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Introduction: Resveratrol, a polyphenolic compound commonly found in natural
plants and fruits, exhibits potential in preventing optic nerve damage in glaucoma,
as indicated by several animal studies. However, there is presently a dearth of
relevant evidence available for comprehensive summarization.

Methods: In this study, we conducted an extensive search across 7 electronic
databases, encompassing all pertinent animal studies for a systematic review and
meta-analysis. Methodological quality was evaluated using SYRCLE’s bias risk
tool, with statistical analysis performed using Stata 17.0. The primary outcome
measures included the survival of retinal ganglion cells and retinal thickness.

Results: The comprehensive analysis of the 30 included studies revealed that
resveratrol can enhance the expression of Sirtuin 1(SIRT1) protein in retinal tissue
(SMD: 3.00, 95% CI: 2.46, 3.53, P = 0.095), boost the survival rate of retinal
ganglion cells (SMD: 4.33, 95% CI: 3.28, 5.38, P < 0.05), decelerate the thinning of
retinal thickness (SMD: 4.26, 95% CI: 2.77, 5.75, P < 0.05), and enhance visual
function. Its potential mechanism of action may involve the suppression of pro-
inflammatory cytokine levels and cell apoptosis.

Discussion: Resveratrol emerges as a promising agent for mitigating glaucoma-
related retinal damage. However, given that the animal research models utilized
in the study may not fully reflect the intricate scenarios of multiple coexisting
diseases in clinical settings, and the administration methods in animal models
may differ from those in clinical practice, future studies should aim to provide
higher levels of evidence to facilitate the clinical translation of these findings.
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1 Introduction

Glaucoma is an ocular condition characterized by the
pathological elevation of intraocular pressure, leading to
mechanical compression, optic nerve ischemia, and subsequent
optic nerve damage along with visual field defects. With a
blindness rate ranging from approximately 5%–20%, glaucoma
stands as the second most prevalent cause of blindness in
ophthalmology, following cataracts (Bourne et al., 2018).
Research data indicates that a minimum of 80 million
individuals globally are afflicted by glaucoma, and projections
suggest that the number of patients is poised to surpass
110 million by the year 2040 (Liu et al., 2023; Tham et al.,
2014). A healthcare cost research report revealed that glaucoma
had a heavy disease burden (Prager et al., 2016). Glaucoma has
imposed a substantial economic burden of $2.9 billion on the US
economy (Thomas et al., 2015), highlighting its significance as a
medical burden not only within the US but also globally (Barayev
et al., 2021; Patel et al., 2021). Due to its high incidence rate,
elevated blindness prevalence, and substantial economic impact,
glaucoma has emerged as a noteworthy public health concern
deserving attention.

The pathogenesis of glaucoma is intricate, with a prevailing
belief that alterations in mechanical pressure and disruptions in
blood flow regulation play significant roles (Flammer et al., 2002;
Baudouin et al., 2021). Increased intraocular pressure or other
vascular risk factors that potentially decrease ocular blood flow
can result in inadequate blood delivery to the optic nerve. The
cascade of ischemia and hypoxia can induce harm to retinal neurons,
particularly axonal degeneration and diminished retinal ganglion
cell (RGC) counts, culminating in irreversible impairment of visual
function (Li et al., 2018; Liu et al., 2019). The activation of
inflammatory responses and cell apoptosis within retinal tissue is
intricately linked to RGC damage. In the compromised retina, the
interplay of inflammatory cytokines such as iNOS (Liu and Neufeld,
2003; Shareef et al., 1999), COX-2 (Deng et al., 2020), IL-6 (Hu et al.,
2021), and IL-1β (Chen et al., 2020; Coyle et al., 2021) instigates the
immune-inflammatory response in the glaucomatous retina and
triggers apoptosis of RGC cells. Studies indicate that in a mouse
model of acute intraocular hypertension, retinal nerve cells undergo
progressive apoptosis (Zhou et al., 2019), with aberrant expression
levels of caspase-3, Bax, and Bcl-2 potentially serving as pivotal
factors in RGC apoptosis (Quigley et al., 1995; Risner et al., 2022;
Zalewska et al., 2004; Phatak et al., 2016). Among the various risk
factors contributing to glaucoma damage, elevated intraocular
pressure stands out as the modifiable factor (Fernandez-Albarral
et al., 2024). As a result, the primary approach to treating glaucoma
involves medication or surgical interventions aimed at lowering
intraocular pressure. Nevertheless, the reduction of intraocular
pressure alone may not entirely halt the progression of glaucoma
or prevent damage to RGCs (Zeng et al., 2023). Retinal ischemia-
reperfusion injury could be a crucial factor influencing treatment
efficacy (Flammer et al., 2002; Goldblum and Mittag, 2002). Under
the combined influence of various pathological mechanisms during
ischemia-reperfusion, RGCs may experience cell death,
morphological degeneration, and functional loss, ultimately
resulting in vision impairment (Kim et al., 2013). Given the
complexity of the underlying mechanisms, effective treatment

methods are currently lacking. It is imperative to discover safe
and efficient treatment strategies to enhance the survival rate of
RGCs and safeguard the visual function of individuals
with glaucoma.

Resveratrol (C14H12O3, Figure 1), a natural polyphenol
abundant in diverse plants like grapes, possesses antioxidant,
anti-inflammatory, and neuroprotective characteristics. It has
found extensive application in various eye-related disorders
(Lancon et al., 2016; Bryl et al., 2022; Delmas et al., 2021).
One potential mechanism of resveratrol-mediated optic nerve
protection entails the activation of silent information regulator
factor 1 (SIRT1) (Pallas et al., 2009), a protein extensively
distributed in the nucleus and cytoplasm of the retina.
SIRT1 plays a pivotal role in modulating the activity of
various transcription factors and co-factors, influencing the
expression of downstream genes, and regulating associated
physiological and pathological processes (Zhou et al., 2018).
Studies have demonstrated that the upregulation of
SIRT1 exerts a protective effect against various eye diseases
(Zhou et al., 2018; Shindler et al., 2007), and resveratrol can
offer retinal neuroprotection in acute glaucoma models through
the activation of SIRT1 (Chen et al., 2013; Luo et al., 2020; Luna
et al., 2009). While certain preclinical studies have indicated
favorable outcomes of resveratrol in ameliorating retinal
ischemic injury in animal models of glaucoma, there remains
a shortage of high-quality evidence validating resveratrol’s ability
to confer neuroprotective effects in such models. Further
exploration is warranted to elucidate the protective
mechanism of resveratrol on the optic nerve in glaucoma.

Preclinical animal experiments serve as a vital connection in
scientific research, bridging findings from the molecular and
cellular levels to clinical trial investigations. Regrettably,
discrepancies in animal modeling and other facets of preclinical
studies have hindered the optimistic clinical translation of their
results. Previous preclinical inquiries into the neuroprotective
impacts of resveratrol in glaucoma models have exhibited
notable variations in reported outcomes stemming from
differences in modeling techniques and assessment criteria. This
study aims to gather pertinent animal research, conduct meta-
analyses of animal experiments, systematically assess the
protective efficacy of resveratrol in glaucoma animal models,
and appraise the potential clinical translational applications of
resveratrol.

FIGURE 1
The chemical structure of resveratrol.
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2 Methods

This study adhered to the Preferred Reporting Items for
Systematic Review and Meta-Analysis (PRISMA) guidelines and
was registered with PROSPERO (CRD42024535673).

2.1 Search strategy

We conducted a search of electronic databases from their
inception up to 30 April 2024, which included Web of Science,
Embase, PubMed, China Biomedical Database (CBM), China
National Knowledge Infrastructure (CNKI), Wanfang Database
(WF), and China Science Journal Database (VIP). Additionally,
we will explore potential eligible articles from the reference lists of
retrieved papers to mitigate any potential gaps in the research
literature. Search keywords comprised a combination of MeSH
terms and free-text words (Supplementary Table 1).

2.2 Eligibility criteria

According to the PICO principle, the studies included must
meet the following criteria: (1) Population: Animal models of
glaucoma-induced retinal injury, without restrictions on animal
species, gender, age, or weight. (2) Intervention: Administration
of resveratrol treatment, with no limitations on dosage, duration, or
frequency. (3) Comparison: The control group should receive an
equivalent carrier, physiological saline, or no treatment. (4)
Outcome: Evaluation of the protective effects of resveratrol on
the retina using outcome measures such as RGC survival rate,
RGC apoptosis rate, visual function, retinal thickness, and
retinal damage.

Exclusion criteria: (1) Clinical, in vitro, and computer simulation
studies. (2) Studies where the control or treatment groups received a
combination of resveratrol and other treatments. (3) Duplicate
publications; in case of data duplication, the latest data will be
retained. (4) Animal studies where experimental data cannot
be retrieved.

2.3 Data extraction

The literature search was independently conducted by two
researchers. Initially, irrelevant literature was excluded based on
titles and abstracts. Subsequently, studies meeting the inclusion
criteria were selected by reviewing the full text, and the following
information was extracted: (1) Publication details including
author(s) and publication year; (2) Details regarding animal
species, gender, age, weight, and sample size; (3) Methods
employed for establishing glaucoma models and administering
anesthesia; (4) Information on the timing, dosage, route of
administration, and control method of resveratrol; (5) Outcome
measures. In cases where results are graphically presented, attempts
were made to contact the corresponding authors of the research to
obtain raw data. If unsuccessful, the data were processed using
WebPlotDigitizer 4.5 (https://automeris.io/) to extract quantitative
data from the graphs. When a study encompasses various doses and

time points of administration, yielding multiple datasets for
outcome indicators, the selection process for meta-analysis
typically involves choosing the most efficacious dose or time
point data. However, during dose-response analysis, data
extraction entails utilizing information from distinct dose groups
for comprehensive analysis. Any discrepancies in the data extraction
procedure should be reconciled through consultation with a third
researcher.

2.4 Quality assessment

Two assessors independently assessed and graded the included
studies using the SYRCLE tool for evaluating bias in animal studies
(Hooijmans et al., 2014). The types of biases considered encompass
selection bias, performance bias, detection bias, attrition bias,
reporting bias, and other potential biases. Assessment outcomes
were categorized as “yes” for low risk of bias, “no” for high risk of
bias, and “uncertain” for unclear risk of bias.

2.5 Statistical analysis

Statistical analysis was performed using STATA software
version 17.0. The outcome measures, represented as continuous
variables, were compared by reporting the standard mean deviation
(SMD) and 95% confidence interval (CI) for overall effect sizes. A
significance level of p < 0.05 denoted statistical significance.
Heterogeneity within the study was assessed using I2 values. A
fixed-effects model was employed when I2 was 50% or less, while
I2 values exceeding 50% indicated significant heterogeneity,
warranting sensitivity, and subgroup analyses to investigate
potential sources of heterogeneity. In cases where significant
heterogeneity persisted unresolved, a random-effects model was
utilized. Publication bias was evaluated using Egger’s linear
regression analysis and Begg’s rank correlation analysis. If
publication bias was detected, trimming and filling methods were
employed to address it.

3 Results

3.1 Study selection

A total of 871 potentially relevant articles were retrieved from
seven electronic databases: PubMed (112), Embase (378), Web of
Science (167), CNKI (36), CBM (78), WF (43), and VIP (57). After
removing duplicates, 549 articles remained. Subsequently,
446 irrelevant articles were excluded based on title and abstract
reviews. Upon full-text assessment, 73 more articles were excluded,
resulting in the inclusion of 30 articles. The research selection
process is illustrated in Figure 2.

3.2 Characteristics of included studies

Out of 30 studies, 21 studies visually depicted their findings
graphically, with 9 of these studies acquiring raw data directly from
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the corresponding author or first author. Furthermore, in 12 studies,
two researchers used WebLotDigitizer 4.5 to extract data and took
the average for meta-analysis. The 30 included studies involved a
total of 559 animals, with 280 in the treatment group and 279 in the
control group. Among these, 14 studies utilized 286 Sprague Dawley
rats, 12 studies involved 211 C57BL/6J mice, 2 studies utilized
42 Wistar rats, 1 study employed 10 brown rats, and another
study used 10 Agouti rats. Male animals were used in 24 studies,
while 2 studies involved both male and female animals, and 4 studies
did not specify the gender. The age of the animals was provided in
25 studies, and the weight was specified in 16 studies. Regarding the
administration of resveratrol, 7 studies employed intravitreal
injection, 17 studies utilized intraperitoneal injection, 4 studies
employed oral or gavage administration, 1 study used eye drops,
and 1 study did not specify the injection method. Concerning
outcome measures, 23 studies reported on the survival or death
of RGCs, 8 studies have reported the transcription factor
Brn3 protein (Brn3a) that can be used to label and quantify
RGCs (Nadal-Nicolas et al., 2009), 13 studies described changes
in retinal thickness, 14 studies reported on apoptosis-related
indicators of retinal tissue, 6 studies reported on A and B waves
of electroretinography (ERG), 10 studies reported on inflammatory

cytokine levels in local retinal tissue, and 11 studies reported on
SIRT1 levels. Detailed characteristics of the included studies are
presented in Table 1.

3.3 Study quality

According to Figure 3, the quality assessment of the 30 studies
was conducted using SYRCLE’s risk of bias tool, with 2 studies
scoring 4 points (Xiong, 2021; Xia et al., 2020), 19 studies scored
5 points (Deng et al., 2020; Chronopoulos et al., 2023; Luo et al.,
2018; Pang et al., 2020; Cao et al., 2020; Vin et al., 2013; Feng et al.,
2024; Wu et al., 2020; Zhang et al., 2018; Ji et al., 2024; Chang et al.,
2018; Liu, 2013; Chen, 2018; Li, 2012; Ji, 2022; Ji, 2016; He et al.,
2021; Shamsher et al., 2022; Zhu et al., 2018),7 studies scored
6 points (Seong et al., 2017; Xie et al., 2023; Prasetya et al., 2023;
Zhao et al., 2022; Seong et al., 2022; Luo, 2020; Academic Exchange
Conference, 2016),2 studies scored 7 points (Pirhan et al., 2016;
Guowu et al., 2020). Among the 30 included studies, only 4 studies
mentioned random grouping, 25 studies detailed baseline
characteristics, 11 studies outlined animal random housing, all
random outcome assessments of the studies were rated as low-

FIGURE 2
Flow diagram of the study selection process.
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TABLE 1 Basic characteristics of the included studies.

Study (year) Species (sex, age,
n = treatment/model
group, weight)

Modeling method Resveratrol intervention
(administration drug dose,
duration)

Outcomes

Pirhan et al.
(2016)

Wistar albino rats (male, adult,
12/14, NM)

Chronic elevation of IOP was induced in
one eye of each animal by intracameral
injection of hyaluronic acid.

Starting from glaucoma induction, 10 mg/kg
resveratrol was administered via intraperitoneal
injection daily for 6 weeks.

1. Survival status
of RGC

2. Death status
of RGC

Seong et al. (2017) C57BL/6J mice (male, 8 weeks,
11/11, 20–25 g)

Insert a 30 gauge needle into the anterior
chamber of the right eye and add saline to
increase the intraocular pressure to 60 mm
Hg; Maintain HIOP for 60 min.

Mice were intraperitoneally injected with
resveratrol (20 mg/kg) once per day for 5 days
(2 days before modeling and until sacrifice).

1. Survival status
of RGC

2. Retinal thickness

3. Caspase-

Chronopoulos
et al. (2023)

C57BL/6J mice (male, 5 to 6-
month-old, 8/8, NM)

Introduce the tip of a borosilicate glass
micropipette (diameter 100 µ m) into the
anterior chamber, connect it to a reservoir
filled with Ringer’s solution through a
silicon tube, and increase intraocular
pressure (IOP) to 110 mm Hg for 45 min.

Mice were administered resveratrol via gavage
(30 mg/kg) once a day for 9 days (1 day before
modeling until 7 days after modeling).

1. Survival status
of RGC

2. Brn3a

Luo et al. (2018) Sprague Dawley rats (male,
2–3 months, 14/14, NM)

The anterior chambers of both eyes were
cannulated briefly, and the IOP in one eye
was elevated above systolic blood pressure
(approximately 110 mm Hg) for 60 min.

Rats were injected intraperitoneally with
250 mg/kg RES three times, respectively, from
1 day before modeling until 1 day after modeling.

1. Survival status
of RGC

2. Retinal thickness

3. Bax, Bcl-2

4.iNOS, COX2

5. Brn3a

Pang et al. (2020) Sprague Dawley rats (male,
2–3 months, 18/18, NM)

The anterior chambers of both eyes were
cannulated briefly, and the IOP in one eye
was elevated above systolic blood pressure
(approximately 110 mm Hg) for 60 min

Rats were injected intraperitoneally with
25 mg/kg RES three times, respectively, from
1 day before modeling until 1 day after modeling.

1. Survival status
of RGC

2. Retinal thickness

3. SIRT1

Cao et al. (2020) C57BL/6J mice (male, adult, 15/
15, NM)

Mice received 3 μL of 10-μm-diameter
polystyrene microbeads via a 35-gauge
needle, into the anterior chamber of the
right eye.

Mice were administered 1 μL of 30-μM RSV by
injection into the right eye with a 35-gauge needle
in the vitreous body on the same day after the
microbead injection.

1. Death status
of RGC

2. SIRT1

3. Brn3a

Xie et al. (2023) C57BL/6 mice (male,6–8-week,
6/3, NM)

A 30-gauge needle was inserted into the
anterior chamber of the right eye with a
balanced salt solution. The IOP of the right
eye was maintained above the systolic
pressure (~110 mm Hg) for 60 min.

Mice were intraperitoneally injected with RES
(25 mg/kg) for five consecutive days before
modeling and then intraperitoneally injected
again immediately after modeling.

1. Survival status
of RGC

2. Retinal thickness

3. Caspase-1

4. IL-1β

5. Brn3a

Vin et al. (2013) Sprague Dawley rats (male,
adult, 6/6, 200 g)

The anterior chamber of the right eye of
each rat was cannulated with a 30-gauge
sterile needle connected to an elevated
isotonic sterile saline bag. The intraocular
pressure was raised to 70e80 mm Hg for
45 min.

Rats were intraperitoneally injected with
resveratrol (30 mg/kg) once per day for 5 days
(2 days before modeling injury until 2 days after
modeling).

1. Retinal thickness

2. A-wave and
b-wave of
the ERG

Feng et al. (2024) C57BL/6 mice (male, 6–8-week,
14/10, NM)

Cannulation with a 32-gauge needle of the
anterior chamber was executed to raise the
IOP to approximately 110 mmHg, which
was maintained for 60 min.

Mice were intraperitoneally injected with
resveratrol (20 mg/kg) once per day from 2 days
before modeling until sacrifice.

1. Survival status
of RGC

2. Caspase-1

3. IL-1β

(Continued on following page)
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TABLE 1 (Continued) Basic characteristics of the included studies.

Study (year) Species (sex, age,
n = treatment/model
group, weight)

Modeling method Resveratrol intervention
(administration drug dose,
duration)

Outcomes

4. A-wave and
b-wave of
the ERG

Wu et al. (2020) Sprague Dawley rats (male,
2–3 months, 6/6, 250 g)

The IOP of the left eye was increased to
110 mmHg for 60 min by placing a needle
in the anterior chamber and elevating a
saline reservoir containing 0.9% NaCl.

Resveratrol then was applied by intraperitoneal
injections at 1 day before, at the time of, and 1 day
after modeling.

1. RGC survival rate

2. SIRT1

3. Brn3a

Xia et al. (2020) Sprague Dawley rats (male,
8 weeks, 24/24, 232 ± 28 g)

A needle connected to a saline bag about
150 cm high (110 mmHg pressure) was
inserted into the anterior chamber of the
rat eyes.

Rats in the resveratrol group received
intraperitoneal injection of resveratrol
(250 mg/kg) at the same time point 24 h before
modeling, and thereafter at 15 min and at 48 h.

1. Survival status
of RGC

Deng et al. (2020) Sprague Dawley rats (male,
2 months, 4/4, NM)

The anterior chambers of both eyes were
briefly cannulated, and the IOP in one eye
was elevated above systolic blood pressure
(approximately 110 mmHg) for 60 min.

Rats were injected with RES three times
(250 mg/kg, intraperitoneal injection.), 1 day
before, at the time of, and 1 day after modeling.

1. Retinal thickness

2. iNOS, COX2

Zhang et al.
(2018)

Sprague Dawley rats (male, 4–6-
week, 6/6, 100–150 g)

The micro-magnetic beads (15–25 μL,
diameter ≈ 9 μm) were slowly injected into
the anterior chamber from the peripheral
area of the cornea with a 30-gauge needle.

A dose of 20 mg/kg/d was given with intragastric
administration from day 1 of post-operation and
maintained daily for 4 weeks.

1. Survival status
of RGC

2. Death status
of RGC

3. Retinal thickness

Ji et al. (2024) C57BL/6 mice (NM, 6–8-week,
12/12, NM)

The anterior chamber of the right eye was
cannulated with a 30-gauge needle attached
to a normal saline reservoir which was
elevated to maintain an intraocular
pressure (IOP) above systolic pressure
(approximately 110 mmHg) for 1 h

Mice were intraperitoneally injected with RES
(20 mg/kg) once per day for 5 days (2 days before
modeling and until sacrifice).

1. Survival status
of RGC

2. Bax, Bcl-2

3. Caspase-3

4. A-wave and
b-wave of
the ERG

5. IL-6

6. SIRT1

7. Brn3a

Prasetya et al.
(2023)

Rattus Norvegicus (NM, 6–8-
week, 5/5, 250–300 g)

The IOP was increased by injecting a
balanced salt solution (BSS) into the
anterior chamber using a cannula of 30 G.
The IOP was maintained at 110 mmHg for
60 min.

Rattus was injected with Resveratrol 100 µM in
2 µL intravitreal after modeling.

1. Bax

2. Caspase-3

Zhao et al. (2022) C57BL/6 mice (NM, NM,
12/12, NM)

A 32G needle was used to puncture at 1 mm
from the lateral corner iris edge, followed
by the injection of 20 nmol N-methyl-d-
aspartic acid solution into the vitreous
cavity using a 10 µL microsyringe.

After modeling, mice were injected with
20 mg/kg resveratrol solution, and 24 h later,
20 mg/kg resveratrol solution was repeatedly
injected.

1. Survival status
of RGC

2. Death status
of RGC

3. Retinal thickness

4. SIRT1

Seong et al. (2022) C57BL/6 mice (male, 8-week, 3/
4, 20–25 g)

The anterior chamber was cannulated with
a 30-gauge needle to increase the IOP to
60 mm Hg for 60 min.

Mice were intraperitoneally injected with RES
(20 mg/kg) once per day for 5 days (2 days before
modeling and until sacrifice).

1. Death status
of RGC

Chang et al.
(2018)

Sprague Dawley rats (male, NM,
6/6, 200 ± 20 g)

The anterior chambers were briefly
cannulated with a 20-gauge indwelling
needle, and the IOP was elevated above

Rattus were injected with Resveratrol (0.5 nmol/
L) 5 µL in intravitreal 0.5 h before modeling.

1. Death status
of RGC

2. Retinal thickness

(Continued on following page)
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TABLE 1 (Continued) Basic characteristics of the included studies.

Study (year) Species (sex, age,
n = treatment/model
group, weight)

Modeling method Resveratrol intervention
(administration drug dose,
duration)

Outcomes

systolic blood pressure (approximately
110 mmHg) for 60 min.

3. Caspase-3

4. Bcl-2

Liu et al. (2013) Wistar rats
(male, 6–8-week, 8/8, NM)

The anterior chambers were briefly
cannulated with a 30-gauge indwelling
needle, and the IOP was elevated above
systolic blood pressure (approximately
120 mmHg) for 60 min.

Rats were injected with Resveratrol (0.5 nmol) in
intravitreal 15 min before modeling.

1. Survival status
of RGC

2. B-wave of
the ERG

3. iNOS

Chen (2018) Sprague Dawley rats
(male,2–3 months, 4/4,
250–320 g)

The anterior chambers were briefly
cannulated, and the IOP was elevated above
systolic blood pressure (approximately
110 mmHg) for 60 min.

Rats were injected with RES three times, 1 day
before (250 mg/kg, intraperitoneal injection.), at
the time of (250 mg/kg, intraperitoneal
injection.), and 1 day after modeling (300 mg/kg,
intraperitoneal injection).

1. Retinal thickness

2. iNOS, COX2

Luo et al. (2020) C57BL/6 mice (male, 8–10-
week, 9/9, 20–24 g)

The anterior chambers were briefly
cannulated with a 30-gauge indwelling
needle and maintained high intraocular
pressure for 60 min.

Mice were injected with Resveratrol (100 μM) in
intravitreal 1 day before modeling.

1. Survival status
of RGC

2. B-wave of
the ERG

3. Bax, Bcl-2

4. SIRT1

Xiong (2021) Sprague Dawley rats (male,
8–10 weeks, 10/10, 180–200 g)

The 532 nm laser is used to burn the
superficial venous ring and branches
around the sclera edge, with approximately
100 points burned in each eye. After 7 days
of modeling, the intraocular pressure is
measured, and if the intraocular pressure is
greater than 22 mmHg, the modeling is
successful

After successful modeling, rats were
intraperitoneally injected with RES (20 mg/kg)
once a day for 21 consecutive days

1. Bax, Bcl-2

2. IL-1β, IL-6

3. SIRT1

4. Caspase-3

Li (2012) C57BL/6 mice (male, NM,
5/7, NM)

The anterior chambers were briefly
cannulated with a 33-gauge indwelling
needle, and the IOP was elevated above
systolic blood pressure (approximately
150 mmHg) for 60 min.

Mice were fed RES (20 mg/kg) once a day from
2 days before modeling until sacrifice.

1. Survival status
of RGC

2. Retinal thickness

3. Brn3a

Ji (2016) Sprague Dawley rats (male,
2–3 months, 5/5, 250–300 g)

The anterior chambers were briefly
cannulated with a 30-gauge indwelling
needle and maintained high intraocular
pressure for 60 min.

Mice were injected with Resveratrol (4 ul 10 μM)
in the intravitreal after modeling.

1. SIRT1

Ji (2022) C57BL/6 mice (male, 6–8-week,
5/7, 20–22 g)

The anterior chambers were briefly
cannulated with a 32-gauge indwelling
needle and maintained high intraocular
pressure for 60 min.

Mice were intraperitoneally injected with RES
(20 mg/kg) once per day for 5 days (2 days before
modeling and 2 days after modeling).

1. Survival status
of RGC

2. Retinal thickness

3. Bax, Bcl-2

4. Caspase-3

5. IL-6

6. A-wave and
b-wave of
the ERG

7. SIRT1

8. Brn3a

Zhou et al. (2016) Sprague Dawley rats (male,
2–3 months, 10/10, 250–320 g)

The anterior chambers were cannulated
and maintained high intraocular pressure
for 60 min.

Rats were injected with RES three times
(20 mg/kg), 1 day before, 15 min after, and 1 day
after modeling.

1. SIRT1

(Continued on following page)
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TABLE 1 (Continued) Basic characteristics of the included studies.

Study (year) Species (sex, age,
n = treatment/model
group, weight)

Modeling method Resveratrol intervention
(administration drug dose,
duration)

Outcomes

Guowu et al.
(2020)

Sprague Dawley rats (male and
female, 6–8 weeks, 20/20,
180–210 g)

Inject fresh mixed HCCS (7 μL) into the
anterior chamber using a 31-gauge needle
to maintain intraocular pressure at
22 mm Hg.

After successful modeling, rats were given
resveratrol (80 mg/kg) orally for 12 weeks

1. Death status
of RGC

2. Bax, Bcl-2

3. Caspase-3

He et al. (2021) Sprague Dawley rats (male and
female, 8 weeks, 10/10,
180–220 g)

The surgical cauterizer gently cauterizes the
scleral vein, with the proximal corneal end
blood vessels expanding and filling, and the
distal corneal end blood vessels
disappearing. After 7 days of surgery, the
intraocular pressure is greater than
21 mmHg or 5 mmHg higher than that of
the non-surgical eye.

After successful modeling, resveratrol was
injected intraperitoneally once a day (40 mg/kg)
for 8 consecutive days.

1. Survival status
of RGC

Shamsher et al.
(2022)

Dark Agouti rats (NM, NM,
5/5, NM)

The ocular hypertension rat model was
induced with the injection of 1.85 M
normal saline solution in two episcleral
veins of the left eye of rats.

Resveratrol nanoparticles were given topically as
an eye drop daily for 3 weeks from induction

1. Survival status
of RGC

2. Death status
of RGC

Zhu et al. (2018) C57BL/6 mice (male, NM,
7/6, NM)

The model was established by increasing
IOP to 95 mmHg for 90 min by inserting a
needle, which was connected to the elevated
balanced-salt solution, into the anterior
chamber of the right eye of mice.

The treatment was done by intraperitoneal
injection and was initiated on the day of IOP
elevation, and repeated daily for 1 week and
4 weeks respectively.

1. Death status
of RGC

IOP: intraocular pressure; RGC: retinal ganglion cells; ERG: electroretinography; RSV: resveratrol.

FIGURE 3
Risk of bias graph.
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risk, but only 1 study documented the blinding of outcome assessors,
and no study elucidated how blinding was implemented in
allocation concealment and experimentalists. All studies were

deemed low-risk in terms of incomplete outcome data, selective
outcome reporting, and other sources of bias. The comprehensive
evaluation results are presented in Supplementary Table 2.

FIGURE 4
Forest plot: effect of resveratrol on (A) Survival status of RGC, (B) Death status of RGC, (C) Brn3a.
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3.4 Effectiveness

3.4.1 Primary outcomes
3.4.1.1 Survival of RGCs

In the included studies, a total of 23 investigations assessed
the impact of resveratrol on RGCs in glaucoma models. Meta-
analyses involving 19 studies indicated that resveratrol
intervention significantly enhanced the survival rate of RGCs
under elevated intraocular pressure [n = 231, SMD: 4.33 (95% CI:
3.28, 5.38), p < 0.05; heterogeneity: I2 = 76.5%, p < 0.05,
Figure 4A]. Moreover, meta-analyses of 8 studies
demonstrated that resveratrol could decrease the number of
RGC deaths [n = 147, SMD: −3.86 (95% CI: −5.28, −2.44), p <
0.05; heterogeneity: I2 = 82.7%, p < 0.05, Figure 4B]. A meta-
analysis of 7 studies revealed that resveratrol intervention led to
an increase in Brn3a-labeled RGCs compared to the control
group [n = 80, SMD: 3.57 (95% CI: 1.79, 5.36), p < 0.05;
heterogeneity: I2 = 82.0%, p < 0.05, Figure 4C].

3.4.1.2 Retinal thickness
A meta-analysis of 12 studies revealed that resveratrol, when

compared to the control group, can ameliorate retinal thickness
thinning in high intraocular pressure conditions [n = 138, SMD: 4.26
(95% CI: 2.77, 5.75), p < 0.05; heterogeneity: I2 = 82.4%, p <
0.05, Figure 5].

3.4.2 Secondary outcomes
3.4.2.1 Retinal function

Based on the dark adaptation flash ERG data included in the
study, a meta-analysis of 4 studies indicated that resveratrol can
increase the A-wave amplitude [n = 38, SMD: 3.98 (95% CI: 2.76,
5.20), p < 0.05; heterogeneity: I2 = 0.0%, p = 0.438, Figure 6A].
Similarly, a meta-analysis of 7 studies demonstrated that
resveratrol can also elevate the B-wave amplitude [n = 76,
SMD: 4.79 (95% CI: 2.84, 6.74), p < 0.05; heterogeneity: I2 =
76.3%, p < 0.05, Figure 6B]. Consequently, compared with the
control group, resveratrol can increase the amplitude of “a” and
“b” waves in ERG.

3.4.2.2 The expression level of SIRT1 protein in the retina
Incorporating data from 11 studies that assessed SIRT1 protein

expression levels, the collective meta-analysis demonstrated that
resveratrol can enhance the upregulation of SIRT1 protein
expression [n = 136, SMD: 3.00 (95% CI: 2.46, 3.53), p < 0.05;
heterogeneity: I2 = 38.1%, p = 0.095, Figure 7].

3.4.2.3 Expression levels of inflammatory factors in
retinal tissue

A meta-analysis of 4 studies indicated that resveratrol can
decrease the level of the inflammatory cytokine iNOS [n = 36,
SMD: −3.65 (95% CI: −4.84, −2.46), p < 0.05; Heterogeneity: I2 =

FIGURE 5
Forest plot: effect of resveratrol on Retinal thickness.
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5.8%, p = 0.364, Figure 8A]. Another meta-analysis involving
3 studies demonstrated that resveratrol can lower the level of
the inflammatory factor COX-2 [n = 26, SMD: −5.18 (95% CI:
−8.33, −2.02), p < 0.05; Heterogeneity: I2 = 54%, p = 0.114,
Figure 8B]. Similarly, a meta-analysis of 3 studies revealed that
resveratrol can decrease the level of the inflammatory factor IL-6
[n = 38, SMD: −3.01 (95% CI: −4.01, −2.01), p < 0.05;
Heterogeneity: I2 = 34.1%, p = 0.214, Figure 8C]. Lastly, an
analysis of 3 studies found that resveratrol can reduce the level
of the inflammatory factor IL-1β [n = 39, SMD: −2.24 (95% CI:
−3.09, −1.40), p < 0.05; Heterogeneity: I2 = 0.0%, p =
0.488, Figure 8D].

3.4.2.4 Expression levels of apoptosis-related proteins in
retinal tissue

In the evaluation of 6 studies, the combined meta-analysis
revealed that resveratrol can induce a reduction in the expression
level of Caspase-3 protein in rat retinal tissue [n = 68, SMD: −3.14
(95% CI: −3.91, −2.36), p < 0.05; Heterogeneity: I2 = 23.3%, p = 0.259,
Figure 9A]. Furthermore, meta-analysis results from 7 studies
illustrated that resveratrol can facilitate an increase in Bcl-2 protein
expression levels in retinal tissue [n = 108, SMD: 3.58 (95% CI: 1.65,
5.51), p < 0.05; heterogeneity: I2 = 88.3%, p < 0.05, Figure 9B].

Concurrently, the meta-analysis findings from 7 studies indicated that
resveratrol can impede the upregulation of Bax protein expression in
retinal tissue [n = 106, SMD: −4.17 (95% CI: −6.18, −2.15), p < 0.05;
heterogeneity: I2 = 86.3%, p < 0.05, Figure 9C].

3.5 Sensitivity analysis

In our analysis of the main outcome measures with significant
heterogeneity, we systematically assessed the impact of each study’s
exclusion on the combined effects related to RGC survival, RGC
death, Brn3a, and retinal thickness. Notably, after excluding data
from Pirhan (2015) and Zhang (2018), the range of combined effect
sizes for RGC survival spanned from 4.17 (95%CI: 3.12, 5.21) to 4.55
(95% CI: 3.51, 5.58). Similarly, upon excluding data from Pirhan
(2015) and Shamsher (2022), the combined effect sizes for RGC
mortality varied between −3.47 (95% CI: −4.87, −2.08) and −4.22
(95% CI: −5.68, −2.76). Following the exclusion of Ji (2024) and Li
(2012), the combined effect sizes for Brn3a ranged from 3.19 (95%
CI: 1.40, 4.98) to 4.09 (95% CI: 2.60, 5.78). Moreover, after excluding
data from Vin (2013) and Li (2012), the combined effect sizes for
retinal thickness varied from 3.97 (95% CI: 2.49, 5.44) to 4.70 (95%
CI: 3.15, 6.25).

FIGURE 6
Forest plot: effect of resveratrol on (A) A-wave of the ERG and (B) B-wave of the ERG.
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3.6 Subgroup analysis

Given the substantial heterogeneity observed between studies,
we conducted subgroup analyses on RGC survival, RGC mortality,
Brn3a, and retinal thickness, focusing on modeling methods, animal
species, administration methods, and dosages. Our findings suggest
that administration methods, dosages, and timing could potentially
contribute to the observed heterogeneity in RGC survival. For RGC
mortality, our analysis indicates that animal species, administration
methods, and dosages may serve as possible sources of
heterogeneity. Regarding Brn3a, the dosage and timing of
administration are identified as potential sources of
heterogeneity. Lastly, for retinal thickness, animal species and
administration time are highlighted as potential sources of
heterogeneity. The detailed results are presented in the attached
Supplementary Table 3.

3.7 Publication bias

We utilized Egger’s test and Begg’s test to assess the potential
publication bias in studies concerning RGC survival, RGC
mortality, Brn3a, and retinal thickness. The findings revealed
statistically significant publication bias for RGC survival, Brn3a,
and retinal thickness, while no statistically significant
publication bias was detected for RGC mortality
(Supplementary Figure 1). Furthermore, employing pruning
and filling methods, we conducted statistical analyses on
studies that might have overlooked aspects related to RGC

survival, Brn3a, and retinal thickness. The results suggest that
the absence of certain research data does not significantly impact
the overall consolidation effect, as depicted in Table 2
and Figure 10.

3.8 Dose effect analysis of resveratrol dose
and RGC survival quantity

In our study, data from a total of 23 studies were analyzed
concerning the dosage of resveratrol and its impact on RGC survival.
Three studies were excluded from the analysis: one due to unclear
dosing information and four due to the use of inconsistent dosage
units. Among the remaining 18 studies, doses were administered in
mg/kg, with 5 studies employing varying doses of resveratrol.
Subsequently, the total dosage of resveratrol was categorized into
7 intervention methods. The research outcomes presented in
Figure 11 suggest a non-linear correlation between resveratrol
dosage and RGC survival. Notably, the maximum effect was
observed when the total dose of resveratrol ranged between
160–240 mg/kg.

4 Discussion

4.1 Effectiveness

After synthesizing and evaluating data from 30 preclinical
studies, our meta-analysis indicates that resveratrol exhibits

FIGURE 7
Forest plot: effect of resveratrol on SIRT1.
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promising therapeutic potential in the management of glaucoma-
related retinal injuries. Notably, resveratrol demonstrates a
protective effect by modulating key outcome measures in

glaucoma retinal injury models. This includes enhancing the
survival rate of RGCs, reducing the mortality rate of these cells,
boosting Bra3a expression, and curbing retinal thinning.

FIGURE 8
Forest plot: effect of resveratrol on (A) iNOS, (B) COX-2, (C) IL-6, (D) IL-1β.
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Furthermore, resveratrol shows efficacy in reversing retinal
dysfunction induced by elevated intraocular pressure, as
evidenced by increased A-wave and B-wave amplitudes.

However, our meta-analysis uncovered significant heterogeneity
in the primary indicators of RGC survival, RGC mortality, Bra3a
expression, and retinal thickness. Despite conducting sensitivity

FIGURE 9
Forest plot: effect of resveratrol on (A) Capase-3, (B) Bcl-2, (C) Bax.
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analyses, the specific sources of this heterogeneity remained elusive.
Subgroup analyses suggest that variations in animal species,
administration methods, dosage, and timing of administration
may contribute to this heterogeneity. To address potential
publication biases in the assessment of RGC survival, Bra3a
expression, and retinal thickness, we employed pruning and
imputation techniques to estimate missing studies and data. The
analysis indicates that publication bias does not significantly impact
the robustness of our findings.

4.2 Potential mechanism

In glaucoma, optic nerve damage primarily manifests as
structural alterations in the optic nerve head and progressive loss
of RGC axons, resulting in distinct visual field deficits and impaired
vision. A relatively recent discovery, the SIRT1 protein, is associated
with ocular diseases, including those affecting the eyes (Wu et al.,
2020). It plays a role in cellular stress response and cell survival
(Porcu and Chiarugi, 2005). Upregulation of SIRT1 exhibits a
protective effect against various ocular diseases (Zhou et al.,
2018). Upon optic nerve damage, SIRT1 activation can enhance
the survival of RGCs and mitigate inflammatory responses (Zuo
et al., 2013; O’Neill et al., 2024). Its mechanism of action may involve
the increased expression of the mitochondrial enzyme succinate
dehydrogenase and the promotion of deacetylation of PGC-1α, a
coenzyme crucial in mitochondrial function (Chen et al., 2013;
O’Neill et al., 2024). Resveratrol, a natural polyphenolic
compound known for boosting SIRT1 activity, can provide
neuroprotection to RGCs in retinal IR injury, with this protective
effect being attenuated by SIRT1 inhibitors (Luo et al., 2020). The
meta-analysis comprising 11 studies revealed that resveratrol can
enhance the expression of SIRT1 protein, thereby exerting a
neuroprotective impact on the optic nerve.

The neuroprotective effects of resveratrol could also be
associated with various other factors. Optic nerve damage in
glaucoma involves multiple intertwined mechanisms such as
inflammation and cellular apoptosis. Within the injured retina,
pathogenic and reparative processes coexist during the
inflammatory cascade. A controlled level of inflammatory
response plays a pivotal role in preserving the retinal and
neighboring environment’s homeostasis. However, an excessive
inflammatory response can trigger a cascade of irreversible
degenerative conditions including optic nerve damage and RGC
demise (Baudouin et al., 2021). Key cytokines that regulate the
inflammatory response could potentially mitigate optic nerve
damage and prevent the loss of RGCs linked to glaucoma

(Adornetto et al., 2019). According to our meta-analysis findings,
resveratrol demonstrates the ability to diminish inflammatory
cytokines like iNOS, COX-2, IL-6, and IL-1β in a model of
glaucoma-related retinal injury. Inhibiting or decreasing the
expression of associated inflammatory factors may attenuate RGC
loss and confer a protective effect on the optic nerve in glaucoma
(Neufeld, 2004; Brust et al., 2008; Song et al., 2018).

Apoptosis of RGC cells significantly contributes to the
pathological alterations observed in glaucoma1924. By inhibiting cell
apoptosis, it is possible to mitigate RGC loss and potentially salvage
retinal nerve damage in glaucoma (Xia and Zhang, 2024; Chitranshi
et al., 2023). Our meta-analysis findings indicate that resveratrol can
increase the expression of the anti-apoptotic factor Bcl-2 while
decreasing the expression of pro-apoptotic factors Bcl-2 and
caspase-3. Prior research has illustrated that in models of retinal
ischemia-reperfusion injury induced by elevated intraocular pressure,
there is a rise in caspase-3 expression levels, leading to neuronal cell
death in the retina via both exogenous and endogenous pathways
(Katai and Yoshimura, 1999). Similarly, investigations have revealed a
stronger expression of the pro-apoptotic Bax protein in the optic
nerve axons of glaucoma patients in comparison to the anti-apoptotic
Bcl-2 protein (Zalewska et al., 2004). In animal models, Bax can
induce dendritic degeneration in RGCs (Risner et al., 2022) and plays
a crucial role in RGC apoptosis (Libby et al., 2005). Upregulation of
anti-apoptotic proteins such as Bcl-2 and downregulation of pro-
apoptotic proteins such as Bax can exert a protective effect on the
optic nerve (Phatak et al., 2016; Maes et al., 2017).

In conclusion, our study indicates that resveratrol may increase
the expression of SIRT1 protein, decrease pro-inflammatory
cytokine levels, enhance anti-apoptotic factors, and suppress pro-
apoptotic factors. Nonetheless, additional research is warranted to
elucidate whether resveratrol is involved in the comprehensive
regulation of anti-inflammatory responses, cell death
mechanisms, and other pathways.

4.3 Limitations

Due to inherent methodological disparities, it is essential to
exercise caution when extrapolating research findings from animal
studies to human diseases. Although we strive to mitigate bias and
enhance research accuracy by amalgamating data from multiple
studies, it is important to recognize the unavoidable limitations
that may impact the reliability of our results. Primarily, the
variances in the animal models we incorporated possess
discrepancies in replicating the extent of glaucoma-related
retinal damage realistically. The absence of common clinical

TABLE 2 The results from the trim-and-fill analysis.

Before trim and fill After trim and fill

Parameter P value SMD NO. studies P value SMD NO. studies

Survival status of RGC P < 0.05 4.33 19 P < 0.05 15.96 28

Brn3a P < 0.05 3.57 7 P < 0.05 7.75 10

Retinal thickness P < 0.05 4.26 12 P < 0.05 8.57 18
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comorbidities like aging and diabetes could constrain the
generalizability of our findings. Moreover, in instances where
original research data were unattainable, a collaborative

approach involving two researchers was adopted to extract data
using graphic processing tools, subsequently calculating the
average value for meta-analysis. However, it is important to

FIGURE 10
Trim-and-fill analysis for (A) Survival status of RGC, (B) Brn3a, and (C) Retinal thickness.
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acknowledge that this methodology may introduce inherent
measurement biases. Additionally, the studies we integrated
exhibited notable heterogeneity. Despite our efforts to explore
potential sources of heterogeneity through sensitivity and
subgroup analyses, differences in experimental design and
research quality persist. Thus, for future investigations, the
selection of animal models more reflective of clinical scenarios,
stringent experimental protocols, and standardized methodologies
are imperative to enhance research quality and facilitate clinical
translation. Significantly, although we performed a basic dose-
response analysis, more comprehensive pharmacological
investigations are essential for the development of resveratrol as
a viable drug, given the current gaps in pharmacokinetic and
pharmacodynamic data.

5 Conclusion

Resveratrol has demonstrated protective effects on RGCs,
retarding retinal thinning, and enhancing visual function in
animal models of glaucoma and retinal injury. The protective
mechanisms of resveratrol are likely linked to its activation of
SIRT1, anti-inflammatory properties, and anti-apoptotic effects.
Thus, resveratrol holds promise as a potential therapeutic agent
for shielding against glaucoma-related retinal damage. However,
further robust evidence is necessary in the future to facilitate its
clinical translation and application.
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