer effect,
whereas the extract from Jiangsu province (PVL-3) was significantly
less effective. This variation was attributed to the varying contents of
the F973 combination within the extracts. Specifically, PVL-5,
containing the highest level of F973 at 420 μM, exhibited the
strongest anti-breast cancer effect. In contrast, PVL-3, with only

TABLE 6 IC50 and CI values of superior combination on MCF-7 under the condition of equal proportion.

Predicted value Combination IC50 (μM) CI

−1.1150 T1685 (CHA:ROA:ST) 57.22 0.32

−1.0999 T271 (CHA:CIA:CA) 61.31 0.39

−1.0961 V3859 (CA:RT:LT:PCA:ROA) 76.46 0.51

−1.0739 F973 (CA:ROA:PCA:ET) 96.42 0.45
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TABLE 7 Actual concentration and ratio of each superior combination in different extracts and their IC50 and CI values on MCF-7 cells.

Extracts (25 mg/mL) Herbs Combination Ratio Total concentration (μM) IC50 (μM) CI

Water extracts PVL F973 (CA:ROA:PCA:ET) 180:109:10:6 305 71.86 0.39

TH T271 (CHA:CIA:CA) 37:131:19 187 83.16 0.91

PVL:TH (2:1) V3859 (CA:RT:LT:PCA:ROA) 126:2:1:8:72 209 31.77 0.17

50% ethanol extracts PVL F973 (CA:ROA:PCA:ET) 64:305:4:5 378 59.20 0.64

TH T271 (CHA:CIA:CA) 30:106:50 186 21.94 0.20

PVL:TH (2:1) V3859 (CA:RT:LT:PCA:ROA) 59:12:9:4:203 287 23.38 0.24

PVL:TH (2:1) T1685 (CHA:ROA:ST) 10:203:6 219 21.50 0.27

TABLE 8 IC50 and CI values of superior combination on MCF-7 cells after the addition of other compounds.

Extract Combination IC50 (μM) CI

PVL (50% ethanol) F973-1 (64:305:4:5:14) 101.84 1.07

F973-2 (64:305:4:5:14:9) 125.11 1.29

TH (50% ethanol) T271-1 (30:106:50:27) 123.40 1.25

T271-2 (30:106:50:27:5) 113.40 1.12

PVL:TH = 2:1 (Water) V3859-3 (126:2:1:8:72:44:12:4) 121.03 0.81

PVL:TH = 2:1 (50% ethanol) T1685-6 (10:203:6:59:35:4:9:3:12) 85.03 0.86

FIGURE 5
KEGG pathway enrichment analysis of superior combinations F973, T271, and T1685. (A–C) KEGG pathway enrichment analysis of combinations
F973 (A), T271 (B), and T1685 (C), illustrating the top pathways associated with each combination. The horizontal bars represent the -log10 (p-value),
indicating the significance of pathway enrichment for each combination. (D) Comparative heatmap analysis of the enriched KEGG pathways for F973,
T271, and T1685. The heatmap demonstrated the similarities and differences in pathway involvement between the combinations, providing insights
into their distinct and shared mechanisms of action.
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FIGURE 6
Preliminary analysis of the anti-tumor synergistic mechanisms of superior combinations F973, T271, and T1685. (A, C, E) KEGG pathway analysis
illustrating the ’Pathways in cancer’ affected by combinations F973 (A), T271 (C), and T1685 (E). The colored annotations indicated the specific
compounds involved, including caffeic acid, rosmarinic acid, p-coumaric acid, esculetin, chlorogenic acid, and scopoletin, as well as multi-compound
effects. (B, D, F) Synergistic compound-target-pathway networks for F973 (B), T271 (D), and T1685 (F). These networks illustrate how the bioactive
compounds interact with specific targets and the key tumor-related pathways they influence. In the network diagrams, nodes are color-coded: purple
nodes represent targets present in a single pathway, red nodes indicate targets involved in two pathways, and yellow nodes signify targets associated with
three or more pathways. The networks highlight the multi-target interactions contributing to the observed synergistic anti-tumor effects.
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150 μM of F973, showed markedly reduced efficacy (Table 9).
Similarly, among the 50% ethanol extracts of TH, the extract
from Shanxi Province displayed the strongest anti-breast cancer
effect, while the extract from Anhui Province was the least effective
(Figure 7B). This was directly linked to the content of T271 in these
extracts, with TH-5 (263 μM) and TH-3 (230 μM) demonstrating
superior effects compared to TH-2 (136 μM), which had the lowest
content of T271 (Table 9).

Beyond the total content, the specific concentration ratios of the
compounds within the F973 and T271 combinations were also
critical to their anti-breast cancer effects. For example, TH-2
contained higher levels of luteolin and rutin than TH-5
(Table 9). The results indicated that the efficacy of TCM extracts
in cancer treatment was not only dependent on the presence of
active compounds combinations but is significantly influenced by
their concentration ratios and total content. This revealed the
importance of considering both the quantity and ratios of multi-
compound combinations in TCM for optimal anti-cancer efficacy.

4 Discussion

Breast cancer is a complex disease with various carcinogenic
factors (Hiatt and Brody, 2018). Prolonged monotherapy in cancer
treatment often results in drug resistance. Therefore synergistic
compound combinations, which have been proven to reduce
doses and inhibit the development of drug resistance, may be a
desirable alternative in cancer treatment (Crunkhorn, 2022). TCM
has been recognized as an important approach for its therapeutic
potential and lower toxicity in breast cancer treatment (Gezici and
Şekeroğlu, 2019; Jiang et al., 2021; Wei et al., 2023). Despite TCM’s
benefits, the challenge lies in decoding its complex, multi-
compound, multi-target actions to identify synergistic compound
combinations and elucidate their mechanisms systematically (Hou
et al., 2019; Gao et al., 2023). Moreover, the incomplete target
information available in existing databases makes it difficult to
gain a through grasp of the mechanisms of action of herbal
compounds (Zhou et al., 2014).

FIGURE 7
Anti-proliferative effects of PVL and TH extracts from different geographical origins on MCF-7 breast cancer cells. (A) Effects of PVL extracts from
Henan, Hubei, Jiangsu, Sichuan, and Anhui provinces on the viability of MCF-7 cells. (B) Effects of TH extracts from Henan, Anhui, Shanxi, Gansu, and
Hunan provinces on MCF-7 cell viability. The results demonstrated the variability in anti-proliferative efficacy of PVL and TH based on their geographical
origins. Data are presented as mean ± standard deviation (n = 3).

TABLE 9 Actual contents and ratios of superior combinations in various extracts from different geographical origins.

Combination Herb extract (25 mg/mL) Origin Ratio Total concentration (μM)

F973 (CA:ROA:PCA:ET) PVL-1 Henan (20210822) 42:235:3:5 285

PVL-2 Hubei (20210906) 45:269:3:4 320

PVL-3 Jiangsu (20210926) 33:110:3:4 150

PVL-4 Sichuan (20220111) 38:305:2:6 351

PVL-5 Anhui (20220103) 50:364:2:5 420

T271 (CHA:CIA:CA) TH-1 Henan (20210814) 33:120:32 186

TH-2 Anhui (20210925) 19:90:28 136

TH-3 Shanxi (20210510) 30:127:74 230

TH-4 Gansu (20210522) 22:96:67 185

TH-5 Hunan (20210826) 45:156:62 263
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Given the large number of compounds and diverse cellular
targets of herbal medicines, it is impractical to discover new
compound-target interactions through trial-and-error
experimental methods. To address this problem, computational
techniques have been employed. These include pharmacophore
modeling (Wang et al., 2016), molecular docking (Guan et al.,
2017), and machine learning (Olayan et al., 2018), each with its
own set of challenges such as insufficient precision, computational
resource constraints, and the need for extensive annotated data,
respectively. In response to these challenges, we have proposed
CTCS-IPM model to facilitate the prediction of interactions
between multiple compounds and targets (Rui et al., 2020). By
incorporating both known and predicted interactions, the CTCS-
IPM model enhances the identification of synergistic compound
combinations, providing a new strategy for the exploration of TCM’s
potential in cancer treatment.

The traditional approach for identifying effective synergistic
compound combinations proves to be both laborious and time-
consuming, especially when faced with the vast number of possible
compound combinations. The development of artificial intelligence,
particularly deep learning, provides a potent tool for the discovery of
synergistic compound combinations from extensive compound
libraries (Sheng et al., 2018). However, these models primarily
focus on compound pairs, leaving the potential of multi-
compound combinations largely unexplored. To address this
problem, we developed a deep learning-based model called
DeepMDS (She et al., 2022), which integrates target information,
genomic profile of cancer cell lines, and drug response data to
predict synergistic anti-breast cancer compound combinations.
DeepMDS emphasizes a pivotal shift towards leveraging deep
learning to uncover the complex interplay of multi-compound
interactions in cancer therapy.

As a classic herb pair with heat-clearing and detoxification
properties, P. vulgaris L. (PVL)-T. mongolicum Hand.-Mazz.
(TH) is widely applied in the clinical treatment of various types
of cancer, including breast cancer (Lin et al., 2013; Deng et al., 2021;
Zhang et al., 2023). PVL-TH pair is composed of several bioactive
compounds that are believed to act individually, additively or
synergistically to improve the anti-tumor efficacy of the herbal
extracts. To identify superior combinations from PVL and TH
extracts, we initially expanded the compound-target interactions
to provide comprehensive target information for our synergistic
compound combination prediction model, DeepMDS. Then we
adopt a within-groups linkage clustering method based on
Euclidean distance to cluster the compounds which identified by
LC-MS to avoid redundancy caused by target duplication. Based on
DeepMDS, we have identified the combinations F973 (caffeic acid,
rosmarinic acid, p-coumaric acid, and esculetin), T271 (chlorogenic
acid, cichoric acid, and caffeic acid), and T1685 (chlorogenic acid,
rosmarinic acid, and scopoletin) as superior combinations from
single PVL, single TH and PVL-TH pair, respectively. All three
combinations demonstrated potent synergistic effects onMCF-7 cell
proliferation, with T1685 showing the most significant effect in
accordance with its predicted lowest IC50 value. To closely mimic the
natural composition found in these extracts, we adjustments in
compound ratios based on their actual content in the extracts. The
results confirmed that these combinations were more effective than
the extracts themselves at comparable concentrations. Therefore, the

results suggested that the predicted combinations could serve as
representative combinations for exerting the anti-breast cancer
effects of TCM extracts.

Furthermore, we investigated how the inclusion of additional
compounds affected the synergy of superior combinations predicted
by DeepMDS, aiming to optimize the anti-tumor effects of these
combinations. The results indicated that incorporating one or more
compounds to these superior combinations did not necessarily
enhance their anti-breast cancer effects, even though the added
compounds themselves have demonstrated anti-breast cancer effect
(such as luteolin and chlorogenic acid) (Chen et al., 2023; Wu et al.,
2023). This result not only emphasized the complexity of TCM
combinations, where the interplay between various compounds
must be finely balanced to achieve optimal therapeutic effects,
but also proved that our screening method could systematically
and accurately screen out the superior synergistic anti-breast cancer
compound combination.

Furthermore, the variabilities of bioactive compounds within
TCM were investigated, attributed to factors such as species
differences, geographical origins, and post-processing methods
(Yang et al., 2005; Zou et al., 2005). By comparing the content of
active compounds in different extracts, it was found that the choice
of extraction solvents significantly affected the extraction rate of
compounds in PVL and TH extracts. Additionally, the content of
each compound and their concentration ratios also differed
significantly among herbs from different geographical origins,
which showed a strong correlation with the anti-breast cancer
effects of herbal extracts. These results highlighted the
importance of stringent regulation and standardization of
medicinal materials (Liu et al., 2020). Ensuring the authenticity
and quality of these materials is of great importance for maintaining
the effectiveness of TCM combinations (Mahima et al., 2022).

The variability in herb combinations presents a significant
challenge for standardization, affecting their consistency and
therapeutic efficacy. Of particular importance is the careful
optimization of content ratios within herbal combinations, as
these ratios are important in determining their anti-breast cancer
efficacy. While PVL and TH herbal combinations from different
regions may have similar compound profiles, differences in content
ratios can significantly alter their therapeutic effects. Due to the
essential role of compound ratios in determining anti-tumor
efficacy, the data standardization process for such herb
combination needs to prioritize the detection and adjustment of
these ratios. Aligning them with profiles that demonstrate optimal
anti-tumor efficacy ensures that the combinations achieve their
maximum therapeutic potential. This highlights the necessity of
careful quantification and systematic optimization of these ratios to
establish standardized and highly effective therapeutic formulations.
Subsequently, standardized cultivation practices, including uniform
growth conditions, can be employed to ensure consistent quality of
plant materials. Controlling the geographical sourcing of raw
materials and implementing rigorous post-harvest processing
protocols are essential steps to reduce variability. By
incorporating these standardization practices, the reproducibility,
efficacy, and reliability of TCM combinations could be greatly
improved, ultimately overcoming challenges posed by variability.

The study also conducted pathway enrichment analyses based
on the targets of each superior combination, and further investigated
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their potential synergistic anti-tumor mechanism by constructing a
synergistic network of “compound-target-tumor-related key
pathway.” The bioinformatics analysis revealed that various
compounds in superior combinations could synergistically
regulate multiple tumor-related pathways by acting on multiple
crucial targets, ultimately inhibiting tumor cell proliferation,
inducing cell apoptosis, and blocking tumor cell cycle progression.

Combination T1685 was found to map 32 targets, involving
multiple pathways, such as the FGF-FGFR-RAS-ERK, FGF-FGFR-
PI3K, and MDM2-p21/p27-Cell cycle G1/S pathways. These
pathways play important roles in regulating cell proliferation,
survival, and cell cycle progression, and are often dysregulated in
various cancers. The clinical relevance of these pathways is well
established, particularly with respect to their impact on cancer
progression and response to treatment. For instance, the FGF-
FGFR-RAS-ERK pathway is implicated in the proliferation and
differentiation of cancer cells, while the FGF-FGFR-PI3K
pathway is known for its role in promoting cell survival and
resistance to apoptosis. The MDM2-p21/p27-Cell cycle G1/S
pathway, on the other hand, is involved in regulating cell cycle
checkpoints, thereby preventing uncontrolled cell division.

Furthermore, the MAPK and PI3K-Akt pathways have been
reported to be the primary downstream signaling cascades activated
by the FGF-FGFR signaling pathway. These pathways have been
extensively studied for their role in various cancers, including breast,
lung, and colorectal cancers. Inhibitors targeting these pathways have
shown promise in clinical settings. For example, the MAPK pathway,
which includes key components such as RAF, MEK, and ERK, is
frequently activated in cancers, leading to uncontrolled proliferation.
Inhibitors such as MEK inhibitors, for example, trametinib, are used to
block this pathway, effectively reducing tumor growth and improving
patient outcomes in melanoma and other cancers. Similarly, the PI3K-
Akt pathway plays a vital role in regulating cell survival and
metabolism. Dysregulation of this pathway is associated with
resistance to apoptosis and increased survival of cancer cells. PI3K
inhibitors, such as alpelisib, have been approved for use in combination
with endocrine therapy for hormone receptor-positive breast cancer. By
mapping these pathways and identifying key molecular targets, our
study provided a strong foundation for understanding how
combination T1685 exerts its anti-cancer effects through modulation
of these critical signaling cascades. The identification of multi-pathway
interactions could reveal the potential of combination T1685 to target
multiple hallmarks of cancer, offering a promising strategy for
enhancing treatment efficacy and overcoming drug resistance.

To provide a more comprehensive perspective, we conceptually
compared the synergistic effects of combination T1685 with those
reported for established chemotherapeutic agents, such as
doxorubicin combined with paclitaxel. Although no direct in vitro
assays were performed to evaluate the efficacy of T1685 against these
combinations, our analysis revealed several key distinctions.
Combination T1685 demonstrated comparable efficacy in
inhibiting cancer cell growth, particularly in breast cancer models.
Doxorubicin and paclitaxel, when used in combination (Jin et al.,
2010), have demonstrated synergistic anti-tumor effects, primarily
through complementary mechanisms of action that could enhance
therapeutic efficacy. However, these agents are often associated with
significant toxicity, limiting their clinical application. In contrast,
T1685 targets multiple signaling cascades simultaneously, including

the FGF-FGFR, MAPK, and PI3K-Akt pathways. This multi-target
approach not only enhances anti-cancer efficacy but also has the
potential to reduce adverse effects by concurrently modulating several
key characteristics of cancer. The ability to minimize toxicity while
maintaining efficacy suggests that combination T1685 could serve as a
promising alternative or adjunct to conventional chemotherapy,
ultimately improving patient outcomes and providing a more
balanced therapeutic profile.

However, one limitation of this study is that trace compounds
were not completely identified in the PVL and TH extracts. These
trace compounds, if identified, could potentially influence the anti-
breast cancer efficacy of the extracts, especially at higher doses. Future
works will be conducted to increase the raw amount for analysis to
detect trace compounds within PVL and TH extracts. Incorporating
these compounds into our predictive models could enhance the
understanding of the extracts’ comprehensive anti-breast cancer
effects and might reveal new synergistic compound combinations.
In addition, there is a need for further experimental validation to
elucidate the exact synergistic mechanisms of the identified superior
combinations. This includes investigating how these combinations
interact with specific tumor-related pathways, as well as how they
affect biological processes like apoptosis and cell cycle progression.
Further in vivo studies may provide deeper insights into the
mechanisms.

5 Conclusion

This study employed an artificial intelligence prediction system
to predict the superior synergistic combinations of anti-breast
cancer compounds within TCM. The anti-tumor effects of the
predicted synergistic compound combinations were comparable to
those of the extracts, suggesting that these combinations could
serve as the evaluation criteria for quantifying the anti-breast
cancer effectiveness of TCM. Moreover, the strong correlation
observed between the content of each compound and their
concentration ratios among herbs from different geographical
origins, and the anti-breast cancer effects of these extracts.
These results shed light on the role of PVL-TH pair in breast
cancer treatment and proposed a novel strategy to the quality
control of TCM.
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