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Introduction: Traditional drug discovery efforts primarily target rapid, reversible
protein-mediated adaptations to counteract cancer cell resistance. However,
cancer cells also utilize DNA-based strategies, often perceived as slow,
irreversible changes like point mutations or drug-resistant clone selection.
Extrachromosomal DNA (ecDNA), in contrast, represents a rapid, reversible,
and predictable DNA alteration critical for cancer’s adaptive response.

Methods: In this study, we developed a novel post-processing pipeline for
automated detection and quantification of ecDNA in metaphase Fluorescence
in situ Hybridization (FISH) images, leveraging the Microscopy Image Analyzer
(MIA) tool. This pipeline is tailored to monitor ecDNA dynamics during
drug treatment.

Results: Our approach effectively quantified ecDNA changes, providing a robust
framework for analyzing the adaptive responses of cancer cells under
therapeutic pressure.

Discussion: The pipeline not only serves as a valuable resource for automating
ecDNA detection inmetaphase FISH images but also highlights the role of ecDNA
in facilitating swift and reversible adaptation to epigenetic remodeling agents
such as JQ1.
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Introduction

Cancer cells are masters of adaptation, often using irreversible
genomic changes to survive treatment (Labrie et al., 2022). While
traditional drug discovery focuses on blocking temporary, protein-
level responses, it overlooks the fast-acting genomic responses on
extrachromosomal DNA (ecDNA, Figure 1A), which are harder to
detect and even harder to target. This blind spot leaves 15% of cancer
patients without effective therapies (Kim et al., 2020). EcDNA is a
distinct form of genetic alteration that amplifies oncogenes outside
the constraints of chromosomal DNA, providing cancer cells with
unique evolutionary advantages. Unlike chromosomal mutations,
deletions, or stable amplifications integrated within homogeneous
staining regions (HSRs), ecDNA is a dynamic structure capable of
rapid replication and uneven segregation during cell division. In
tumors, ecDNA is believed to drive tumor heterogeneity by creating
cell-to-cell genetic and molecular differences that influence drug
responses. This variability allows certain cells to adapt and persist
during therapy, contributing to the development of drug resistance.

Next-generation sequencing has revolutionized cancer biology,
enabling unprecedented insights into the genetic landscape of
cancer. Large-scale consortia such as The Cancer Genome Atlas
(TCGA), the Dependency Map (DepMap) (Barretina et al., 2012;
Tsherniak et al., 2017), and the Cancer Cell Line Encyclopedia
(CCLE) have generated extensive multi-omics datasets,
characterizing thousands of cancer genomes and tumor samples.
Among these datasets, whole-genome sequencing (WGS), whole-

exome sequencing (WES), and ATAC-seq are the most
comprehensively covered across samples. Leveraging this data,
computational algorithms (Yang et al., 2023; Deshpande et al.,
2019) have been developed to detect unique structural variants,
including ecDNA and double minute chromosomes (DMs), which
frequently appear in cancer cell nuclei. These advancements have
fundamentally shifted our understanding of cancer genome
structure and karyotype, opening new avenues for research and
potential therapeutic interventions.

However, despite their transformative potential, sequencing-
based approaches have significant limitations in practice. While
they are effective at identifying amplified genes and reconstructing
the circular structures of the most dominant ecDNA species, their
prediction accuracies typically range between 60%–70% (Fessler
et al., 2024). This level of accuracy is often insufficient for precise
detection and characterization, particularly when detecting ecDNA
in cells with fewer copy number counts. Additionally, a major
limitation of sequence-based prediction algorithms is that they
are not able to distinguish between ecDNA and other
amplification types, such as HSRs, which are chromosomal
regions that can also exhibit gene amplification with “copy-paste-
amplify” patterns (Figure 1B).

In this way, sequencing alone cannot differentiate between freely
mobile ecDNA, which can independently replicate and segregate
during cell division, and HSRs, which are stable and integrated into
chromosomes. However, it is important to note that ecDNA and
HSRs are not mutually exclusive entities and can interconvert under

FIGURE 1
Scaling Annotations of ecDNA in Metaphase FISH images using AI (A). Microscopy methods, such as scanning electron microscopy (SEM) and DNA
Fluorescence in situHybridization (FISH) are gold standard approaches for visualizing ecDNA. DNA FISH uses fluorescent probes that bind to specificDNA
sequences that indicate which regions of the genome are amplified by ecDNA.Multiple species can be observed depending onwhich fluorescent probe is
detected. (B)Under stress, ecDNAs can re-enter chromosomes to form homogeneous staining regions (HSRs). (C) FISH is the gold standardmethod
for detecting and analyzing ecDNA in cell nuclei. It consists of several steps which include cell cycle synchronization, fixation, and hybridization. With
advances in AI, time-intensive manual labeling and counting of ecDNA is accelerated and can be scaled up. (D) Asymmetric division of ecDNAmolecules
into daughter cells during replication and division leads to a heterogeneous population of cells with various ecDNA counts and species. (E)Convolutional
Neural Networks is a computer vision approach that is well suited to image segmentation. (F) A computer vision approach applied to detecting and
counting ecDNAs in metaphase FISH images. (G) Using ground truth (i.e., manually labeled metaphase FISH images), we can assess the accuracy of the
computer vision method at detecting and counting ecDNAs per cell nucleus. (H) Region of Interest (ROI), defined as the human-annotated boundary
representing the nuclear spread of a single cell. This is the area within the image where ecDNA is predicted and counted.
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certain conditions. This dynamic interconversion further
complicates the interpretation of sequencing-based methods,
which may miss critical aspects of cancer biology, including the
role of ecDNA in driving tumor heterogeneity and drug resistance.
Therefore, to accurately detect and characterize ecDNA within
cancer cell nuclei, it is essential to integrate additional
approaches, such as high-resolution nuclear imaging or
functional assays, alongside sequencing data. These
complementary methods provide the necessary context and
precision, enabling a more comprehensive understanding of
ecDNA’s role in cancer, including its potential to transition
between ecDNA and HSR forms.

Currently, the only methods capable of accurately detecting and
quantifying ecDNA, as well as determining its precise location
within cell nuclei, are gold-standard cytogenetic imaging
techniques. Techniques like Fluorescence in situ Hybridization
(FISH) and G-banding karyotyping use fluorescence-based
methods to visualize ecDNA within the nucleus (Figure 1C). In
FISH, cells are typically arrested in metaphase when chromosomes
are condensed and spread out, allowing for better visualization of
ecDNA. The cell nuclei are stained with fluorescent dyes, such as
DAPI, to enhance visibility. When the genetic sequence of ecDNA is
known, fluorescent probes can be designed to hybridize with specific
regions on the ecDNA, providing unambiguous localization within
the nucleus. A standard practice in the field involves generating
20–100 images of individual cell nuclei to capture the heterogeneity
in ploidy and ecDNA counts across a cell population (Figure 1D).
However, the subsequent manual annotation and analysis of these
images are time-intensive and low-throughput, limiting the
scalability of these image-based approaches. This laborious
process underscores the need for more efficient methods that can
achieve the same level of accuracy without the associated
bottlenecks.

Leveraging AI to automate the detection of ecDNA and HSRs in
metaphase FISH images represents a transformative shift from
traditional, labor-intensive karyotyping methods. By training
computer vision models to identify ecDNA in metaphase FISH
images (Figure 1E), we can overcome the historical challenges of
scalability, enhancing both accuracy and precision in detection. This
approach complements sequence-based prediction methods by
providing a robust alternative that directly visualizes ecDNA.
Several efforts (Turner et al., 2017; Rajkumar et al., 2019) have
been made to automate image-based detection of ecDNA using
various approaches, such as thresholding and Convolutional Neural
Networks (CNNs, Figure 1E). These models employ supervised
learning, where they are trained on manually labeled imaging
data (i.e., “ground truth” data), with each ecDNA precisely
identified and annotated by experts. These annotations supply
the model with the exact coordinates of ecDNA in each image,
enabling the algorithm to learn the features necessary to predict the
presence of ecDNA in non-annotated images (Figure 1F). Accuracy
of the model is determined by comparing the predicted counts or
locations of ecDNA within metaphase FISH images to the ground
truth data (Figure 1G).

Autodetection of ecDNA in metaphase FISH images remains a
significant challenge due to several factors. Metaphase FISH images
are often noisy, with considerable cell-to-cell variation that
complicates traditional image processing techniques. Key issues

that reduce prediction accuracy include high noise ratios in pixel
intensities, variations in the size and morphology of chromosomes
versus ecDNA, and a severe class imbalance where the majority of
the image is background or chromosomes. Existing algorithms
(Turner et al., 2017; Rajkumar et al., 2019) struggle to generalize
across different image types, particularly when transitioning from
low-resolution, black-and-white, tiled images to high-resolution
images. These models, trained on lower-quality images, are
heavily dependent on the specific microscope and image
processing conditions, making them non-transferable. As a result,
they detect only 30%–40% of the ecDNA in our images and suffer
from a high false negative rate, especially when ecDNA is close to
chromosomes. Moreover, these models are outdated and not
publicly available for retraining. There is a critical need for
updated, publicly available CNN-based models that can be
retrained with higher-resolution images to enhance the accurate
detection of ecDNA in metaphase FISH images.

Recently, the Microscopy Image Analyzer (MIA) was
developed as an end-to-end interface designed to help
researchers scale image analysis across large datasets. MIA is
unique in its ability to integrate image processing, analysis, and
interpretation within a single platform, providing a streamlined
approach that significantly reduces the time and effort required
for manual annotation. We applied MIA to our specific challenge
of auto-detecting ecDNA in metaphase FISH images, leveraging
its capabilities to create a high-throughput post-processing
pipeline (Figure 1F). This pipeline dramatically increased the
accuracy of ecDNA detection by refining image segmentation,
reducing noise, and improving feature recognition. Currently,
the field lacks standardized methods for processing and analyzing
metaphase FISH images, making our contribution particularly
valuable for researchers interested in automating ecDNA
detection. Additionally, we have applied this approach to
pharmacological studies to monitor changes in ecDNA during
drug treatment. These experiments require the analysis of
numerous images across many conditions, making the ability
to scale and autodetect essential for reducing the time and labor
involved in such studies.

Results and discussion

Image processing pipeline for MIA

The quality of images and annotations plays a crucial role in
the success of computer vision models, particularly in tasks such as
detecting ecDNA in non-annotated images. High-quality images
with precise annotations are essential for the computer to
accurately learn and identify the critical features necessary for
reliable ecDNA detection. Poor image quality or inaccurate
annotations can lead to misrepresentations of features,
ultimately undermining the model’s performance and predictive
accuracy. In this section, we discuss the comprehensive steps we
took to post-process our image database, focusing on rigorous
image ranking and quality control (QC) measures. By ensuring
that only the highest quality images were used for training and
validation, we aimed to optimize the performance of our MIA-
based model for ecDNA detection.
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Pre-processing of metaphase FISH images
Accessing image quality

Image quality can vary due to several technical and biological
factors, including the type of cell line used, cell-to-cell variations,
post-imaging processing, sample handling, probe potency, and the
characteristics of the microscope. A raw image must undergo post-
imaging processing to qualify for counting. It is common for any
human to over- or under-process an image and incorrectly annotate
ecDNAs or HSRs, which generates false negatives and/or positives.
Additionally, the biology of the nuclei itself introduces variability.
For instance, each image may contain one or more cell nuclei that
have burst open, exposing chromosomes and ecDNA. However, the
way these nuclei burst on the microscope slide is non-uniform and
can occur on slightly different planes, resulting in some nuclei being
more in focus than others. Cell-to-cell karyotypic differences after
bursting, such as the number and clustering of chromosomes, also
greatly fluctuate visibility of ecDNA. This variability makes counting
ecDNA within a single nucleus subjective and can lead to
inconsistencies in manual annotation. Moreover, the use of DNA
probes involves heating samples to accelerate probe hybridization,
which can degrade the samples and make them more difficult to
image accurately.

It is important to create a database of images from which an AI
algorithm can train on that are consistent and generalizable. Any
overlapping nuclei, debris clouds, or low resolution images decrease
the confidence of attribution and negatively impacts the ability of the
algorithm to learn correct features for future predictions. While we
found that it can be rare to find extremely well resolved and
separated bursted nuclei that generate data with high confidence,
we tagged and excluded images with lower confidence from training
using a systematic grade-based approach.

We ranked images on a scale from 0 to 4 based on several key
quality parameters:

1. Resolution and Focus: This parameter assesses the sharpness
and clarity of the chromosomes in the image. Images where
chromosomes are blurry and indistinguishable, such that the
chromosome arms cannot be clearly seen, receive a lower score
(0–1). Conversely, images with sharp, well-defined
chromosomes receive a higher score (3–4).

2. Uniformity: Uniformity refers to the evenness and consistency
of the image. This is evaluated by observing the spatial
distribution of the bursted nuclei. If the nuclei are unevenly
spread, with overlapping or indistinct regions, the image is
marked lower. If the nuclei are evenly distributed with clear
boundaries and minimal overlap, the image receives a
higher score.

3. Spatial Distinction: This parameter assesses how well the
bursted nuclei and chromosomes are separated from
surrounding artifacts or debris. If a nucleus is too clustered
or overlaps with its surroundings, making it difficult to
distinguish individual chromosomes, the image is ranked
lower (0–1). Images with well-separated, distinct nuclei that
have a clear “splash zone” with no overlap are ranked
higher (3–4).

4. Debris and Artifacts: The amount of debris or artifacts in the
image is also considered. Images with minimal debris and clean
backgrounds are ranked higher, while those with significant

debris (Supplementary Figure 1) or distracting artifacts are
ranked lower.

Images marked as “0” represent the lowest quality, characterized
by poor resolution, lack of uniformity, and high debris, while images
marked as “4” are of the highest quality, with clear, well-focused
chromosomes, uniform distribution, and minimal artifacts. This
ranking system ensures that only the best quality images are used for
further analysis and model training.

Assessing annotation quality
Annotation quality in metaphase FISH images for counting

ecDNA is a complex and time-consuming task, often leading to
inconsistencies due to its subjective nature. Different researchers
may label ecDNA differently, resulting in variations in the data.
Typically, metaphase FISH images use DAPI dye to localize ecDNA,
which stains all nucleotides but does not differentiate between
chromosomal DNA and ecDNA. While using DNA probes that
hybridize to specific regions of ecDNA could reduce ambiguity, the
exact sequences of ecDNA are not always known. Additionally, these
probes are expensive, and there can be heterogeneity in ecDNA
sequences within a single sample, leading to incomplete labeling if
some ecDNA contain the targeted genes and others do not.

Given these challenges, it is more practical to develop
algorithms that predict the location of ecDNA in metaphase
FISH images using DAPI dye alone. However, different
researchers may employ various methods to annotate ecDNA
using DAPI, such as adjusting contrast to differentiate between
DNA and debris or comparing the general shape and size of
potential ecDNA across images. These subjective approaches can
lead to significant variation in manual annotations, as there are
no clear, standardized criteria for what constitutes an ecDNA.
Furthermore, the fact that ecDNA can change shape and size
from cell to cell complicates the establishment of consistent
annotation rules, making it difficult to generalize across samples.

The annotation of the 3,000 images used in this study was
carried out by multiple students over several years. Consequently,
the annotation styles, approaches, and quality varied, creating a
challenging dataset for machine learning. To address this, our post-
processing image ranking system was essential in selecting the most
consistent and representative images for training the algorithm.
While the model is designed to learn the patterns of ecDNA from the
majority of correct annotations, discrepancies in the data—such as
errors in labeling of ecDNA that is not visible in the DAPI channel
due to its proximity to or overlap with chromosomes—can
negatively impact the model’s measured accuracy, making it
appear less effective than it actually is.

The images used to train this model were first ranked on a scale
from 0 to 4, with 0 indicating images that are highly subjective and
difficult to count due to unclear focus, and 4 indicating images that
are clearly well-counted and in focus. After an initial ranking, the
annotations were reviewed more closely, especially in cases where
multiple fluorescent images were merged. Particular attention was
given to the DAPI channel, as this is crucial for accurate ecDNA
detection. If many annotation markers were found to be skewed,
missing, or incorrect, the image received a lower rank. Additionally,
notes were taken on potential improvements to enhance image
quality for future use.
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From the 2,312 images that were reviewed and ranked from
previous experiments, about 1,242 images were ranked a 3 or 4 and
were chosen to be used for highest quality training data. The table
below displays descriptions for each rank and examples in their
FISH probe merged with DAPI and grayscale DAPI only with
annotations. Images that had little annotation issue were flagged
to be perfected and upgraded in ranking.

Generating regions of interest
In the context of counting ecDNAs within cell nuclei,

generating regions of interest (ROIs, Figure 1H) in metaphase
FISH images is a critical initial step. Metaphase FISH images
typically contain multiple nuclei, some of which may be intact
while others are bursted, revealing the underlying chromosomes
and ecDNAs. These images can be complex, with overlapping
structures and varying degrees of focus, making it challenging to
accurately count ecDNAs without precise guidance. By defining
ROIs, researchers can direct the algorithm to focus specifically on
the areas of interest—namely, the individual nuclei or their
remnants—thereby filtering out irrelevant parts of the image.
This targeted approach significantly enhances the accuracy of
ecDNA counts, ensuring that the algorithm is analyzing only the
relevant nuclear material and not extraneous background or
overlapping cells. By clearly delineating ROIs, the post-
processing steps are streamlined, leading to more reliable and
reproducible results in the study of ecDNA within cancer cells.

With the selected set of high quality images, it was essential to
address the presence of debris (Supplementary Figure 1), as well
as chromosomes and ecDNA that had drifted from other nuclei,
particularly at the edges of the images. These extraneous elements
were not originally annotated and needed to be removed to focus
on the relevant data. To achieve this, a lasso tool was employed to
draw a region of interest (ROI) that encapsulated all annotated
ecDNA while minimizing the inclusion of non-annotated
material. The resulting ROIs were saved as binary masks.
During this process, image contrast was significantly enhanced
to differentiate and either include or exclude faintly visible
features. For nuclei that were close together but clearly
separated, each was carefully reviewed, with distinct cells
isolated into their own ROIs when possible or otherwise
removed from the dataset. This approach resulted in a variety
of ROI shapes, ranging from tight circles to elongated ovals and
irregular polygons, effectively tracing around unburst nuclei and
isolated debris clouds. Debris and debris clouds were
differentiated from ecDNA based on their size and their
distance to the centroid of the bursted nuclei. For example,
the size of ecDNA from NCI-H2170 cells was estimated to be
approximately 0.25 µm (Supplementary Figure 2) from a prior
study (Madren et al., 2024), using Scanning Electron Microscopy
(SEM) and Correlative Light Electron Microscopy (CLEM)
(Madren et al., 2024).

As previously mentioned, subjectivity can arise when
interpreting the boundaries of a cell’s bursted nuclei radius and
distinguishing between circularized debris and ecDNA, leading to
inconsistencies in annotations between different individuals.
Defining ROIs not only provides the algorithm with a focused
area for counting and segmentation but also reduces the
influence of these subjective interpretations. By constraining the

analysis to clearly defined areas, we minimize the need for multiple
revisions of the boundary during post-prediction review.
Additionally, this approach facilitates a more consistent and
reliable evaluation of ground truth image annotations, ensuring
that they can be accurately reviewed and audited within a well-
defined context.

Expanding image annotations
Our images were annotated by placing a dot on a single pixel

to mark the location of ecDNA. However, this dot may not
always align perfectly with the pixel of highest intensity for that
ecDNA, which can impact the quality of annotations and
subsequently affect the performance of machine learning
algorithms. Recognizing the importance of precise
annotations in training an algorithm, we developed a method
to improve these annotations. We created a mask around each
annotated pixel, shaped like a diamond, to include nearby pixels
surrounding the ecDNA mark. This approach provided a more
comprehensive representation of the ecDNA, allowing the
algorithm to better identify and classify ecDNA by capturing
a broader context of the signal. This enhancement was crucial in
improving the accuracy and robustness of our machine
learning model.

Evaluation datasets: human error, ceiling
performance, and full model benchmarking
Human error

To better understand the amount of human error involved in
annotating metaphase FISH images, we conducted an experiment
where we selected a subset of metaphase FISH images. Three
different individuals were asked to annotate this subset
independently, and one individual annotated the same subset
in three separate replicates. Our findings revealed that across the
three individuals, there was a 8% ± 1% error in the annotations,
indicating the presence of human error. This analysis suggests
that any algorithm trained on such data is inherently limited by
this level of technical error, implying that the maximum
achievable accuracy for the algorithm is constrained by the
variability in human annotations. This establishes a
benchmark for understanding the limitations of our model’s
performance and provides a realistic expectation for its
accuracy (Figure 2A).

Ceiling performance
To determine the highest achievable accuracy of MIA, we

focused on a subset of hand-picked, top-quality metaphase FISH
images that were most amenable to automated AI learning. We
selected 144 metaphase FISH images that ranked highest according
to our stringent image quality criteria, ensuring they were clear, well-
focused, and exhibited minimal noise or overlap. By training MIA
on this cherry-picked dataset, we aimed to create a “ceiling model”
that represents the maximum potential accuracy of ecDNA
detection under ideal conditions. While we anticipate that this
model will demonstrate superior performance, we also recognize
that it may not be generalizable to more diverse or lower-quality
images. Nonetheless, this approach provides valuable insight into
the upper limits of algorithmic accuracy, establishing a benchmark
for what can be achieved in optimal scenarios.
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Full model
To develop a robust and generalizable model, we created a full

model dataset by selecting images with a ranking of 3 or higher,
ensuring a higher standard of image quality for training. This dataset
comprises 1,164 images, with 78% derived from our primary model
system, NCI-H2170 cells, while the remaining 22% come from a
diverse set of cell line model systems that harbor ecDNA, including
NCIH716, SNU16, and COLO320 (Figure 2B). By incorporating a
variety of cell lines, this dataset aims to strike a balance between
achieving high accuracy and maintaining broad applicability across
different cellular contexts. The full model represents our
comprehensive effort to train an algorithm capable of accurately
detecting ecDNA across a range of image qualities and biological
conditions.

Segmentation
Segmentation in computer vision is the process of dividing an

image into distinct segments or regions, where each segment
corresponds to different objects or parts within the image. The
primary objective of segmentation is to simplify or transform the
representation of an image into something more meaningful and
easier to analyze, making it a critical step for tasks like ecDNA
recognition.

Semantic segmentation is particularly effective for identifying
and analyzing ecDNA within cell nuclei in FISH (Fluorescence in
situHybridization) images, as demonstrated in previous approaches
(Rajkumar et al., 2019). By classifying each pixel in an image into
predefined categories—such as “ecDNA,” “chromosome,”
“unbursted nuclei,” or “background”—semantic segmentation
treats all objects of the same category as a single class

(Figure 2C). While it does n’t distinguish between different
instances of the same object, it excels in detecting and
segmenting ecDNA within the complex cellular environment
(Figure 2D). This approach overcomes challenges posed by
overlapping structures and varying signal intensities in metaphase
FISH images, enabling more accurate analysis of ecDNA.

Microscopy Image Analyzer (MIA) builds on these principles by
incorporating various image processing techniques, including
semantic segmentation, depending on the specific model or task.
MIA is designed for flexibility and adaptability across different types
of microscopy images, including those used for ecDNA detection in
metaphase FISH images. While it can employ semantic
segmentation similar to previous approaches, MIA primarily
focuses on streamlining the analysis of large-scale image datasets
through object detection, classification, and region-of-interest (ROI)
selection (Figure 1H). By applying techniques like thresholding,
edge detection, and ROI selection, MIA enables researchers to
identify and quantify features of interest—such as ecDNA—in a
high-throughput, efficient manner.

Accuracy and performance
We began by testing the accuracy and performance of our ceiling

model. Accuracy was assessed by comparing the total ecDNA count
in each image within the validation set against the annotated ground
truth. This metric guided the initial iterations of model
improvement. The first training sets consisted of approximately
144 ultra-high-confidence, hand-picked images. When evaluated
against a validation set of 45 selected images, the model exhibited an
absolute difference in total counts of around 8% compared to the
ground truth. While this level of accuracy was unexpectedly high, it

FIGURE 2
AI Models and Assessment of their Accuracies (A). We created different models to test the highest possible accuracy that we could expect ourmodel
to reach. (B) The breakdown of images used to train the Convolutional Neural Networks (CNNs) by cell line model system. (C) CNN-predicted
chromosomes, ecDNA, and in-tact nuclei from a metaphase FISH image. (D) A zoomed-in image of ecDNA near chromosomes, highlighting the
challenges in detecting individual ecDNAs when they cluster close together. (E) Accuracy metrics for the full (n = 1,164) model, showing the
distribution of error (the difference in ecDNAs predicted versus manually counted) across images. (F) Existing algorithms struggle to predict ecDNAs in
close proximity to chromosomes. (G) Annotated results from MIA, showing instances of true positives/negatives and false positives/negatives as well as
cases where MIA finds ecDNA that were not correctly annotated. (H) Contour detection of conjoined segmentations. The figure illustrates examples of
closely clustered ecDNA entities that are identified as a single object by the algorithm. Contour detection enables the separation of these conjoined
objects into distinct segments, improving the accuracy of ecDNA boundary identification and differentiation.
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likely represents the upper limit of achievable performance. In
subsequent iterations, models were trained on a larger dataset
comprising 1,164 images, which were refined by selecting ROIs
and filtered to include only images with ranks of 3 and 4. After
incorporating contour detection (discussed below) to address
conjoined segmentations, the error rate for the resulting models,
evaluated on a new set of 55 higher quality images (33 ranked 3+),
was 7.62% (Figure 2E).

After achieving accuracy levels comparable to human
annotations, we introduced an additional precision metric to
further evaluate model performance. This metric involved
comparing the predicted segmentation masks generated by the
model to the ground truth masks (created using a pixel-patched
approach to address class imbalance). Specifically, we assessed
whether each unique object in the ground truth had at least one
pixel overlap with a predicted mask, considering these overlapping
objects as correctly identified. However, we refined the process to
ensure that each object in the ground truth was exclusively matched
to a single predicted object, preventing multiple predictions from
being counted as overlaps with the same ground truth object. This
approach helped us identify and balance false positives and negatives
that might otherwise have been missed, thereby improving the
overall quality of the training set.

Comparison to existing approaches

Previous approaches to automating ecDNA detection, such as
ecDetect and ecSeg (Turner et al., 2017; Rajkumar et al., 2019), have
made significant strides in addressing the challenges of accurately
counting and localizing ecDNA within cell nuclei. ecDetect
primarily relies on size thresholding to distinguish ecDNA from
other nuclear components, applying a filter to isolate the region of
interest (ROI) before analysis. However, this method can struggle
with noise and closely clustered ecDNA, leading to potential
inaccuracies in annotation and resolution (Figure 2F). ecSeg, on
the other hand, utilizes a U-Net architecture with a
ResNet50 backbone and focuses on segmenting images into
patches for analysis. While effective, ecSeg was trained on a
relatively small dataset of 483 annotated images, which may limit
its generalizability and resolution at the chromosomal level.

Using the Microscopy Image Analyzer (MIA) tool builds on
these previous methods by incorporating advanced image post-
processing techniques that enhance annotation quality and
improve resolution. Trained on nearly 1,300 high-quality images,
MIA benefits from a larger and more diverse training dataset and
introduces a refined segmentation process that accurately identifies
and separates closely clustered ecDNA, resolving them even when

TABLE 1 Accuracy metrics across all models.

Model Pred count Actual count Accuracy Precision Recall Matthew F1

A. MIA model metrics

Ceiling 203.016 193.778 0.83 0.842 0.877 0.653 0.857

2,170 (3+ images) 212.184 215.868 0.796 0.835 0.817 0.587 0.824

Full model 157.728 214.927 0.637 0.724 0.561 0.305 0.621

CV full model 132.668 180.703 0.621 0.709 0.538 0.279 0.597

B. EcSeg model metrics

2,170 (3+ images) 191.197 215.868 0.656 0.712 0.641 0.324 0.667

Full model 79.31 214.927 0.424 0.441 0.199 −0.058 0.278

CV full model 78.81 180.703 0.438 0.435 0.237 −0.05 0.315

C. Drug response predictions

2,170 control (MIA) 284.532 326.675 0.719 0.796 0.696 0.444 0.74

2170 JQ1 (MIA) 100.758 165.379 0.603 0.777 0.47 0.281 0.579

2,170 control (ecSeg) 97.286 326.675 0.413 0.505 0.164 −0.048 0.242

2170 JQ1 (ecSeg) 40.121 165.379 0.375 0.399 0.101 −0.147 0.166

D. Drug response predictions in other cell lines

COLO320 JQ1 (MIA) 35.828 45.969 0.544 0.62 0.481 0.149 0.535

COLO320 JQ1 (ecSeg) 10.328 45.969 0.347 0.338 0.078 −0.19 0.184

SNU16 JQ1 (MIA) 142.08 260.3 0.658 0.738 0.522 0.382 0.571

SNU16 JQ1 (ecSeg) 18.8 260.3 0.335 0.119 0.013 −0.213 0.039

In Section A, MIA is the CNN-based model and we assess accuracy for the Ceiling, 2,170 (with 3+ or higher ranked images from only NCI-H2170 cells), and Full models. The Full model was

split twice to evaluate the differences between training on different images in the dataset. In Section B, ecSeg is the CNN-basedmodel used to assess all but the Ceiling model. In Section C, we use

the Full MIAmodel to predict ecDNA counts in FISH data from control NCI-H2170 cells and cells that have been treated with JQ1.We also assess the Full ecSeg model to predict ecDNA counts

in the same set of images. In Section D, we use the Full MIA and Full ecSeg models to predict ecDNA counts in other cell lines treated with JQ1 to evaluate the generalizability of these models to

other cell lines.
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colocalized around or between chromosomes (Figure 2G). Unlike
ecDetect, MIA’s method does not rely heavily on size thresholding,
allowing it to maintain high accuracy without filtering out subtle
ecDNA signals.

Moreover, MIA’s ability to classify chromosomes within the
segmented ROIs provides an additional layer of precision, which is
crucial for distinguishing between ecDNA and chromosomal
artifacts. This capability directly impacts the overall accuracy of
ecDNA detection, as it reduces false positives and negatives that
arise from misclassification in complex cellular environments. By
comparing the performance of MIA with ecDetect and ecSeg
(Table 1, Sections A and B; Supplementary Table 1), we
demonstrate significant improvements in both the accuracy of
ecDNA identification and the ability to handle unannotated images.

Post-processing analyses
Contour detection

Contour detection is a technique used in image processing and
computer vision to identify and delineate the boundaries or edges of
objects within an image. A contour represents a curve that connects
all the continuous points along a boundary that share the same color
or intensity. In the context of image segmentation, contour detection
is crucial for accurately separating and defining the shapes and
structures of different objects within an image, such as nuclei,
chromosomes, or ecDNA.

When dealing with conjoined segmentations—instances where
multiple objects (e.g., closely clustered ecDNA) are touching or
overlapping (Figure 2H), contour detection helps to identify the
precise boundaries of each individual object. This allows for the
separation of these conjoined objects into distinct segments, thereby
improving the accuracy of the model in distinguishing between
different ecDNA entities or other features in the image.

To enhance the accuracy of ecDNA detection, we applied
contour detection as a critical post-processing step. By accurately
delineating the boundaries of individual ecDNA within these
complex regions, we were able to significantly improve the
model’s ability to distinguish between different ecDNA entities.
The improvement after using contour detection underscores the
importance of advanced post-processing techniques in refining the
performance of computer vision models for complex biological
image analysis.

Merging data from other fluorescent channels
Once MIA was executed to predict ecDNA in unannotated

images, our next step was to identify the specific genes located
on these predicted ecDNA, enabling us to count and differentiate
between different ecDNA species and assess oncogene amplification
levels. In our case, we labeled two oncogenes known to localize to
ecDNA in each cell line: ERBB2 and MYC for NCI-H2170 cells, and
FGFR2 and MYC for SNU16 and NCIH716 cells. Beyond using
DAPI fluorescence, which provides a general overview of nucleic
acids in our images, we employed FISH DNA probes that bind
directly to genomic regions within each of these genes. To accurately
map the predicted ecDNA locations with the actual locations
identified through other channels (e.g., FITC and Texas Red), we
developed a post-processing script. This script enabled the
alignment of MIA-predicted ecDNA with the fluorescent signals
from the gene-specific probes. When comparing the results of this

script to human annotations, we found that the accuracy ranged
within 97% ± 2% (Supplementary Figures 3–5; Supplementary
Table 2), demonstrating the effectiveness of our approach (See
Supplementary Methods for more details).

Applications in systems pharmacology:
changes in ecDNA during drug treatment

Approximately 15% of tumors harbor ecDNA (Kim et al., 2020),
yet research into the critical response mechanisms involving ecDNA
remains limited, and only a few drugs have been thoroughly
explored. Identifying treatments that specifically target cancer
cells with ecDNA presents a significant challenge. To address this
challenge, we developed CytoCellDB (Fessler et al., 2024), a
comprehensive global data resource designed to streamline drug
response evaluations. This platform allowed us to systematically
assess drug efficacy across 139 cell lines harboring ecDNA and over
400 cell lines without ecDNA, providing a robust framework for
efficiently identifying impactful treatments. Through this approach,
we identified a cell line whose ecDNA had not yet been reported, that
co-amplifies ERBB2 and MYC on the same ecDNA amplicon. The
discovery of new ecDNA model systems highlight the potential of
CytoCellDB to uncover new insights in ecDNA and cancer research.

Co-amplification of oncogenes on ecDNAs presents unique
opportunities for diversification of gene and gene dosage
combinations across cells in a population. As demonstrated by
Figure 3A, there are three identified “species” of unique ecDNA and
one unidentified species. These different ecDNA species localize
different genes or gene combinations on the same fragment of
ecDNA, “mix and matching” genes that are not commonly that
close to one another in genomic space. For example, the gene MYC
is encoded in chromosome 8 and the gene ERBB2 is encoded in
chromosome 17. Suddenly, on ecDNA they become neighbors in the
ecDNA species that co-localize these genes on the same amplicon. In
NCI-H2170’s case, we see ecDNA that localizes MYC and
ERBB2 separately, and those that co-amplify these genes. We also
see an “unknown” entity that amplifies genes other than MYC or
ERBB2. These different species generate far more population genetic
diversity than having one species alone. Increasing genetic population
heterogeneity may be a strategy of these cancer cells to diversify their
populations to increase the likelihood of generating advantageous traits
to overcome drug resistance or changing environments, effectively
“hedging their bets” (Figure 3B).

Currently, we lack a systematic method to quantify changes in
ecDNA during treatment. Previous studies that have studied the effects
of drugs on ecDNA have been fragmented and inconsistent, with
significant variations in cell lines, drugs, dosages, and time points.
This lack of standardization has led to an incomplete understanding of
the dynamic processes involved in ecDNA drug response. Most
research to date has primarily focused on the effects of
chemotherapeutic agents (Haque et al., 2001; Storlazzi et al., 2010;
Kitajima et al., 2001; van Leen et al., 2022), such as methotrexate,
hydroxyurea, cisplatin, etoposide, doxorubicin, and vincristine, on DM
reintegration. Interestingly, tyrosine kinase inhibitors (TKIs) have been
shown to induce reversible reintegration of DMs (Nathanson et al.,
2014), highlighting the complexity of the interactions between drugs,
ecDNA and cellular adaptation strategies.
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Recent studies suggest that epigenetic remodeling agents, such as
JQ1, exert unique effects on cell lines harboring ecDNA. JQ1 and other
epigeneticmodulators alter chromatin accessibility, effectivelymodifying
the “openness” or “closed-ness” of DNA regions, including those
amplified on ecDNA. JQ1 specifically targets BRD4, a BET
bromodomain protein known to enhance MYC transcription.
BRD4 may also tether double minutes (DMs, a type of ecDNA) in
transcriptional “hubs” (Zhou et al., 2020; Wu et al., 2019; Hung et al.,
2021). By inhibiting BRD4, JQ1 not only disrupts ecDNA-specific
transcription (Wu et al., 2019) but also impacts the broader
transcriptional landscape, reducing the activity of oncogenes
amplified on ecDNA, such as MYC and PVT1 (Figure3C). This dual
impact of JQ1 on both transcription and chromatin organization
highlights its potential as a therapeutic agent in ecDNA-driven cancers.

In addition to these transcriptional effects, JQ1 may disrupt
ecDNA “hubs,” the spatially organized groups of ecDNA molecules
that cluster together. Such hubs are believed to be a critical adaptive
mechanism in cancer cells that harbor ecDNA, enabling enhanced
transcriptional output and rapid responses to selective pressures.
The disruption of these hubs by JQ1 could undermine a key survival
strategy in cancers harboring ecDNA, offering an exciting new
avenue for drug development targeting these aggressive tumor

phenotypes. Furthermore, JQ1’s influence on chromatin
accessibility may indirectly impact the segregation and stability of
ecDNA during cell division, adding another layer of complexity to
its effects.

As a pharmacology application, we leverage our AI-accelerated
image annotation platform, using the Microscopy Image Analyzer
(MIA), to study changes in ecDNA counts before and after drug
treatment across three distinct cancer cell lines: a lung cancer cell
line (NCI-H2170), a gastric cancer cell line (SNU16), and a
colorectal cancer cell line (COLO320DM). Our goal is to apply
our image processing pipeline and MIA to predict ecDNA counts in
images from untreated, control (DMSO-only) and drug-treated
samples, with a focus on assessing the impact of JQ1 treatment
on ecDNA counts after 24 h. This approach aims to provide deeper
insights into the effects of JQ1 on ecDNA copy number changes and
its potential role in disrupting critical adaptive mechanisms in
cancer cells.

Model performance for predicting ecDNA counts
in JQ1-treated samples

The MIA model and the ecSeg model were evaluated for their
ability to predict ecDNA counts in both untreated and JQ1-treated

FIGURE 3
Scaling Data Analytics to Probe ecDNA-Mediated Drug Response Mechanisms (A). Metaphase FISH image with dual probe labeling of NCI-H2170
cells that have four or more ecDNA species present in most of their cell nuclei. (B) Having multiple species of ecDNA present across cell nuclei can
generate widespread cell-to-cell heterogeneity. As ecDNA segregates unevenly into daughter cells, each of these species will segregate unevenly. This
generates extreme population genetic heterogeneity in terms of copy number variation differences across cells. This heterogeneity could lead to
accelerated adaptation and drug resistance. (C) JQ1 is amolecule that was recently discovered to impact ecDNA higher-order clustering. It inhibits BRD4,
impacting MYC transcriptional activity. Because MYC is often amplified on ecDNA, JQ1 may globally influence cells that harbor ecDNA-based MYC
amplications. (D) Experimental results and AI-predicted ecDNA counts for MIA and ecSeg comparing ecDNA counts in control (untreated) and drug-
treated (JQ1) NCI-H2170 cells. Significance was determined using a Mann-Whitney-Wilcoxon test with p-values < 0.0001 (****) and < 0.001 (***). (E)
Under treatment, cells eliminate their ecDNA rapidly and reintegrate them into chromosomes, forming homogeneous staining regions (HSRs). (F) Drug
treatment increases the number of multimerized ecDNAs that are seen in metaphase FISH images, which may be a precursor to chromosomal
reintegration. (G) FISH data showing different structural views of ecDNA during drug treatment, including doubleminutes, multimerized ecDNA or “hubs”
and HSRs. (H) A model predicting ecDNA reintegration rate during drug treatment. (I) The fraction of cells that were observed to have HSRs during
metaphase FISH image analysis. (J)Cells with lower ecDNA counts aremore likely to be observed to have HSRs compared to cells with high ecDNA levels.
Significance was determined with a Chi-Square test with p-value < 0.05 (*). Similarly, cells with lower ecDNA levels are more likely to have multimerized
structures compared to cells with high levels of ecDNA.
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samples. Our objective was to determine how accurately each model
could quantify the reduction in ecDNA levels induced by
JQ1 treatment, a BET inhibitor known to impact chromatin
accessibility and gene expression.

The MIA model achieved reasonable accuracy in predicting
ecDNA counts across both untreated and treated conditions. For
untreated samples, the model obtained an accuracy of 0.719, with
precision and recall values of 0.796 and 0.696, respectively, resulting
in an F1 score of 0.74. However, when applied to JQ1-treated
samples, the model’s performance declined, reflecting the
biological complexity of drug-induced changes. In treated
samples, the MIA model reported an accuracy of 0.603, with
precision at 0.777 and recall at 0.47, yielding an F1 score of
0.579. The drop in recall suggests that the model undercounted
ecDNA, possibly due to the altered ecDNA patterns post-treatment.

The ecSeg model exhibited lower overall performance compared
to the MIA model. For untreated samples, it achieved an accuracy of
0.413 with a precision of 0.505 and a recall of 0.164, indicating
difficulty in detecting the full ecDNA population. In JQ1-treated
samples, the ecSeg model’s performance further declined, with an
accuracy of 0.375 and a precision of 0.399, while recall dropped to
0.101, resulting in a negative Matthew’s correlation coefficient
(MCC) of −0.147. These metrics highlight the ecSeg model’s
limitations in adapting to ecDNA changes following drug treatment.

Model comparison and implications
The performance of both models underscores the challenges in

predicting ecDNA counts under drug treatment conditions. While
the MIA model demonstrated moderate generalizability, achieving
reasonable performance across untreated and treated samples, the
ecSeg model struggled with both untreated and JQ1-treated datasets.
The higher precision but lower recall in JQ1-treated samples for
both models suggests that while some ecDNA features were
accurately identified, a significant portion of ecDNA was missed,
possibly reflecting altered ecDNA morphology or reintegration
patterns in response to the drug.

These findings indicate that while our models, especially MIA,
offer potential for predicting ecDNA behavior, further model
refinement is needed to improve recall and robustness under
varying biological conditions. The results also demonstrate the
need to incorporate additional training data reflecting post-
treatment changes to better capture the dynamics of ecDNA in
response to drugs like JQ1 (Table 1, Sections A and B).

Cells rapidly eliminate ecDNA after 24 h of
JQ1 treatment

Comparing ecDNA counts before and after 24 h of
JQ1 treatment, we observe that cells rapidly eliminate their
ecDNAs. In NCI-H2170 cells, the mean ecDNA count in
untreated wild-type cells is 330 ± 167, while after JQ1 treatment,
the mean ecDNA count drops to 220 ± 132 (Figure 3D). Similarly, in
COLO320 cells, the mean ecDNA count decreases from 50 ± 37 in
wild-type cells to 45 ± 30 post-treatment. In SNU16 cells, the mean
ecDNA count shifts from 370 ± 203 in wild-type cells to 298 ±
156 following JQ1 exposure. Using a Wilcoxon rank-sum test, we
find that the difference in ecDNA counts between untreated and
JQ1-treated populations is highly significant across all 3 cell lines.
We see a similar trend between DMSO (vehicle-only control) and

JQ1-treated (Supplementary Figure 6). This suggests that
JQ1 induces a similar drug response mechanism as other
chemotherapeutic agents, where cells rapidly eliminate their
ecDNA, possibly through the selection of less sensitive clones,
cells with fewer ecDNAs, or active elimination processes.
Remarkably, the distributions of all ecDNA species—whether
containing only MYC, only ERBB2, or both MYC and
ERBB2—show significant differences before and after drug
treatment (Supplementary Figures 7–10).

Cells reintegrate ecDNAs into chromosomal
homogeneous staining regions (HSRs)

During drug treatment, cells reintegrate ecDNA into
chromosomes, forming HSRs, or regions of highly amplified
genes within chromosomes (Figure 3E). In this way, ecDNA,
which is extrachromosomal and independent of chromosomes,
shapeshifts into chromosomal DNA. As a field, we still do not
definitively understand how this phenomena increases cell fitness or
survival during drug treatment. The overarching opinion is that cells
“hide” and “store” their ecDNA in HSRs when it will serve them
better in future conditions. Furthermore, ecDNAs form higher-
order structures in which it appears that they multimerize and
combine into larger ecDNA entities (Figure 3F). Multimerization
may occur prior to reintegration; however, we currently lack
sufficient evidence to confirm this process definitively (Figure 3G).

Comparing the number of HSR counts in NCI-H2170 cells
before and after JQ1 treatment, we find that cells reintegrate
ecDNAs at a rate of approximately 5% during drug exposure
(Figure 3H). In this cell line, no HSRs are observed in untreated
cells that contain the same set of genes as the ecDNAs, indicating
that any HSR detected in the drug-treated samples containing MYC
or ERBB2 represents a reintegrated ecDNA. After 24 h of drug
treatment, we observe 18 reintegration events across 450 cells
(Figure 3I), confirming that ecDNA reintegration occurs as part
of the cellular response to the drug.

ecDNA reintegration mostly occurs in cells with
fewer ecDNA counts

Reintegration events are more likely to occur in cells that have
lower numbers of ecDNA. Analysis of over 600 metaphase FISH
images from NCI-H2170 cells showed that DMs reintegrate into
HSRs more frequently in cells with fewer DMs (p = 0.027, chi-
squared test), consistent with findings from previous studies (Haque
et al., 2001) (Figure 3J). One possible explanation for this
observation is that cells with fewer ecDNAs may face lower
cellular allocation costs, allowing them to invest more resources
into processes such as reintegration. Alternatively, these cells may
have different cell cycle distributions, potentially spending more
time in specific phases that favor reintegration events. This could
enable a higher frequency of HSR formation in cells with fewer
ecDNAs, offering them a survival advantage under drug treatment
conditions.

This analysis provides a powerful framework for quantifying
how JQ1 influences ecDNA elimination and reintegration, opening
new avenues to explore whether its effects are mediated through
direct disruption of ecDNA hubs, transcriptional regulation, or
broader processes like cell cycle dynamics. By systematically
measuring changes in ecDNA, this work lays the foundation for
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future studies to unravel the complex mechanisms underlying JQ1’s
impact on ecDNA behavior.

Model limitations

While the Microscopy Image Analyzer (MIA) offers significant
advantages in automating the detection of ecDNA in metaphase
FISH images, it has several limitations that users should consider.

Algorithm-specific limitations
One key limitation is that the algorithm has been trained

exclusively on metaphase FISH images. As such, applying MIA to
other types of images (e.g., interphase cells or tissue sections) would
likely require retraining the model on an appropriate dataset.
Additionally, the detection of ecDNA is dependent on size
thresholds inherent to the algorithm’s training. While it is
difficult to provide an exact size threshold in terms of spatial
resolution, the ecDNA analyzed in the training dataset typically
ranged from 1 to 4 Mb in DNA content or approximately 0.25 µm in
size (Supplementary Figure 2). Further research is needed to clarify
the minimum detectable size for ecDNA and how this correlates
with biological and technical resolution limits. Finally, MIA was
trained on metaphase FISH images captured at ×60 magnification,
and its performance is optimal with images of similar resolution.
Deviations in magnification (e.g., ×20, ×40, or ×100) or image
resolution may reduce accuracy or limit the ability to analyze full
metaphase spreads efficiently.

Biological considerations
The necessity for metaphase spreads limits the application of

this algorithm to cell line models and samples where such spreads
can be reliably generated. This may preclude its immediate use in
primary patient samples or tissues that cannot be processed into
metaphase spreads. Additionally, the interpretation of ecDNA
distributions under JQ1 treatment warrants careful
consideration. While our data suggest that JQ1 influences the
population of ecDNA-positive cells entering metaphase, it is
possible that JQ1 does not directly alter ecDNA itself but
rather affects the subset of cells capable of entering mitosis or
the chromosomal context of ecDNA and HSRs. This underscores
the need for further studies to disentangle direct effects on
ecDNA from secondary effects mediated through cell cycle
regulation.

Technical limitations
From a software perspective, MIA is restricted to a graphical

user interface (GUI) and lacks command-line functionality,
preventing it from running in a “headless” mode. This limits its
integration into larger, script-based workflows for high-throughput
analyses. The software also requires substantial memory resources,
which can be a constraint when analyzing large datasets or using less
powerful machines. Additionally, MIA does not allow direct
processing from master folders, requiring manual file
management and input, which can be cumbersome for large-
scale analyses.

A detailed guide on preparing, ranking, and analyzing
metaphase FISH images with MIA is provided in the

Supplementary Material. This documentation includes step-by-
step instructions on image preparation, ranking criteria, and
running the software for optimal results. These limitations
highlight opportunities for future improvement in both the
biological scope and technical functionality of MIA to enhance
its applicability in ecDNA research.

Conclusion

In this study, we successfully automated the detection of
extrachromosomal DNA (ecDNA) using the Microscopy Image
Analyzer (MIA), providing a robust and accurate framework for
analyzing metaphase FISH images. Through the development and
application of our custom pipeline, we enhanced MIA’s capabilities
specifically for ecDNA detection and quantification, establishing it
as a powerful tool for investigating the effects of pharmacological
treatments on cancer cells.

Our approach has yielded new insights into cellular responses
during JQ1 treatment, revealing significant shifts in ecDNA counts,
patterns of ecDNA reintegration into chromosomes, and the
tendency of certain cells within the population to favor ecDNA
reintegration. These findings underscore the potential of MIA-based
analysis to advance our understanding of how cancer cells adapt to
therapeutic pressures, offering valuable perspectives for drug
discovery and cancer treatment strategies.

Additionally, we observed promising signs of generalizability.
Models trained primarily on images from 1 cell line could predict
ecDNA patterns in another cell line with moderate success,
indicating that the framework holds potential for cross-cell-
line applications. Similarly, models trained on images of
untreated cells were able to predict ecDNA behavior in drug-
treated cells with reasonable accuracy, demonstrating that the
training process is sufficiently robust to generalize across
treatment conditions. These findings suggest that the system is
flexible and capable of adapting to varying biological contexts,
though further validation will be needed to fully assess the extent
of this generalizability.

Methods

Primary cell culture

NCI-H2170, SNU16, and COLO320DM and NCIH716 cells
were purchased from ATCC and were grown in RPMI media
(Gibco) supplemented with 10% heat-inactivated fetal bovine
serum (Gibco) in a humidified incubator with 5% CO2.
SUM159PT cells were given as a gift from Gary Johnson’s
laboratory (UNC Chapel Hill) and were STR verified and
checked for mycoplasma. SUM159PT cells were grown in Ham’s
F-12 media supplemented with 5% heat inactivated fetal bovine
serum along with 10 mMHEPES, 1ug/mLHydrocortisone, and 5ug/
mL Insulin. Cells were harvested with 0.25% Trypsin in DPBS
(Gibco). Viable cells were counted using a Countess 3
(Invitrogen) counter and trypan blue (Invitrogen, T10282). Cells
were collected for metaphase and karyotype (G-banding)
experiments within 3 passages.
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Drug treatments

For NCI-H2170 cells, an xCELLigence Real-Time Cell Analyzer
(Agilent) was used to monitor cell activity over time in the presence
and absence of JQ1, recording sweeps every 15 min using RTCA
Software Pro 2.6.0. The Agilent SP station was placed in a humidified
CO2 incubator. Background readings were recorded using 80 μL of
media alone in a 96-well PET E-plate. NCI-H2170 cells were seeded
at a concentration of 20,000 cells per well in 100 μL of media. After a
24-h attachment period, cells were treated with JQ1 at six different
doses ranging from 0 μM to 100 μM, with DMSO as the vehicle
control. Impedance-based measurements were collected at 15-min
intervals and converted into Cell Index (CI) values, which reflect
changes in cell viability, adherence, and morphology. For each
JQ1 concentration, CI values were normalized to the initial pre-
treatment measurements, and a dose-response curve was generated
by plotting normalized CI values against JQ1 concentrations at the
24-h endpoint. The IC50 dose, calculated to be 36.48 μM, was
determined by fitting the data to a nonlinear regression model {log
[(JQ1)] vs. response} using GraphPad Prism, identifying the
concentration of JQ1 that reduced the Cell Index by 50%. Cells
were treated at this concentration and collected at 24 h for
metaphase FISH experiments.

For semi-adherent and suspension cell lines (SNU16 and
COLO320DM), we determined IC50 values using CellTiter-Glo
(Promega). SNU16 cells were treated with six dilutions of JQ1
(0–10 μM) with DMSO as the vehicle control, and growth was
measured using luminescent signal intensities proportional to ATP
levels. For COLO320DM cells, 10 dilutions of JQ1 (0–50 μM) were
tested. For each cell line, a dose-response curve was generated by plotting
relative luminescence against the JQ1 concentration. The IC50 values
were determined by fitting the curve to a nonlinear regressionmodel [log
(inhibitor) vs. response] using GraphPad Prism, identifying the
concentration of JQ1 at which 50% of cell viability was inhibited.
The IC50 doses were calculated to be 14.67 μM and 32.80 μM for
SNU16 and COLO320DM cells, respectively.

Metaphase sample preparation and imaging

Generating condensed chromatin during metaphase allows for
optimal imaging of ecDNA. Before karyotyping, cells underwent a
four-stage preparation: arrest at metaphase, incubation in a
hypotonic solution, cell fixation, and staining. Samples were
prepared using cells cultured by the Brunk Lab.

Cells were arrested at metaphase by treating with colcemid at
0.1 μg/mL (10 μg/mL Colcemid Solution, FUJIFILM Irvine
Scientific) in cell culture media when cells reached ~70%
confluency. Colcemid arrests cellular division during mitosis by
binding to tubulin, preventing spindle formation and cytokinesis.
Cells were incubated with colcemid for 12–20 h before being
harvested following standard cell culture procedures. For
adherent or semi-adherent cells, trypsinization was used to
detach cells, and this was quenched with a mixture of cold
colcemid-spiked media and PBS wash to maximize yield. Cells
were resuspended in 1 mL of 1x PBS by pipetting and
transferred to 1.5 mL microcentrifuge tubes for centrifugation at
5,000 rpm for 2 min.

The cells were incubated with 600 µL of pre-warmed 37°C
0.075M KCl (Gibco), added dropwise with gentle agitation to
resuspend cells. After 15 min at 37°C, the cells became swollen
and fragile due to osmotic pressure, making them ready for fixation.
Freshly prepared modified Carnoy’s fixative (3:1 methanol:glacial
acetic acid) was added dropwise to each sample. Tubes were
immediately centrifuged at 5,000 rpm for 2 min. After leaving
~150 µL of supernatant, pellets were gently agitated and
resuspended. Another 600 µL of fixative was added dropwise,
followed by agitation and centrifugation for 2 min at 5,000 rpm.
This fixation step was repeated three times, with the final addition of
fixative adjusted to achieve ~6 million cells/mL (0–1 mL), ensuring
optimal density for single-cell imaging.

Microscope slides were prepared using Superfrost™
Microscope Slides (Fisherbrand, Cat. No: 12550123), which are
uncharged. Slides were humidified using water vapor immediately
before a drop (10 µL) of the prepared cell suspension was dropped
from a height of ~60–70 cm onto the slide. The slides were left to air
dry for an hour. Dried slides were equilibrated in ×2 saline sodium
citrate (SSC) (Ultrapure™ 20X SSC buffer, Invitrogen, Cat. No:
15557-036) and dehydrated through an ascending ethanol series
(70%, 85%, 100%) for 2 min each. 5 µL of fluorescent DNA probes
(Empire Genomics) were applied to the center of a metaphase
spread. A 22 × 22 mm cover glass (Electron Microscopy
Sciences, Cat. No: 72210-10) was placed over the slide. Slides
were denatured at 70°C for 2 min and incubated at 37°C
overnight (16–20 h) in a humidified slide moat.

Post-hybridization, slides were washed sequentially in 0.4× SSC
and 2× SSC + 0.05% Tween-20 for 2 min each, followed by a final dip
in 2× SSC. After removing residual washing buffer, SlowFade™
Diamond Antifade Mountant with DAPI (Invitrogen, Cat. No:
S36964) was added to the center of the slide. A 24 × 60 mm
microscope cover glass (Fisherbrand, Cat. No: 12541036) was
placed on top and sealed with nail polish.

All images were captured using an Echo Revolution
Microscope (Echo, San Diego, CA) at ×60 magnification.
Images were taken from the same slide or occasionally from two
slides prepared from the same metaphase spread to ensure
consistency in experimental analysis. While uncharged slides
were used for all metaphase spreads, potential differences in
ecDNA adherence between charged and uncharged slides were
not specifically tested.

Image ranking

Images were evaluated on a 0 to 4 scale, with 0 indicating the
lowest confidence in image quality and 4 representing the highest.
The ranking process considered factors such as image resolution,
clarity, and human oversight. The initial assessment focused on the
content and visual quality. Resolution was reviewed to identify
blurriness, out-of-focus chromosomes, or artifacts. This
preliminary review set a ceiling for the final score; for instance, if
the resolution was insufficient to clearly resolve individual
chromosomes or ecDNA, the image could receive a maximum
score between 0 and 2. In contrast, images with sharp features
that clearly resolved chromosomes and ecDNA could achieve a
higher ranking of 3 or 4.
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Another factor considered was the distribution of material
around nuclei, referred to here as the nuclear splash pattern. In
some cases, nuclear material spreads unevenly, influenced by factors
like nearby artifacts or popped nuclei, which disrupt the typical
elliptical shape of a nucleus. The rank was reduced only if these
artifacts caused significant overlap between regions, making it
difficult to confidently distinguish boundaries. Images with highly
crowded fields or poorly defined ROI boundaries were also
downgraded, as such conditions made consistent annotation
across different users more challenging.

After evaluating image quality, the annotations were reviewed for
accuracy. Merged images with multiple probe layers were separated to
isolate the DAPI stain, and the original annotations were re-imported.
To enhance visibility of small ecDNA, the contrast was increased.
Annotations were then verified based on their proximity to the original
markings. Ifmost annotations alignedwithin a few pixels of the original,
the image was assigned a rank of 4. However, the rank was lowered if
significant errors were detected. False positives were noted when
annotations overlapped with chromosomes, debris (Supplementary
Figure 1) or debris clouds containing probe molecules, or when
ecDNA was duplicated due to layer misalignment or indicator
splitting. False negatives occurred when dim ecDNA was missed,
when ecDNA was too close to chromosomes or artifacts, or when
clusters of ecDNAwere undercounted. If such errors were prevalent, the
image was downgraded to a rank of 1. In total, we had 183 images
marked as 0, 290 images marked as 1, 700 images marked as 2,
970 images marked as 3, and 441 images marked as 4.

Finally, each image was assigned a final rank, and detailed notes
were recorded. These notes included suggestions for improving
annotations to increase the image’s rank, as well as any
observations—such as uneven brightness or scaling—that could
explain deviations in accuracy across images but were not
directly captured by the ranking criteria.

ROI segmentation approach

Images were isolated to the single-nucleus level by
cytogeneticists, technicians, or scientists who defined the
perimeter of the region of interest. This was accomplished using
the lasso tool in the FIJI software (Schindelin J. et al., 2012; Schneider
C. et al., 2012) to create a binary image representing the region of
interest (ROI) for each nucleus. Masks were then generated for each
image to tightly constrain the focus to the annotated regions and
chromosomes. This step aimed to minimize the inclusion of
unannotated data that could interfere with model training.
However, in some cases, artifacts such as unpopped nuclei could
not be fully excluded when defining the ROI. These artifacts were
allowed to remain in the final ROI to provide counterexamples for
the model, which could enhance its robustness.

Expanding pixels around annotations

During the original annotation phase, the FIJI counting tool was
used by multiple different operators/technicians/scientists to
document the count. This tool will give a total count of the
annotations made to the image and tag a single pixel the

location. Each image was 2048 by 2448 pixels and could have up
to a thousand annotations. Due to the large class imbalance each
annotation was expanded using a python script to a 7 pixel tall
7 pixel wide diamond patch to decrease the class imbalance and
build in padding for each annotation not being exactly in the center
of each ecDNA. The pixel patch was transferred as a perimeter into a
single.npz file that would translate to a segmentation by MIA.

Performing analysis with MIA

Within MIA, each image was dissected into 224 × 224 pixel
patches and randomly augmented with any affine transformation.
The patches were then fed into a U-Net with a Res-Net-50 encoder
neural network. The model used a focal conservative loss with a class
weighing of 0.82. The batch size (number of images per model
update) was set at 8, and the learning rate was set 0.001 with a
0.1 reduction factor for loss plateaus over three epochs until 1.00 *
(10−6). Contours were not predicted during the training due to
memory limitations, but were optimized to match model training
data ecDNA counts in post-processing. These hyperparameters were
tuned based on the minimum loss and computational resources over
50 epochs of a reduced dataset.

For training of large models, the model was trained for between
65 and 75 epochs based on the final plateau of loss. Contours were
separated in the masks to segregate overlapping ecDNA based on
ecDNA count. The segmentation masks were then exported from
the.npz coordinates into a.tif image.

A detailed guide on how to prepare, rank, and analyze images
using the MIA with metaphase FISH images is provided in the
Supplementary Material. This documentation includes step-by-step
instructions on image preparation, ranking criteria, and running
MIA for optimal results.

Accessing accuracy of predictions

To assess the model’s performance, we used a standard accuracy
metric defined as the difference between the total predicted count
and the total ground truth count, normalized by the ground truth
total. This metric provides a measure of the model’s deviation from
the true count. The majority of the observed error resulted from the
model underestimating the true count, indicating a tendency toward
undercounting.

Error metric and model evaluation

To evaluate the model’s performance, we calculated the Mean
Absolute Error (MAE) between the ground truth ecDNA count and
the predicted ecDNA count. The MAE is defined as:

MAE � 1/n( )∑ PredictedCounti − GroundTruthCounti| |

This metric provides an average of the absolute differences
between predicted and actual counts, offering a straightforward
measure of the model’s accuracy. We selected the MAE because
it reflects the magnitude of the prediction error without being
influenced by the direction of the error (over- or underestimation).
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Precision

Two measures of precision were calculated: location-based
precision and count-based precision.

Location-based precision

This metric evaluated precision at the pixel level by determining
whether individual pixels from the model’s segmentation output
overlapped with the ground truth map. Each pixel present in both
the ground truth pixel patch and MIA’s segmentation output was
counted as a true positive. Conversely, pixels present in the model’s
output but not in the ground truth were counted as false positives. In
this method, each pixel was treated as an individual label, providing
a highly granular precision measure.

Count-based precision

This measure compared the overlap between predicted
segmentation labels and the corresponding ground truth pixel
patches. If at least one pixel of a predicted segment overlapped
with the corresponding ground truth patch, the segment was
considered a true positive. To avoid overestimation, any
predicted segment overlapping multiple ground truth patches was
counted only once as a true positive. The total number of
overlapping segments was divided by the total ground truth
segment count to yield the precision score.

Any difference between the total number of predicted segments
and the overlapping true positives was recorded as the false
positive count.

Object-oriented model performance
evaluation

One approach to assess model performance was object-oriented
evaluation. In this method, the true positives (TPs) were calculated
by counting the number of ground truth (GT) objects that
overlapped with at least one predicted object, while subtracting
the number of predicted objects that overlapped with more than
1 GT object. This ensures that each true positive consists of a unique
pairing between one predicted object and 1 GT object, avoiding
overcounting.

The false positives (FPs) were determined by subtracting the
total number of true positives from the total number of predicted
objects. Similarly, the false negatives (FNs) were computed by
subtracting the number of true positives from the total number
of GT objects.

The true negatives (TNs) were identified by counting the pixels
labeled as zero in both the prediction masks and the GT labels. To
adjust for the disproportionate number of background pixels
compared to ecDNA pixels, we scaled the number of true
negatives by dividing it by the ratio of background pixels to
ecDNA pixels in the GT for each image. This result was further
divided by 25, representing the size of each GT object, to ensure that

the number of true negatives was comparable to the number of
true positives.

This scaling ensures that the accuracy metric reflects the
importance of true positives and is not disproportionately
influenced by the abundance of true negatives in the data.

High-confidence image set and model
performance

To estimate the highest achievable accuracy, a curated set of
194 high-confidence images was used. These images were stained
exclusively with a DAPI probe, and their annotations were
carefully reviewed and corrected. The regions of interest
(ROIs) were meticulously defined to minimize noise and
extraneous content while ensuring that all annotated ecDNA
remained in view. Special attention was given to the ROI edges to
avoid abrupt cuts into the bright fields surrounding objects. Any
images with artifacts or blur within the ROI were excluded from
the dataset.

The dataset was split into a training set of 131 images and a test
set of 63 images, selected randomly. Themodel was trained using the
same procedures and parameters as the main model (ensure that this
is referenced if detailed elsewhere), for a total of 60 epochs.

Model performance on the validation set resulted in a mean
absolute error (MAE) of 6.84%, while the training set predictions
achieved a MAE of 5.14%.

Estimating user-to-user variability

Given that the data inherently reflects biases introduced by the
human operators (technicians/scientists), we aimed to estimate the
extent of user-to-user variability. To do this, we conducted a test
with 11 images, where multiple operators independently annotated
and counted the same images in both the DAPI-only layer and the
merged images.

The analysis revealed an average error of approximately 8.4% for
the DAPI-only images, while the merged images exhibited a higher
variance, with an average error of 12.0% between users.
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