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Aims: Few personalized monitoring models for valproic acid (VPA) in pediatric
epilepsy patients (PEPs) incorporate machine learning (ML) algorithms. This study
aimed to develop an ensemble ML model for VPA monitoring to enhance clinical
precision of VPA usage.

Methods: A dataset comprising 366 VPA trough concentrations from 252 PEPs,
along with 19 covariates and the target variable (VPA trough concentration), was
refined by Spearman correlation and multicollinearity testing (366 × 11). The
dataset was split into a training set (292) and testing set (74) at a ratio of 8:2. An
ensemble model was formulated by Gradient Boosting Regression Trees (GBRT),
Random Forest Regression (RFR), and Support Vector Regression (SVR), and
assessed by SHapley Additive exPlanations (SHAP) analysis for covariate
importance. The model was optimized for R2, relative accuracy, and absolute
accuracy, and validated against two independent external datasets (32 in-hospital
and 28 out-of-hospital dataset).

Results: Using the R2 weight ratio of GBRT, RFR and SVR optimized at 5:2:3, the
ensemble model demonstrated superior performance in terms of relative
accuracy (87.8%), absolute accuracy (78.4%), and R2 (0.50), while also
exhibiting a lower Mean Absolute Error (9.87) and Root Mean Squared Error
(12.24), as validated by the external datasets. Platelet count (PLT) and VPA daily
dose were identified as pivotal covariates.

Conclusion: The proposed ensemble model effectively monitors VPA trough
concentrations in PEPs. By integrating covariates across various ML algorithms, it
delivers results closely aligned with clinical practice, offering substantial clinical
value for the guided use of VPA.
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1 Introduction

Epilepsy is a prevalent chronic neurological disorder, with a
relatively high incidence rate among pediatric patients. The overall
prevalence of epilepsy among children is approximately 151/
100,000, a rate more than quadruple that of adults (Ding et al.,
2021; Lin et al., 2021). At present, pharmacotherapy remains the
cornerstone of seizure management (Liu et al., 2023). Among the
available anti-seizure medications (ASMs), valproic acid (VPA)
stands out as a broad-spectrum ASM, effective against various
seizure types, including generalized, absence, partials, and
myoclonic seizures. Its broad-spectrum efficacy has established
VPA as a frontline clinical option for the treatment of pediatric
epilepsy patients (PEPs) (Glauser et al., 2013). However, the
therapeutic window for VPA, ranging from 50–100 mg/L, is
relatively narrow and characterized by significant interindividual
and intraindividual variability. These variability pose challenges for
clinicians to manage dosages precisely and limiting the clinical
application of VPA in treating PEPs (Johannessen Landmark
et al., 2020).

In epilepsy management, medication safety is crucial. If VPA
trough concentrations fall below the therapeutic range, seizures may
not be adequately controlled, while exceeding this range may trigger
severe adverse reactions in the hematopoietic and nervous systems,
including anemia, thrombocytopenia, and ataxia, or even result in
potentially lethal hepatotoxicity (Hernández García et al., 2023; Star
et al., 2014). For adolescent girls, particularly those with childbearing
potential, it is essential to reassess the risks associated with VPA
exposure on an annual basis (Toledo et al., 2021). In the course of
VPA dosage titration, it is imperative to align the trough
concentration within the therapeutic range and to identify the
most appropriate personalized concentration range for each PEP,
for the therapeutic range is often more constrained, requiring
further fine-tuning of blood concentrations to the desired
therapeutic threshold within an ideal range (Johannessen and
Landmark, 2008). Consequently, for PEPs necessitating
prolonged therapeutic drug monitoring of VPA, the support of
well-suited model-guided individualized VPA dosing tools can
enhance the efficacy of monitoring VPA trough concentrations
and adjusting VPA dosages, thereby enabling the establishment
of more precise personalized treatment regimens.

Traditional methods for monitoring VPA trough
concentrations, such as chromatography or immunoassay
techniques, though accurate, are hampered by the problems of
high cost and long detection cycles. In addition, these invasive
detection methods can increase the psychological burden on
PEPs, making them a less favorable option for those who require
long-term monitoring. Therefore, model-guided individualized
VPA dosing tools has currently surfaced as a heated research
focus in the clinical arena, which may hold promises for
reducing the number of invasive tests and producing an efficient
and effective therapeutic range. Currently, the prevalent method for
model-guided individualized dosing tools for VPA is the Nonlinear
Mixed Effects Model (NONMEM). This method has been widely
applied in population pharmacokinetics (popPK) studies (Gu et al.,
2021). However, because it is based on parameter estimation, the
operation and establishment process of the model is relatively
complex, requiring a lot of time and efforts in constructing,

validating, and optimizing the model. A recent systematic review
meticulously curated and selected 10 published popPK models for
PEPs, rigorously delineating their monitoring performance (Zhang
et al., 2023). The findings indicated that the majority of these popPK
models performed suboptimally in the context of pediatric epilepsy,
which may potentially be attributed to the complexity of clinical
data, insufficient sample sizes, deficiencies in model algorithms, and
a lack of external data validation. Therefore, it is necessary to explore
a more convenient and potent model for monitoring VPA trough
concentrations in treating PEPs.

Currently, machine learning (ML) algorithms have exhibited
significant potential in the medical field. They excel at processing
complex and extensive clinical data and have been successfully
applied in the monitoring of drug concentrations, including
cyclosporine (Mao et al., 2022), mycophenolic acid (Shao et al.,
2022), sertraline (Fu et al., 2024), and vancomycin (Huang et al.,
2021). Moreover, preliminary studies have begun to emerge in the
monitoring of VPA, such as the application of Fourier-transform
infrared (FT-IR) spectroscopy combined with nonlinear support
vector regression algorithms to construct a VPA monitoring model
(El Orche et al., 2023) and the development of an XGBoost model to
predict VPA trough concentrations by integrating covariates from
various population pharmacokinetic models (Zhu et al., 2022a).
Although ML-based VPA monitoring models have shown
considerable potential in integrating real-world data and
predicting VPA concentrations (Hsu et al., 2024), there are still
limitations in external validation, comprehensiveness of evaluation
metrics, data processing, and model interpretability. These are
essential for guiding clinicians on which clinical indicators to
monitor when treating PEPs, and they are what this study aims
to address.

Ensemble models (Huang et al., 2021; Ma et al., 2022), by virtue
of their ability to combine various ML algorithms to enhance the
accuracy and robustness of monitoring models, are gaining
increasing importance in the field of ML. Herein, we ranked the
weights of each covariate across 3 ML models—Gradient Boosting
Regression Trees (GBRT), Random Forest Regression (RFR), and
Support Vector Regression (SVR) according to their SHapley
Additive exPlanation (SHAP) (Ma et al., 2022). We then
employed these algorithms to formulate the first ensemble model
for monitoring VPA trough concentrations in PEPs. Our findings
indicate that this ensemble model exhibits superior prediction
performance, highlighting its significant potential in clinical
applications.

2 Materials and methods

2.1 Patients and data

A retrospective study was conducted on PEPs treated with oral
VPA from May 2016 to December 2023 at the First Affiliated
Hospital of Fujian Medical University. The inclusion criteria were
as follows: 1) epilepsy patients; 2) age ≤14 years old; 3) oral VPA
treatment (solution or extended-release tablets); 4) VPA trough
concentration samples collected within 30 min before the next dose
after reaching a steady concentration. The exclusion criteria
included: 1) patients with incomplete clinical medical records; 2)
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patients co-administered with drugs such as carbamazepine,
phenobarbital, or carbapenems; 3) patients with other systemic
severe diseases. The clinical data of PEPs were obtained from the
hospital’s electronic medical record information system (EIS), which
included VPA trough concentrations, VPA dosage form and daily
doses, concomitant medications (including levetiracetam,
oxcarbazepine, lamotrigine, perampanel, clonazepam, or
topiramate), demographic information (gender, age, weight), and
laboratory parameters [alanine aminotransferase (ALT), aspartate
aminotransferase (AST), alkaline phosphatase (ALP), urea (UREA),
uric acid (UA), creatinine (CREA), cystatin C (Cys-C), albumin
(ALB), globulin (GLO), white blood cell count (WBC), neutrophil
count (NEUT), platelet count (PLT), and red blood cell
count (RBC)].

2.2 Measurement of VPA trough
concentration

The VPA trough concentration was measured with an
automated biochemical analyzer Viva-ProE (Siemens Medical
Diagnostic Products Ltd.). After a steady VPA concentration was
secured, blood plasma samples were collected 30 min before the next
dose. Subsequently, the plasma samples were pre-processed and the
supernatant was collected. Finally, the VPA trough concentration
was determined by the EnzymeMultiplied Immunoassay Technique
(EMIT). The detection limit ranged from 10.0 to 150.0 mg/L. As part
of the validation sets, the VPA trough concentrations in the external
hospital dataset also met the requirements of this detection standard.

2.3 Data collection and processing

Data cleansing included removing missing values (delete
samples containing missing values directly), correcting outliers,
assigning values to qualitative variables, and standardizing
formats, we acquired a comprehensive dataset of 366 samples by
20 variables (366 × 20). Subsequently, Spearman correlation analysis
and multicollinearity testing were rigorously performed to select the
target variable and relevant key covariates, ultimately producing a
complete dataset containing 366 × 11. In this refined dataset, VPA
trough concentration was designated as the target variable, with
covariates standardized for different dimensions by min-max
normalization. To ensure the fairness of the model comparison,
we labeled the sample numbers for this dataset (366 × 11) and then
randomly divided it into a training set and a testing set in an 8:
2 ratio, and performed cross-validation on the dataset to assess and
ensure that the trained models posses a certain level of
generalizability. Subsequently, we saved the randomly divided
sample numbers to ensure that all models were trained and
tested on the same datasets, thereby making the performance
comparison more accurate and reliable. Moreover, to bolster the
model’s reliability, we prospectively collected two independent
external datasets as our validation set, including an in-hospital
dataset (n = 32) and an external hospital dataset (n = 28). Both
datasets contained complete clinical parameters of PEPs. In this
study, each measurement of VPA trough concentration was
regarded as an independent data point for independent analysis.

2.4 Modeling and validation

2.4.1 Algorithm selection
We conducted an in-depth assessment of the linear correlation

between VPA trough concentrations and relevant covariates
(Supplementary Table S1). The analysis revealed insignificant linear
relationships among these variables, with low correlation coefficients. In
light of these findings, we decided to employ three advanced nonlinear
ML algorithms (GBRT, RFR, and SVR) to construct more accurate
monitoring models. These nonlinear algorithms can capture complex
patterns and nonlinear relationships within the data, thereby providing
more robust modeling capabilities for the monitoring of VPA trough
concentrations [sklearn module package in the Python programming
language (version 3.10.9)].

2.4.2 Model evaluation metrics
Regression model evaluation methods in ML are primarily used

to measure the degree of fit of the model to the dataset and its
monitoring power. We used metrics such as R-squared (R2), Mean
Absolute Error (MAE), and Root Mean Squared Error (RMSE) for
evaluation. R2 measures the degree to which the model explains the
variability in the data, with a range from 0 to 1, where the closer the
value is to 1, the stronger the explanatory power of the model and the
better the fit. y0 represents the observed values and yp the predicted
values. The fit of the model improves as the values of MAE and
RMSE decrease. Additionally, relative accuracy indicates that the
predicted concentration is within ±30% of the observed
concentration, while absolute accuracy indicates that the
predicted concentration is within ±15 mg/L of the observed
concentration (Hsu et al., 2024; Tang et al., 2023). The formulas
for the above metrics were as follows:

R2 y0, yp( ) � 1 −
∑N
i�1

y0i − ypi( )2
∑N
i�1

y0i − y0( )
y0 � 1

N
∑N
i�1
y0i

MAE y0, yp( ) � 1
N
∑N
i�1

y0i − ypi
∣∣∣∣ ∣∣∣∣

RMSE y0, yp( ) �
													
1
N
∑N
i�1

y0i − ypi( )2
√√

2.4.3 Formulation and validation of the
ensemble model

Random search is a strategy used to optimize the
hyperparameters of ML-based models. It involves combinations
of randomly-selected hyperparameters within a specified range
for model training and evaluation to find the optimal or near-
optimal parameter settings (Pérez-Padilla et al., 2024). In this study,
we used the random search module in Python to draw
100 hyperparameter sample points within the selected range as a
set of candidates and performed 5-fold cross-validation. After
multiple calculations, the near-optimal hyperparameters were
determined for the three algorithms in this experiment: GBRT:
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n_estimators (68), min_samples_split (13), min_samples_leaf (24),
max_depth (4), learning_rate (0.1); RFR: n_estimators (152), min_
samples_split (15), min_samples_leaf (9), max_depth (7); SVR:
kernel (rbf), C (19.1), gamma (6.8).

These three optimal ML-based models were then selected and
their weight ratios of the R2 values were adjusted. Based on the
automatic computation of ML, the optimal ensemble model was
ultimately determined. Finally, the monitoring performance of the
ensemble model was prospectively confirmed with the two
independent external datasets. The flowchart for formulaing the
ensemble model of VPA trough concentrations in treating PEPs by
the 3 ML algorithms is shown in Figure 1.

2.5 Model interpretation

SHapley Additive exPlanations (SHAP) is based on the concept
of the Shapley value from game theory. The Shapley value is a
solution in cooperative game theory for fairly allocating the total

payoff from cooperation, quantifying the contribution of each player
(a feature of ML) to the total payoff (the model’s monitoring
outcome). SHAP offers a variety of visualization tools for ML
models, such as SHAP value plots, dependence plots, decision
plots, and summary plots, which facilitates an intuitive
understanding of the model’s monitoring process and the impact
of features (Li et al., 2024; Zhu et al., 2022b). In this study, we
implemented SHAP using the Python package (version 0.41.0).

2.6 Statistical analysis

Data processing was performed using IBM SPSS software
(version 25.0). In terms of statistical description, for categorical
variables, we expressed the data as counts n (%) and analyzed
distribution differences by the chi-square test. For continuous
variables, we presented the data as the mean ± standard
deviation (SD) and, based on the characteristics of the data
distribution, assessed non-normally distributed data by the

FIGURE 1
Flowchart of the ensemble model for monitoring VPA trough concentrations in PEPs by the 3 ML algorithms.
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Mann-Whitney U test and normally distributed data by the
independent samples t-test. When exploring the correlation
between variables, we adopted the Spearman correlation
coefficient. A value of p < 0.05 was deemed statistically significant.

2.7 Ethic statement concerning
actual patients

This study strictly adhered to the ethical guidelines set forth in
the Declaration of Helsinki, ensuring the morality and legality of the
research. Our research plan was officially approved by the Ethics
Committee of the First Affiliated Hospital of Fujian Medical
University [Ethics No.: (2022)325]. Informed consent has been
waived in the ethical approval document.

3 Results

3.1 Baseline information of PEPs

In this retrospective analysis, we utilized 366 VPA trough
concentrations derived from 252 PEPs, with VPA trough
concentration as the target variable. After the dataset was cleaned, a
dataset of 366 rows by 20 columns was obtained. Subsequently, the
pertinent covariates weremeticulously selected by Spearman correlation
analysis and multicollinearity testing. The Spearman correlation
analysis revealed age, ALT, UREA, CREA, RBC, PLT, VPA dosage
form, VPA daily dose, andWeight as significant covariates (p < 0.05 for
all) (Supplementary Table S1). ALB, a crucial hematological marker
affecting VPA drug concentrations, was also included in the model

despite its lack of strong correlation in this data analysis. Further
statistical analysis reported a pronounced multicollinearity between
age and weight (Supplementary Table S2). Despite the presence of
multicollinearity between age and weight, these variables were retained
in the model due to their significance in clinical decision-making for
PEPs. Consequently, the final dataset comprised 366 samples by
11 variables (366 × 11). This dataset was then randomly partitioned
into a training set (292 cases) and a testing set (74 cases) at an 8:2 ratio.
There were no statistical differences in the baseline information of the
PEPs and the variables between the training and test groups (p >
0.05 for all variables, with the exception of ALB) (Table 1).

3.2 The establishment of the threeML-based
covariate models

We initially constructed independent covariate models for
monitoring VPA trough concentrations in PEPs by the 3 ML
algorithms (GBRT, RFR, and SVR). According to the results
from both the training and testing groups (Table 2), all three
models exhibited satisfactory monitoring performance, with the
GBRT model showing the best results, featuring higher accuracy
rates and R2 and a lower RMSE (Supplementary Figures S1–S3).

3.3 Interpretation of the ML-based
covariate models

In this study, we conducted a visual analysis of the influencing
factors in the three ML-based covariate models by SHAP. Based on
the selected ten covariates, the SHAP plot displayed the contribution

TABLE 1 The description of the baseline PEP information.

Variables Values p-value

Training group (n = 292) Testing group (n = 74)

VPA trough concentration (mg/L) 63.5 ± 22.7 64.0 ± 17.3 0.887a

Age (months) 92.8 ± 41.7 92.3 ± 40.6 0.424a

ALT (IU/L) 13.1 ± 10.5 10.9 ± 5.1 0.117a

UREA (mmol/L) 4.3 ± 1.0 4.2 ± 1.0 0.818a

CREA (μmol/L) 37.1 ± 10.3 39.0 ± 9.2 0.051a

RBC (1012/L) 4.6 ± 0.4 4.6 ± 0.4 0.600a

PLT (109/L) 256.6 ± 67.9 262.2 ± 60.4 0.404a

VPA daily dose (mg) 535.4 ± 230.1 501.9 ± 198.6 0.395a

Weight (kg) 28.0 ± 11.4 29.0 ± 11.8 0.518a

ALB (g/L) 44.8 ± 2.6 45.6 ± 2.4 0.021b

Dosage form (n, %) 0.714c

Sustained-release tablet 152 (52.1%) 37 (50%)

Oral solution 140 (47.9%) 37 (50%)

VPA, valproic acid; ALT, alanine aminotransferase; UREA, urea; CREA, creatinine; RBC, red blood cell count; PLT, platelet count; ALB, albumin.
aMann-Whitney U test.
bIndependent samples t-test.
cChi-squared test.
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of each covariate to the model monitoring, ranked from high to low.
As shown in Figures 2A–C, the color of the dots represents the
feature values of each variable, with larger feature values being
redder and smaller feature values bluer. Each feature value of a
variable corresponded to a SHAP value (on the x-axis), with negative
influences indicated on the left side of the origin, positive influences
on the right side, and little or no influence in the center. The average
of the absolute SHAP values for each relevant covariable was
calculated. For the GBRT and RFR models (Figures 2D, E), the
top four covariates were PLT, daily dose, UREA, age, and RBC,
indicating their importance in monitoring VPA trough
concentrations, with dosage form ranked 10th (|SHAP value| <
0.5) and having the least impact on monitoring VPA trough
concentrations; for the SVR model (Figure 2F), the top four
covariates were dosage form, PLT, daily dose, and RBC, while
UREA was ranked 7th (|SHAP value| < 1.5).

Additionally, we depicted the SHAP dependence plots for the
top 5 variables of the three algorithms (Figure 3). These results
indicated that in the GBRT and RFR models, a higher VPA daily
dose and a higher level of UREA, along with lower PLT and RBC,
were associated with higher VPA trough concentrations; in the SVR
model, a higher VPA daily dose and sustained-release tablet (dosage
form), along with lower PLT and RBC, were associated with higher
VPA trough concentrations. To better understand the decision-
making process of the ensemble model, we plotted the decision-
making plot for individual sample within the ensemble model
(Figure 4). Of note, UREA and VPA dosage form exhibited a
consistent significant variability across models (Figure 3),
prompting us to formulate an ensemble model designed to
maximize the impact of each covariate and enhance the accuracy
of monitoring.

3.4 Formulation and validation of the
ensemble model

To further enhance the monitoring performance of the model,
we employed 3ML algorithms to formulate the first ensemble model
for monitoring VPA trough concentrations in PEPs. This model was
designed to achieve the highest R2 value, relative accuracy, and
absolute accuracy. Based on the R2 performance of these three
algorithms (GBRT, RFR, and SVR) on the training set, we
assigned an initial random uniform distribution range for the

weight of each model. Specifically, the model with the highest R2

value was given a weight range of w1 (0.4–0.6), followed by w2
(0.2–0.4), and the model with the lowest R2 value was assigned a
weight of w3 = 1–w1–w2. The final prediction of the ensemble
model is obtained by multiplying the predictions of these three
algorithms by their respective weights and summing them up. After
several iterations of calculations, the optimal weights for these three
algorithms (GBRT, RFR, and SVR) were ultimately determined to be
0.5, 0.2, and 0.3, respectively. As depicted in Figure 5, this ensemble
model exhibited consistent performance in both the training and
testing sets, indicating an excellent model fit. Moreover, when
compared with the three independent covariate models, this
ensemble model demonstrated superior monitoring performance,
reporting the highest R2 (0.50), relative accuracy (87.8%), and
absolute accuracy (78.4%), and the lowest MAE (9.87) and RMSE
(12.24) (Figure 6; Supplementary Figures S1–S3).

In an in-depth analysis of the ensemble model, particular
attention was paid to the monitoring performance across various
age subgroups. The analysis revealed that among the PEPs aged
less than 3 years, the performance of the model was suboptimal,
with a relative and absolute accuracy of only 50.0% (Figure 7).
Given the insufficient sample size of PEPs under 3 years old and
over 10 years old in this study, we also performed stratified
modeling for PEPs aged between three and 10 years. The results
(Supplementary Tables S3, S4) indicate that both the three ML-
based covariate models and the ensemble model demonstrate
favorable predictive performance, as evidenced by further
improvements in R2 values and reductions in MAE and
RMSE. To further ascertain the stability and generality of the
ensemble model, two independent external datasets were
prospectively collected as validation cohorts. The results
showed that the monitoring performance of the test group and
that of the validation group were highly consistent, thereby fully
validating the reliability and effectiveness of the ensemble model
in practical applications (Table 3; Supplementary Table S5).

4 Discussion

The ensemble model is a robust ML technique (Supplementary
Table S6) that enhances overall monitoring performance by
combining the predictive characteristics of multiple models. This
approach is recognized for reducing overfitting and enhancing

TABLE 2 Comparative performance of the three ML-based covariate models in the training and testing group.

Group Model MAE RMSE R2 Relative accuracya Absolute accuracyb

Training GBRT 11.08 14.43 0.60 82.2% 75.3%

RFR 12.88 16.87 0.45 77.4% 67.1%

SVR 10.06 16.32 0.48 82.2% 75.0%

Testing GBRT 10.06 12.57 0.47 85.1% 82.4%

RFR 10.50 12.78 0.45 85.1% 75.7%

SVR 11.26 13.75 0.36 81.1% 73.0%

GBRT, gradient boosted regression trees; RFR, random forest regression; SVR, support vector regression.
aRelative accuracy indicates that the predicted trough concentration was within ±30% of the observed trough concentration.
bAbsolute accuracy indicates that the predicted trough concentration was within ±15 mg/L of the observed trough concentration.
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generality, and often outperforms a single model in various
scenarios (Ma et al., 2022). In this study, we developed the first
ML-based ensemble model for monitoring VPA trough
concentration in PEPs, with the goal of maximizing the R2 value,
relative accuracy, and absolute accuracy to optimize the
performance. We selected three outstanding algorithms (GBRT,
RFR, and SVR) and reallocated the weights of their R2 values to

reflect their importance and contribution in the ensemble model. By
utilizing advanced ML techniques, we achieved automatic
computation and model optimization, ultimately developing an
ensemble model with an optimal comprehensive performance,
with the R2 weight ratio of GBRT, RFR, and SVR optimized at 5:
2:3. Compared with an individual covariate model, this ensemble
model demonstrated superior advantages across multiple

FIGURE 2
The interpretation of the three models by SHAP. (A–C) The SHAP summary plot for the ten covariates across the three models. The SHAP values
(x-axis) serve as a unified measure of the impact of the response variable in the model. In the variable weight ranking, the attributes for all patients
contributing to the outcome are plotted with dots of different colors, where red (blue) dots represent high (low) values, respectively. (D–F) The weight
ranking of the ten variables according to the mean (|SHAP value|).
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dimensions and was further fully validated by two independent
external sample groups (in-hospital and out-of-hospital datasets),
demonstrating good generality.

SHAP plot visualization analysis plays a crucial role in the
construction of ML models. It not only assigns a specific set of
SHAP values to each covariate, clearly showing their importance

FIGURE 3
The SHAP dependency plots illustrating the importance of the top 5 variables in the 3 ML models (GBRT, RFR, SVR). The SHAP dependency plots
demonstrate how the relevant variables influence the output of the monitoring model. When the SHAP value for a specific covariate exceeds 0, it
indicates an increase in VPA trough concentration. VPA dosage form, 0 indicates oral solution, 1 indicates sustained-release tablet.

FIGURE 4
Decision plot for an individual sample within the ensemble model. The gray vertical line in the middle of the decision graph marks the base value of
the ensembl model (62.8 mg/L). The colored broken line is the prediction line representing the prediction process. This prediction line indicates the
numerical contributions of the covariates on the predicted result, which are defined as SHAP values. The normalized values of covariates are placed next
to the prediction line for reference. Starting from the bottom and ending at the top of the graph, the prediction line shows how the prediction result
(57.1 mg/L) is calculated from the base value and the accumulating SHAP values.
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and direction of influence on the monitoring results of the model,
but also potentially explains the correlation between each
covariate and its clinical significance (Cheng et al., 2023).
Existing studies have shown that the daily dose and dosage
form of VPA significantly affect VPA blood concentration
(Zhu et al., 2022a; Xu et al., 2020). Consistently, in our study,
the VPA daily dose ranked high in the SHAP visualization
analysis [GBRT (second, 20.8%), RFR (second, 21.4%), and
SVR (third, 13.6%)] (Figure 2); the VPA dosage form ranked
first (24.6%) in SVR; and both the VPA daily dose and dosage
form were positively correlated with VPA trough concentration
(Figure 3), indicating that they are among the most important
covariates. Therefore, in the clinical medication process,
especially during a switch between VPA dosage forms (oral
solution and sustained-release tablet), due to the differences in
drug release and absorption between the two dosage forms,
regular monitoring of VPA blood concentration in PEPs is
necessary in case of VPA dosage adjustment.

VPA is commonly associated with hematological adverse
reactions, particularly with thrombocytopenia and red blood
cell dysplasia, which may be related to its impact on bone

marrow hematopoietic function (Langlie et al., 2022; Acharya
and Bussel, 2000). It is important to note that high
concentrations of VPA may not only reduce platelets but also
inhibit platelet aggregation, fibrinogen, and other factors, which
can increase the bleeding risk in patients with epilepsy (Kumar
et al., 2019; Beydoun et al., 1997). Additionally, although there is
no evidence that VPA directly acts on RBCs, available data
confirm that VPA may interact with RBCs through different
mechanisms, including affecting the distribution of drugs within
RBCs and enhancing the expression of erythropoietin (EPO)
protein, which may affect RBC production (Mancl and Gidal,
2009; Rubiyana et al., 2020). This study showed that VPA trough
concentration was inversely proportional to PLT and RBC levels
(Figure 3), meaning that high VPA concentrations are more
likely to cause a decrease in PLT and RBC, inducing the
occurrence of thrombocytopenia and anemia, which is
consistent with the existing research (Nasreddine and
Beydoun, 2008; Nasreddine et al., 2022; Ma et al., 2019).
Furthermore, SHAP plot analysis ranked RBC relatively high
(consistently ranked fourth across the three models, with a
contribution of 8.5%–10.3%), and PLT as one of the important

FIGURE 5
The performance of the ensemble model in the training and the testing groups. The figure includes scatter plots, regression lines, and histograms to
intuitively compare the relationship between observed and predicted values, and to judge the fitting effect of the model through the R2 value and the
diagonal line.
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FIGURE 6
The accuracy and prediction plots of the ensemble model and a comparison of the monitoring performance of the ensemble model with that of
three independent covariate models. (A) The blue dots represent the testing sample, with observed values on the x-axis and predicted values on the
y-axis. The blue dots between the dotted lines indicate that the predicted values were within ±30% of the observed values (relative accuracy) and (B) the
blue dots between the dotted lines indicate that the predicted values were within ±15 mg/L of the observed values (absolute accuracy). (C) The blue
dots indicate the observed values and purple dots indicate the predicted values. The samples on the x-axis are ordered according to age, increasing from
left to right in ascending order. (D) Comparison of monitoring performance of the ensemble model with that of SVR, RFR and GBRT.
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covariates in different individual covariate models (Figure 2):
GBRT (first, 24.8%), RFR (first, 37.2%), and SVR (second, 17.7%).
For ALB, another important hematological indicator affecting
VPA drug concentration, patients with hypoalbuminemia (below
35 g/L) may have significantly-increased free VPA
concentrations (Drisaldi et al., 2019). However, the PEPs data
analysis in this study showed that ALB fell within the normal
range (44.98 ± 2.58 g/L) and was not correlated with VPA trough
concentration (r = −0.026, p > 0.05). This phenomenon can
explain why the weight of ALB in monitoring VPA trough
concentration was relatively low. The above results indicate
that the monitoring model for VPA trough concentration
constructed in this study has strong clinical relevance.
Therefore, in clinical practice, for PEPs receiving VPA, regular
blood tests should be recommended to monitor potential adverse
reactions in the hematological system, especially for PEPs with
trough concentrations above the therapeutic window, in order to
adjust VPA dosage in a timely manner.

CREA and UREA are two key clinical indicators for assessing
kidney function. In the SHAP plot analysis, CREA ranked low in
the three independent covariate models, indicating its relatively
small impact on the model output. In contrast, UREA ranked
third in the GBRT and RFR algorithms, highlighting the key role
of UREA in VPA trough concentration (Figure 2). Existing
studies have confirmed that VPA concentration is positively
correlated with the severity of renal tubular damage (Knights
and Finlay, 2014; Mazaheri et al., 2011) and that CREA and
UREA levels are also positively correlated with VPA
concentration (Yang et al., 2020). These findings suggest that

increased levels of CREA and UREA generally indicate impaired
kidney filtration function and can reflect VPA blood
concentration levels to some extent. Changes in UREA levels
need to be comprehensively assessed in conjunction with other
indicators and clinical conditions. In some cases, UREA may not
be as sensitive as CREA, leading to the clinical practice of using
both to assess kidney function. For PEPs who use VPA on a long-
term basis or have specific risk factors, it is essential to prescribe
a regular monitoring of the kidney function and adjust the
treatment plan correspondingly (Mazaheri et al., 2011).
Therefore, incorporating CREA and UREA as covariates in
our model has significant clinical implications for the
effective management of VPA in treating PEPs.

Studies have shown that genetic variations in CYP2C9,
CYP2C19, CYP2A6, and CYP2B6 affect the in vivo
concentrations of VPA and its metabolites (Zhao et al., 2020).
The risk of hepatotoxicity increases when VPA is used in children
under 6 years old (Star et al., 2014). ALT is an important
indicator for assessing liver function, in which elevated levels
may indicate liver damage (Ghozzi et al., 2011). In this study,
consistently, ALT was negatively correlated with VPA trough
concentration (r = −0.103, p < 0.05), indicating that ALT is
positively correlated with the concentration of VPA metabolites
(Chen et al., 2012). In patients with strong metabolic capacity,
especially children, VPA trough concentration is low, while the
concentration of hepatotoxic metabolites is high, which may
increase the risk of liver damage with elevated ALT (Zhao
et al., 2020). However, in the pediatric patient population of
this study, no cases of severe liver function damage were observed
and ALT levels of most children remained within the normal
range. This phenomenon can explain why the weight of ALT in
monitoring VPA trough concentration was relatively low
(Figure 2). Monitoring ALT levels is important for assessing
and preventing liver damage.

In the GBRT, RFR, and SVR individual covariate models, the
importance of the ten covariates varied to different extents
(Figure 2). Daily dose, PLT, and RBC showed relatively
consistent importance across these three models. However, the
importance of VPA dosage form and UREA fluctuated
significantly in these models. To balance the impact of each
covariate on the output of the monitoring model and to enhance
the role of important covariates, we decided to integrate these
three independent models into an ensemble model to further
improve the monitoring performance of the model. Our study
results also confirmed this: the ensemble model showed
consistent performance in both the training and testing

FIGURE 7
The monitoring results of the ensemble model for different age
subgroups. Age subgroup on the x-axis, prediction accuracy on
the y-axis.

TABLE 3 The model performance metrics of the ensemble model.

Group MAE RMSE R2 Relative accuracy Absolute accuracy

Training 10.98 15.02 0.56 82.2% 74.7%

Testing 9.87 12.24 0.50 87.8% 78.4%

Validation 1 9.89 13.26 0.41 81.3% 78.1%

Validation 2 9.49 12.31 0.46 82.1% 71.4%

Validation 1, 32 in-hospital data samples.

Validation 2, 28 out-of-hospital data samples.
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datasets, indicating a proper model fitting. Additionally,
compared with the three individual covariate models, this
ensemble model demonstrated a clear superiority in
monitoring performance (Figures 5, 6). The predictive results
of this ensemble model are more in line with the clinical reality,
which has profound practical value for clinical medication
guidance and timely treatment.

The ensemble model showed significant differences in
monitoring performance across different age groups. The in-
depth analysis of the monitoring results of different age groups
revealed that the model reported a relatively poor monitoring
performance in patients under 3 years old but the best in the
3–10-years age group (Figure 7). The SHAP dependency plot
illustrates the contribution of age feature values to the predictive
outcome (Figure 3; Supplementary Figure S4). The data group for
ages below 3 corresponds to SHAP values within the ±2 range
(Supplementary Figure S4), indicating a lower contribution.
Moreover, this data group has a significantly smaller sample
size compared to other age subgroups, which may be one of the
reasons for the relatively low relative and absolute accuracy of
our model’s predictions. The metabolism of VPA is complex,
involving three main pathways: mitochondrial-mediated β-
oxidation, cytochrome P-450 (CYP450) catalyzed oxidation,
and uridine diphosphate glucuronosyltransferase (UGTs)
glucuronidation (Silva et al., 2008). Glucuronidation accounts
for approximately 50% of VPA metabolism and is the most
important factor affecting VPA blood concentration. However,
UGTs gene polymorphism is developmentally regulated, with age
affecting its metabolic rate, and young children have a higher
metabolic capacity (Zhao et al., 2020). Some researchers believe
this may be due to children having higher enzyme activity and a
larger liver-to-body size ratio (Kearns et al., 2003). Therefore, the
expression of UGTs gene polymorphisms in metabolic enzymes
may significantly affect VPA metabolism, thereby affecting blood
concentration and leading to significant inter-individual
differences in blood concentration (Ghodke-Puranik et al.,
2013). As this study did not include UGTs gene
polymorphism as a covariate in the monitoring model, further
research is needed to validate whether the poor monitoring effect
observed in patients under 3 years old is related to the age-related
differences in UGTs glucuronidation.

The ten covariates included in this study are not sufficient to
fully represent all potential factors that may affect the monitoring
of VPA trough concentration. Other factors that distribute VPA
in the body, such as metabolic gene polymorphism and
hypoalbuminemia, should be considered when constructing a
monitoring model. To develop a mature monitoring model, more
in-depth research work is needed. The current model has limited
data outside the therapeutic window, which may, to some extent,
limit the accuracy of model predictions. Especially in the patient
population under 3 years old, the monitoring effect was not ideal,
coupled with the relatively low rate of VPA trough concentration
reaching the target range in this group, suggesting a need of due
attention to this phenomenon. Therefore, follow-up studies need
to acquire more data from the patient population under 3 years
old to optimize the monitoring performance and generality of
the model.

In translating the application of a ML-based ensemble model
into clinical practice, several essential steps are involved (Zhu
et al., 2022b): 1. collection of clinical data: gather more clinical
sample datasets, incorporating a wider range of clinical feature
variables including disease status, concomitant medications,
and genetic polymorphisms, to further enhance the model’s
clinical applicability. 2. external validation: require additional
external validation datasets to assess the model’s accuracy and
reliability in clinical settings. 3. drug clinical feature library:
Establish a drug clinical feature library, similar to a disease
database, capable of automatically capturing clinically relevant
data for variables associated with valproic acid trough
concentrations, especially data that can be aligned with
testing times. 4. model transformation: transform the model
into software, a website, or integrate it into electronic health
records (EHRs) to enable automatic updates and dosage
predictions, facilitating its use by clinical physicians.
Correspondingly, potential barriers in clinical practice
include (Tang et al., 2024): 1. quality and integrity of clinical
data. 2. complexity and uncertainty of clinical data. 3. technical
integration and compatibility. 4. ethical and privacy issues of
clinical data.

5 Conclusion

The ensemble model proposed in this study, based on 3 ML
techniques, can monitor the VPA trough concentrations in PEPs
with a high degree of satisfaction. The advantage of this ensemble
model lies in its ability to consider the importance of each
covariate across different models, maximizing the utility of
each covariate to enhance the overall monitoring performance.
The monitoring results it yields are more clinically relevant,
offering significant practical value for the individualized
adjustment of clinical drug dosages and timely interventions
in the precision treatment of PEPs.
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