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Bone homeostasis encompasses two interrelated aspects: bone remodeling and
cartilage metabolism. Disruption of bone homeostasis can lead to the
development of metabolic bone diseases such as osteoporosis and
osteoarthritis. The maintenance of bone homeostasis is a complex process
that does not solely rely on the functions of the bone tissue itself. In fact,
bone tissue is not an isolated entity; it is closely connected to other tissues in
the body via exosomes. Within this interconnectivity, exosomes derived from
both bone and non-bone cells interfere with each other, forming a complex
regulatory network. Therefore, with cell origin as the guiding principle, we have
delineated the bone regulatory network of exosomes, elaborated on the specific
roles and regulatory mechanisms of exosomes derived from common cell types
(cells within the skeletal microenvironment, stem cells from extra-osseous
tissues, vascular-derived cells, muscle-derived cells, and neurogenic cells) in
bone formation, bone resorption, and cartilage metabolism. We have also
discussed the challenges faced in the field of exosome research related to
bone homeostasis, unveiled the critical role of exosomes in maintaining bone
homeostasis, and proposed that exosomes could serve as highly valuable
therapeutic targets for metabolic bone diseases.
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1 Introduction

Bone homeostasis refers to the state of maintaining the overall structure and functional
stability of the skeletal system. It encompasses two interrelated aspects: bone remodeling
and cartilage metabolism. Bone remodeling involves the continuous update and repair of
bone morphology and structure, including the dynamic balance between bone formation
and bone resorption, while cartilage metabolism pertains to the processes of cartilage
synthesis, degradation, and the maintenance of normal joint cartilage function (Salhotra
et al., 2020; Boyde, 2021; Cardoneanu et al., 2022). The maintenance of bone homeostasis
relies on the mediation of various cell types within the skeletal microenvironment, such as
bone marrow mesenchymal stem cells, osteoblasts, osteoclasts, osteocytes, and
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chondrocytes (Kim et al., 2020; Vig and Fernandas, 2022), while also
being regulated by cells outside the skeletal microenvironment
(Florencio-Silva et al., 2015). This balance may be lost with aging
or due to certain pathological factors, leading to the development of
bone metabolic diseases such as osteoporosis (OP) and osteoarthritis
(OA) (Feng and McDonald, 2011).

Exosomes are nanoscale membrane-bound lipid vesicles secreted
by cells, containing bioactive substances such as proteins, RNAs, lipids,
and cytokine receptors. They play a significant role in intercellular,
interorgan, and systemic communication through paracrine or
endocrine signaling pathways (Tkach and Thery, 2016; Wang et al.,
2022). Exosomes can circulate in the body and may target cells via
receptor-ligand interactions. Additionally, they can be internalized by
target cells through endocytosis, delivering their cargo and activating
related signaling pathways (Qin and Dallas, 2019; Mathivanan et al.,
2010). Bone-derived and non-bone-derived cells can communicate
with each other via exosomes, targeting the source cells, adjacent cells,
or reaching distant organs through the circulation. This promotes
multiple cascades of intracellular or intercellular signaling pathways,
thereby regulating the skeletal microenvironment (Zhang L.
et al., 2023).

In recent years, research on the role of exosomes in regulating
bone homeostasis has been increasing, but the understanding of
their regulatory network remains unclear. In this review, we have
used cell origin as a unit, ranging from cells within the skeletal
microenvironment to stem cells from non-bone tissues, vascular-
derived cells, muscle-derived cells, and neurogenic cells. We have
elucidated the intricate interactions among different cell populations
and explored the effects of exosomes in mediating bone remodeling,
cartilage regeneration, inflammatory responses, and immune
regulation in bone homeostasis. By organizing and refining the
regulatory network of exosomes from common cell sources on bone
homeostasis, this review provides a theoretical basis for the study of

bone metabolic diseases and holds clinical significance for their
diagnosis and treatment.

It is worth noting that the concepts of “exosomes” and
“extracellular vesicles (EVs)” are continuously being updated by
organizations such as the International Society for Extracellular
Vesicles (ISEV), and there is an ongoing effort to standardize the
terminology. This process may involve differing viewpoints and
methodologies, leading to variations in the use of terms. To present a
more comprehensive view of the research landscape, we have also
included an analysis of high-quality studies with the keyword
“Extracellular vesicle”.

2 Exosome derived from cells in bone
microenvironment

Bone marrow mesenchymal stem cells, osteoclasts, osteoblasts,
osteocytes, chondrocytes, and macrophages are resident cells within
the skeletal microenvironment. They maintain the dynamic balance
of bone and cartilage metabolism through a sophisticated
intercellular communication network. In this section, we provide
a detailed description of the role of exosomes derived from cells
within the skeletal microenvironment in bone homeostasis
(illustrated in Figures 1–3). These exosomes carry a variety of
bioactive molecules and play a crucial role in regulating cell
behavior and responding to physiological or pathological signals.

2.1 Bone marrow mesenchymal stem cell-
derived exosomes

Bone marrow mesenchymal stem cell-derived exosomes
(BMSC-Exos) regulate bone formation by directly affecting the

FIGURE 1
Schematic diagram of the role of exosomes in bone growth: Exosomes derived from BMSCs, UCMSCs, ADSCs, EPCs, OBs, M2s, Ocy, ECs, VSMCs,
and MBs can promote bone formation, while exosomes derived from BMSCs, UCMSCs, ADSCs, OCs, M2s, ECs, and VPs can inhibit bone resorption,
leading to a state where bone formation exceeds bone resorption, thereby resulting in positive bone growth. It is noteworthy that both OB-Exos andOC-
Exos have negative feedback mechanisms; at certain stages, mature OB-Exos can inhibit osteoblast differentiation to prevent excessive bone
formation, while mature OC-Exos can conversely promote bone formation, thereby achieving the dynamic transition between bone formation and bone
resorption phases in the bone remodeling process. (Abbreviation: BMSC, Bone marrow mesenchymal stem cell; UCMSC, umbilical cord mesenchymal
stem cell; ADSC, adipose-derived stem cell; EPC, endothelial progenitor cell; OB, Osteoblast; M2, M2 macrophages; Ocy, Osteocyte; EC, vascular
endothelial cell; VSMC, vascular smooth muscle cell; MB, myoblasts; OC, Osteoclast; VP, vascular pericytes).
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activity of the osteoblastic lineage, with their mechanisms of action
involving multiple signaling pathways. Studies have shown that
BMSC-Exos can activate osteogenic differentiation through the
BMP-2/SMAD1/RUNX2 signaling pathway, enhancing the
osteogenic potential of mouse embryo osteoblast precursor cells
MC3T3-E1 in vitro, and promoting the expression of osteogenesis-
related genes such as BMP2, SMAD1/5, RUNX2, OGN, OPN, and
OCN in target bone tissue in vivo (Zhang et al., 2020). BMSC-Exos
also facilitate the growth cycle of the osteoblastic line hFOB 1.19 by
activating the JNK/MAPK signaling pathway, accelerating cell
proliferation (Zhao et al., 2018). BMSC-Exos also exhibit a
promotional effect on the osteogenic differentiation of their
source cells. BMSC-Exos upregulate the expression of osteogenic-
related genes such as TGF-β1, BMP9, Runx2, OSX, and OCN (Tsao

et al., 2017; Narayanan et al., 2016). MicroRNAs (miRNAs) are key
regulatory factors in the influence of BMSC-Exos on bone
formation. It has been reported that miR-668-3p, miR-27a, miR-
196, miR-206, miR-335, miR-150-3p, and miR-136-5p are enriched
in BMSC-derived exosomes and play a role in promoting osteoblast
proliferation and differentiation (Qiu et al., 2024; Qin et al., 2016;
Qiu et al., 2021; Hu et al., 2021; Yu H. et al., 2021). BMSC-Exos can
also upregulate osteogenic miRNAs (Hsa-miR-146a-5p, Hsa-miR-
503-5p, Hsa-miR-483-3p, and Hsa-miR-129-5p) or downregulate
anti-osteogenic miRNAs (Hsa-miR-32-5p, Hsa-miR-133a-3p, and
Hsa-miR-204-5p) through the activation of the PI3K/AKT and
MAPK signaling pathways (Zhai et al., 2020). Other non-coding
RNAs contained within BMSC-Exos have also been confirmed to
possess osteoinductive capabilities. The MALAT1 lncRNA

FIGURE 2
Schematic diagram of the role of exosomes in bone loss: Exosomes derived from OC, M1, and CC inhibit bone formation, while exosomes derived
from OB, M1, and EPC promote bone resorption, leading to a state where bone resorption exceeds bone formation, thereby resulting in bone loss.
(Abbreviation: OC, Osteoclast; M1, M1 macrophages; CC, chondrocyte; OB, Osteoblast; EPC, endothelial progenitor cell).

FIGURE 3
Diagram of the role of exosomes in cartilage metabolism: Exosomes derived from BMSC, UCMSC, ADSC, Ocy, M2, CC, and SMSC promote cartilage
synthesis and inhibit degradation, while exosomes derived from OC, OB, and EC inhibit cartilage synthesis and accelerate degradation. (Abbreviation:
BMSC, Bone marrow mesenchymal stem cell; UCMSC, umbilical cord mesenchymal stem cell; ADSC, adipose-derived stem cell; Ocy, Osteocyte; M2,
M2 macrophages; CC, chondrocyte; SMSC, synovial mesenchymal stem cell; OC, Osteoclast; OB, Osteoblast; EC, vascular endothelial cell).
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contained in BMSC-Exos induces osteoblast differentiation by
sponging miR-34c and activating SATB2, which in turn activates
the transcription factors RUNX2 and ATF4 (Yang et al., 2019).
Additionally, exosomal circHIPK3 promotes mitochondrial
autophagy in MC3T3-E1 cells through the miR-29a-5p/
PINK1 axis, thereby playing a crucial role in osteogenic
differentiation (Ma et al., 2023).

BMSC-Exos exert an anti-bone resorption effect by inhibiting
the migration of osteoclast precursors, suppressing osteoclast
formation and excessive activation, and improving bone
metabolism in OP mice. This mechanism may be related to the
delivery of USP7 and the promotion of USP7-mediated
deubiquitination and stabilization of YAP1 protein (Yin et al.,
2023; Wang X. et al., 2023). BMSC-Exos produced under the
stimulation of bioactive glass nanoparticles further enhance their
ability to inhibit osteoclast differentiation (Yang et al., 2022). Non-
coding RNAs in BMSC-Exos play a significant role in osteoclast
differentiation. MiR-31a-5p targets RhoA, which jointly inhibit
osteoclast differentiation and reduce bone resorption (Xu R.
et al., 2018). However, aged BMSCs suffer from impaired
mitochondrial metabolism and pluripotency, and they release a
high amount of lncRNA-NEAT1, which can regulate miR-27b-3p
through paracrine transfer, promoting osteoclast differentiation,
and enhancing bone resorption activity (Zhang et al., 2022).

BMSC-Exos can reduce cartilage degradation through anti-
inflammatory effects while increasing matrix synthesis by promoting
chondrocyte proliferation (Ni et al., 2020). Studies have shown that
BMSC-Exos can ameliorate the increase of MMP13 induced by
inflammatory cytokines in chondrocytes, eliminate damage to
mitochondrial membrane potential, and reduce chondrocyte
degeneration and apoptosis (El-Din et al., 2024; Arévalo-Turrubiarte
et al., 2022; Qi et al., 2019; Cosenza et al., 2017). Moreover, in an OA
mouse model, BMSC-Exos have been demonstrated to reduce articular
cartilage damage and subchondral bone degeneration, promoting
cartilage regeneration at the histological level (Fazaeli et al., 2021;
Cosenza et al., 2017; Chen P. et al., 2019). Exosomal miRNAs
derived from BMSCs are involved in the regulation of OA
pathological processes. The highly expressed miR-26a-5p in BMSC-
Exos has been proven to interact with PTGS2, reducing OA
inflammatory damage (Jin et al., 2020). TGF-β1 regulates
SP1 through miR-135b in BMSC-Exos to promote chondrocyte
proliferation, thereby facilitating cartilage repair (Wang et al., 2018).
BMSC-derived exosomal miR-92a-3p can promote chondrocyte
proliferation and matrix synthesis through the Wnt pathway (Mao
et al., 2018). BMSC-derived exosomal SNHG7 inhibit IL-1β-induced
inflammation and ferroptosis in chondrocytes through the miR-485-
5p/FSP1 axis (Wang Y. et al., 2024). BMSC-Exos also promote the
polarization ofM1macrophages toM2 by delivering lncRNA TUC339,
enhancing chondrocyte activity (Shen et al., 2023). Additionally,
exosomal miR-127-3p, and miR-206 derived from BMSCs also
mediate the anti-inflammatory response and improve chondrocyte
metabolism (Dong et al., 2021; Huang et al., 2021).

2.2 Osteoclast-derived exosomes

Osteoclast-derived exosomes (OC-Exos) are involved in the
negative regulation of bone formation. The level of serum

exosomal miR-214 is elevated in OP patients and ovariectomy-
induced mice, and further studies have indicated that this is
associated with the paracrine function of osteoclasts. Osteoclasts
recognize osteoblasts through EphrinA2 and EphA2 and release
miR-214-3p into osteoblasts, which can target ATF4, inhibiting
osteoblast differentiation and bone formation. This trend can be
reversed by inhibiting exosome release using delivery of Rab27a
siRNA or by inhibiting miR-214-3p with antagomir (Sun et al., 2016;
Deng et al., 2015; Wang et al., 2013). Another noteworthy miRNA in
OC-Exos is miR-23a-5p. It has been reported that miR-23a-5p is
highly expressed in RANKL-induced RAW 264.7 cell exosomes and
can significantly inhibit osteoblast activity by suppressing
Runx2 and promoting YAP1-mediated MT1DP (Yang J. X. et al.,
2020). Additionally, proteins enriched in OC-Exos, such as
SEMA4D, are upregulated during osteoclast differentiation, and
their binding to the receptor Plexin-B1 on osteoblasts leads to
the activation of the small GTPase RhoA, which inhibits bone
formation by suppressing IGF-1 signaling and regulating
osteoblast motility (Negishi-Koga et al., 2011). OC-Exos enriched
with lncRNA AW011738 inhibit osteoblast differentiation through
the miR-24-2-5p/TREM1 axis (Liu J. et al., 2024). Indeed, it is
intriguing to note that OC-Exos appear to exert a complex dual
effect in the regulation of osteoblast activity. The study by Ikebuchi
and colleagues shows that RANK carried by mature osteoclast-
derived exosomes (RAW 264.7 cells stimulated with GST-sRANKL
for 60–120 h) can bind to RANKL on the surface of osteoblasts. This
interaction triggers reverse signaling of RANKL, which in turn
activates the key transcription factor RUNX2, thereby promoting
bone formation (Ikebuchi et al., 2018). Furthermore, mature
osteoclast-derived exosomes (Bone marrow macrophages
stimulated with RANKL for 60–120 h) can be engulfed by
MC3T3-E1 cells, and facilitate the mineralization of these cells
through RANKL-mediated reverse signaling (Ma et al., 2019).
This process underscores the intricate communication between
osteoclasts and osteoblasts, where exosomes act as vehicles for
signaling molecules that can either inhibit or promote osteoblast
activity, depending on the context and stage of osteoclast
maturation.

Osteoclasts act in a paracrine manner to stimulate osteoblasts or
other non-osteoclast cells to produce factors that regulate osteoclast
differentiation, participating in bone remodeling. Exosomes from
osteoclast precursors (Bone marrow macrophages induced by CSF-
1) can stimulate an increase in the number of osteoclasts in mouse
bone marrow, whereas an equivalent number of exosomes from
mature osteoclasts (Bone marrow macrophages induced by CSF-1
and sRANKL) inhibit osteoclast formation, which may be related to
the enrichment of RANK in OC-EVs rather than in pre-OC-EVs
(Yuan et al., 2018; Huynh et al., 2016; Holliday et al., 2017; Huynh
et al., 2016). A study analyzing the miRNA expression profile of OC-
EVs found reduced levels of miR-22-3p, miR-26a-5p, miR-27a-3p,
miR-29a-3p, and miR-125b-5p, which are crucial inhibitors of
osteoclastogenesis (Pascual-García et al., 2024). Numerous studies
have found that miR-214 is overexpressed in the EVs of osteoclasts
and plays a key role in regulating bone homeostasis by targeting the
PI3K-AKT pathway (Yuan et al., 2018; Zhao et al., 2015).

Osteoclast precursors (Bone marrow macrophages stimulated
with M-CSF and RANKL for 24 h) and osteoclasts (Bone marrow
macrophages stimulated with M-CSF and RANKL for 120 h) both
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contribute to the hypertrophy of chondrocytes, with osteoclasts
exhibiting a more significant promotional effect than osteoclast
precursors. OC-EVs are considered an important pathway for
osteoclast-chondrocyte crosstalk. OC-EVs can accelerate cartilage
matrix degradation and promote chondrocyte hypertrophy through
the inhibition of TGF-β1/SMAD2 signaling pathway by let-7a-5p
and miR-212-3p (Dai et al., 2020; Dai et al., 2024). Studies have
shown that in the early stages of OA, the miRNA expression profile
of osteoclast-derived circulating exosomes undergoes changes.
Specifically blocking the secretion of osteoclast exosomes can
effectively alleviate the progression of OA. Researchers suggest
that OC-EVs primarily accelerate articular cartilage damage by
inhibiting TIMP-2 and TIMP-3 (Liu et al., 2021; Han, 2022).

2.3 Osteoblast-derived exosomes

During the process of bone formation, exosomes derived from
osteoblasts (OB-Exos) play a positive-inductive role. OB-Exos can
activate the osteogenic differentiation process and promote
mineralization of osteosarcoma cells by targeting the URG4/
WNT signaling pathway (Leng et al., 2024). The presence of key
transcription factors involved in osteogenesis (RUNX2 and OSX)
and miRNAs (miR-34a, miR-27a, and miR-22) that influence
osteoblast differentiation within OB-Exos can enhance and
accelerate the osteogenic differentiation of BMSCs (Narayanan
et al., 2018). Exosomes derived from the mineralizing osteoblast
cell line MC3T3-E1 are enriched with osteogenic miRNAs (miR-
1192, miR-680, and miR-302a) and miRNAs that can target the
Wnt/β-catenin pathway (miR-3084-3p, miR-680, miR-677-3p, and
miR-5100), which can recruit and induce osteogenic differentiation
of BMSCs (Cui Y. et al., 2016). Moreover, through miRNA-mRNA
interactions, they participate in transcription initiation, matrix
metalloproteinase inhibition, and cell cycle progression, thereby
promoting the proliferation, migration, and differentiation of
MC3T3-E1 cells (Samal et al., 2024). In addition, proteomic
studies have revealed a significant upregulation of osteogenesis-
related proteins such as TGFB3, BMP-1, SMURF-1, EIF2, TRIP-1, as
well as annexins involved in calcium channels andWNT proteins in
OB-Exos (Davies et al., 2019; Ge et al., 2017; Ge et al., 2015; de
Oliveira et al., 2023). However, OB-Exos mediate a negative
feedback mechanism at specific stages to prevent excessive bone
formation. Studies have shown that mature osteoblast-secreted
vesicles (primary osteoblasts expressing enhanced cyan
fluorescent protein) are enriched with miR-143, which can target
CBFB and inhibit RUNX2, thereby suppressing osteoblast
differentiation and regulating the dynamic transition from the
bone formation stage to the bone resorption stage (Uenaka et al.,
2022). Nevertheless, to date, such research is still limited, and the
mechanisms underlying the conversion between the osteoblast and
osteoclast phases remain to be further elucidated.

OB-Exos participate in the bone resorption process through the
RANKL-mediated signaling pathway, regulating the generation,
differentiation, and functional activation of osteoclasts
(Cappariello et al., 2018). In a dual-transgenic zebrafish fracture
healing experiment, OB-Exos were phagocytosed by immature
osteoclasts in response to fracture stress, thereby promoting their
differentiation (Kobayashi-Sun et al., 2020). Transmission electron

microscopy revealed the co-localization of TRAP and RANKL in
osteoblast-derived vesicles (Solberg et al., 2015). Exosomes released
from the osteoblast line UAMS-32P can induce nuclear
translocation of NFATc1 through receptor-ligand interaction
between the RANKL protein and RANK on RAW264.7 cells,
thereby activating osteoclastic activity (Deng et al., 2015). OB-
Exos release METTL14, which can enhance the m6A methylation
level of NFATC1 to suppress osteoclast-induced bone resorption
(Yang et al., 2023). Non-coding RNAs are also key factors in the
regulation of bone resorption by OB-Exos. Osteoblasts pretreated
with exosomes from mineralized osteoblasts can promote
osteoclastogenesis, with the enriched miR-143-3p increasing the
RANKL/OPG ratio in MC3T3-E1 cells (Uenaka et al., 2022). Circ_
0008542 in MC3T3-E1 exosomes can sponge miR-185-5p,
upregulating the expression of RANK. Additionally, the
1916–1992 bp fragment of circ_0008542 increases the level of
m6A methylation, inhibits the RNA methyltransferase METTL3,
and induces osteoclast differentiation and bone resorption (Wang
W. et al., 2021). Concurrently, certain studies suggest that miR-125b
released by OB-Exos inhibits osteoclast formation by targeting
PRDM1 and suppresses the differentiation of RAW264.7 cells
through the miR-503-3p/HPSE axis (Minamizaki et al., 2020;
Wang Q. et al., 2021).

Subchondral bone is essential for maintaining cartilage
homeostasis, and there is a significant correlation between the
subchondral bone sclerosis induced by OB-Exos and cartilage
degeneration (Maas et al., 2015; Li et al., 2021a; Larrouture et al.,
2021; Zhou et al., 2019). Targeting specific signals in the
subchondral bone, such as TGF-β, can alleviate the pathological
severity of OA and reduce the pain response (Thielen et al., 2019;
Cui Z. et al., 2016; Zhen et al., 2013). Wu et al. found that miR-210-
5p is highly enriched in the exosomes derived from osteoblasts of
OA sclerotic subchondral bone, triggering catabolic activity in
chondrocytes and reducing the expression of chondrocyte-specific
markers, playing a key role in the pathological progression of
cartilage degeneration (Wu et al., 2021).

2.4 Osteocyte-derived exosomes

Osteocytes are mechanosensitive cells that can respond to
external stimuli through paracrine actions, participating in the
coordination of load-induced bone formation. Mechanical
stimulation activates Ca2+ oscillations in osteocytes, enhancing
the production and release of EVs containing bone regulatory
proteins (Morrell et al., 2018), thereby promoting osteogenic
differentiation and mineralization of the matrix (Nieuwoudt
et al., 2021). Exosomes released by osteocytes (Ocy-Exos)
exposed to mechanical strain significantly enhance the
recruitment and osteogenic differentiation of human periodontal
ligament stem cells and human bone marrow mesenchymal stem
cells, which may be associated with the exosome-mediated miR-
181b-5p/PTEN/AKT signaling pathway (Lv et al., 2020; Eichholz
et al., 2020). Ocy-Exos can be rapidly absorbed by MC3T3 cells, and
their enriched miR-218 can affect osteoblast activity by regulating
SOST and WNT signaling pathways (Qin et al., 2017). Compared to
EVs derived from senescent osteocytes (primary bone cells from 2-
month-old mice), EVs derived from young osteocytes (primary bone
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cells from 16-month-old mice) significantly increase alkaline
phosphatase activity, mineralization deposition, and the
expression of osteogenesis-related genes in BMSCs, which may be
due to the enrichment of TPM1 in EVs from young osteocytes,
promoting osteogenesis (Wang Z. X. et al., 2024). Conversely, the
reduced expression of miR-494-3p in exosomes derived from
senescent osteocytes (senescent MLO-Y4 cells induced by tert-
Butyl hydroperoxide) targets the PTEN/PI3K/AKT pathway,
thereby inhibiting osteogenic differentiation (Yao et al., 2024).

As for the role of Ocy-Exos in bone resorption, no relevant
studies have been retrieved to date. Kogianni and colleagues suggest
that apoptotic bodies derived from osteocytes, independently of
other osteoclastogenic factors, can specifically promote
osteoclastogenesis and the initiation of bone resorption, while
other soluble factors derived from osteocytes do not exhibit
similar effects (Kogianni et al., 2008).

The communication mechanism between osteocytes and
chondrocytes has not been fully elucidated. Only one study has
shown that Ocy-Exos can activate the WNT pathway by
upregulating DLX2 expression, alleviate IL-1β-induced cartilage
damage, and enhance chondrocyte viability and migration ability
(Xu et al., 2024). The precise communication mechanisms by which
osteocytes transmit signals to other bone tissue cells are still poorly
understood, and further exploration of these mechanisms is crucial
for the development of innovative treatments for bone
metabolic diseases.

2.5 Chondrocyte-derived exosomes

Chondrocytes can participate in bone remodeling through
exosomal miR-221-3p. Studies have shown that miR-221-3p can
be transferred to osteoblasts via exosomes, where it inhibits the
expression of early osteogenesis markers COL1A1 and RUNX2
(Shang et al., 2021).

Chondrocyte-derived exosomes (CC-Exos) primarily target
chondrocytes as their receptor cells, and they are released in a
caspase-3 and Rho/Rock-dependent manner, closely associated with
autophagy, playing a significant role in regulating cartilage
metabolism (Rosenthal et al., 2015). Studies have indicated that
CC-Exos can increase the expression of matrix synthesis markers
ACAN, COL2A, and SOX9 in human umbilical cord mesenchymal
stem cells, while decreasing the expression of chondrocyte
hypertrophy and degeneration markers COL1A and COL10 (Ma
et al., 2020). Low-intensity ultrasound stimulation can enhance the
vesicular secretion of chondrocytes by altering the miRNA
expression profile, and these vesicles can enhance the cellular
activity, proliferation, migration, and chondrogenic differentiation
of adipose-derived stem cells (Wang Y. et al., 2023). However, under
OA pathological conditions, the properties of CC-Exos undergo a
transformation. Dysfunctional CC-Exos promote M1 macrophage
polarization and accelerate collagen degradation, which is related to
their enrichment in lncRNA OANCT competitively binding to the
FTO protein, thereby maintaining the mRNA stability of
PIK3R5 and further activating the PI3K/AKT/mTOR pathway
(Lv et al., 2022). Abnormal biomechanical loading alters the
molecular levels of MGP, NPP1, and TNAP in CC-Exos, and
increases exosome production, which leads to disorders of

cartilage metabolism and ultimately results in cartilage
degeneration and matrix calcification (Liu et al., 2022).

2.6 Macrophage-derived exosomes

Exosomes derived from bone marrow-derived macrophages
(BMDM-exos) significantly increase the protein and mRNA
levels of RUNX2, ALP, COLI, and OCN in BMSCs. Alizarin red
and ALP staining also indicate an increased proportion of
mineralized cells (Zhang D. et al., 2021). BMDM-exos can target
the PPARα-ABCA1 axis through miR-378a, promoting the
osteogenic differentiation of skeletal stem/progenitor cells (He
et al., 2024). Macrophage polarization has a significant impact on
the paracrine regulation of bone homeostasis (Kang et al., 2020). In
most cases, exosomes derived from M2 macrophages (M2-Exos) act
on various transcription factors, proteins, or hormones to promote
osteogenesis, while exosomes derived from M1 macrophages (M1-
Exos) inhibit osteogenesis (Bin-bin et al., 2022; Chen X. et al., 2022;
Liao et al., 2022; Crippa et al., 2008). In M2-Exos, miR-690, miR-
5106, and miR-378a are significantly overexpressed, and they can
target IRS-1/TAZ, SIK2/SIK3, and BMP pathways or molecules,
respectively, to promote osteogenic differentiation of BMSCs (Li
et al., 2021b; Xiong et al., 2020; Kang et al., 2020). Additionally, they
can inhibit TGF-β1 through targeting by miR-142-3p, which
restores the normal osteogenic differentiation capacity of BMSCs
after irradiation (Huang et al., 2024). Moreover, M2-Exos can also
promote the osteogenic differentiation of LPS-induced periodontal
ligament stem cells by enhancing the expression of CXCL12 (Gao
and Wu, 2024). In contrast, M1-Exos can negatively regulate the
BMP signaling pathway through miR-155 (Kang et al., 2020; Song
et al., 2022). Additionally, studies have emphasized that alarm
proteins carried by macrophage-derived vesicles may have a non-
negligible impact on the function of osteoblasts and osteoclasts,
warranting further investigation (Huang X. et al., 2022).

Compared to the extensive research on the role of macrophages
in bone formation, there is a relative paucity of studies on
macrophage involvement in bone resorption. Most studies
suggest that M1-Exos exacerbate bone loss and osteoporosis. For
instance, miR-155 contained in M1-Exos can inhibit the expression
of BMP2, BMP9, and RUNX2; miR-98 can downregulate
DUSP1 and activate the JNK signaling pathway; miR-222 can
suppress the expression of the anti-apoptotic gene BCL-2; and
miR-3470b can regulate the TAB3/NF-κB pathway, thereby
promoting osteoclast differentiation and bone resorption in vitro
(Kang et al., 2020; Yu L. et al., 2021; Qi et al., 2021; Pan et al., 2023).
In contrast, M2-EVs significantly reduce the expression of
osteoclastogenesis-related genes (such as CTSK, NFATC1, TRAP,
miR-7, miR-1897) in RAW264.7 cells, thereby decreasing RANKL-
induced osteoclast formation (Trentini et al., 2024; Zhou and Hu,
2024). Additionally, emerging evidence suggests that during the
process of osteoclast-mediated bone resorption, osteomacrophages
participate in the pathological process by absorbing byproducts,
including bone particulate and TRAP (Batoon et al., 2021).

M2-EVs can transport macrophage reprogramming factors and
proteins responsible for the generation and migration of
M2 macrophages, thereby having a significant impact on
articular cartilage metabolism (Kim et al., 2022). EVs derived
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from macrophages and osteoclasts can both induce the
repolarization of macrophages towards the anti-inflammatory
M2 phenotype, promoting chondrocyte function and cartilage
formation (Li X. et al., 2024). Qian et al. found that exosomal
miR-26b-5p from M2 macrophages can alleviate synovial
inflammation and cartilage degeneration by targeting TLR3 and
COL10A1, inhibiting chondrocyte hypertrophy (Qian et al., 2024).
Cai and colleagues have discovered that M2-Exos may alleviate
BMSC aging and enhance their chondrogenic potential by
potentially regulating DNA replication and repair (Cai et al.,
2024). Bai et al. indicated that the overexpression of lncRNA
MM2P induces M2 macrophage polarization, which inhibits the
dephosphorylation of STAT3 that is mediated by SHP2, and the
resulting increase in p-STAT3 enhances the expression of SOX9 in
M2-derived exosomes. This, through the delivery to chondrocytes
via exosomes, significantly promotes matrix synthesis in
chondrocytes (Bai et al., 2020).

In conclusion, the role of exosomes from cells within the skeletal
microenvironment in bone homeostasis has been extensively
investigated. Those derived from bone marrow mesenchymal
stem cells and M2 macrophages facilitate the proliferation and
differentiation of osteogenic lineage cells, promote the osteogenic
differentiation of mesenchymal stem cells, and concurrently inhibit
osteoclast generation and activation. Exosomes from osteoblasts and
osteocytes primarily promote bone formation, while those from
osteoclasts mainly facilitate bone resorption, collectively exerting a
positive regulatory effect on bone growth and regeneration.
Conversely, exosomes from M1 macrophages inhibit osteoblast
differentiation and enhance osteoclast generation and activation.
Exosomes from osteoclasts and chondrocytes primarily inhibit bone
formation, whereas those from osteoblasts mainly promote bone
resorption, thus collectively playing a negative regulatory role in
bone remodeling to maintain the dynamic equilibrium of bone
tissue. Regarding cartilage metabolism, exosomes from bone
marrow mesenchymal stem cells, osteocytes, M2 macrophages,
and chondrocytes contribute to chondrocyte proliferation and
migration, enhancing chondrocyte viability, inhibiting cellular
degeneration and apoptosis, and improving cartilage metabolism.
However, exosomes from osteoblasts and osteoclasts may promote
chondrocyte hypertrophy and degeneration, accelerating cartilage
matrix degradation.

3 Exosome derived from cells outside
the bone microenvironment

Recently, exosomes derived from cells outside the skeletal
microenvironment have garnered extensive attention, with studies
emphasizing their ease of acquisition and potent bone-targeting
capabilities (Wang P. et al., 2024). This section systematically
reviews the regulatory mechanisms of exosomes from cells
outside the skeletal microenvironment in maintaining bone
homeostasis (illustrated in Figures 1–3), primarily involving stem
cells derived from non-osseous tissues (including umbilical cord
mesenchymal stem cells, adipose-derived stem cells, endothelial
progenitor cells, and synovial mesenchymal stem cells), vascular-
derived cells (including endothelial cells and pericytes), muscle-
derived cells (myoblasts), as well as neurogenic cells (Schwann cells).

3.1 Exosomes derived from stem cells other
than BMSCs

3.1.1 Exosomes derived from umbilical cord
mesenchymal stem cells

Exosomes derived from umbilical cord mesenchymal stem cells
(UCMSC-EVs) can enhance the regenerative capacity of recipient
cells, BMSCs, in bone formation through the transfer of cell cycle-
related protein PCNA and osteogenic protein CLEC11A (Lei et al.,
2021; Hu Y. et al., 2020). In a glucocorticoid-induced avascular
necrosis of the femoral head disease model, UCMSC-Exos can
reduce the apoptosis level of MC3T3-E1 cells by inhibiting the
MAPK signaling pathway and ROS levels, or by activating the Hippo
signaling pathway through miR-365a-5p, thereby promoting a
significant upregulation of osteogenic genes such as BMP2, SP7,
and RUNX2 in the target bone tissue (Lu et al., 2023; Kuang
et al., 2020).

UCMSC-EVs exert an anti-resorptive effect through CLEC11A
mediation, significantly reducing the levels of osteoclast
differentiation markers such as NFATC1, TRAP, and CTSK in
RAW264.7 cells, and inhibiting the formation of mature
osteoclasts (Hu H. et al., 2020). Additionally, intervention with
UCMSC-EVs can decrease the levels of ROS and inflammatory
cytokines in RAW264.7 cells, suppressing PE + RANKL-induced
osteoclast differentiation (Xie et al., 2023).

UCMSC-EVs have been demonstrated to exert anti-
inflammatory effects in OA models. They can reverse the
abnormal expression of COL2A1 and MMP13 induced by IL-1β
in chondrocytes, protect articular cartilage, and inhibit secondary
cartilage degeneration. This protective and regenerative effect is
mediated by key miRNAs such as miR-23a-3p and miR-1208, which
target signaling pathways including p53, AKT, and NLRP3, thereby
promoting cartilage regeneration. The ability of UCMSC-EVs to
modulate these pathways suggests their potential as a therapeutic
intervention for OA by reducing inflammation and promoting the
repair and regeneration of damaged cartilage (Pan et al., 2024; Wang
S. et al., 2023; Cao et al., 2023; Hu Y. et al., 2020; Zhou et al., 2022).

3.1.2 Exosomes derived from adipose-derived
stem cells

Exosomes derived from adipose-derived stem cells (ADSC-
Exos) have also been extensively studied for their application in
skeletal regeneration and repair (Chen J. et al., 2022). Studies have
shown that ADSCs-Exos can alleviate TNF-α-induced cytotoxicity
and apoptosis in primary osteoblasts (Wang S. Z. et al., 2021).
Furthermore, Li et al. suggest that compared to exosomes derived
from bone marrow stem cells and synovial stem cells, ADSC-EVs
exhibit superior capabilities in promoting the migration,
proliferation, and osteogenic differentiation of BMSCs, as well as
inducing bone regeneration in mouse models (Li Q. et al., 2021). The
potential mechanisms by which ADSC-EVs regulate bone formation
may include focal adhesion, ECM-receptor interaction, actin
cytoskeleton, cAMP, PI3K-AKT, and Wnt/β-catenin signaling
pathways (Li et al., 2021a; Zhang D. et al., 2023). The regulatory
mechanism of miRNAs is also not to be overlooked. Li et al. found
that ADSC-Exos promote the polarization of M1 macrophages to
the M2 phenotype through the inhibition of MIF by miR-451a,
thereby enhancing downstream osteoblast function (Li R. et al.,
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2022). Additionally, exosomal miR-130a-3p, which is significantly
upregulated during the osteogenic differentiation of ADSCs, can
promote this process by mediating the WNT signaling pathway
(Yang S. et al., 2020).

ADSC-Exos play a pivotal role in modulating osteoclast activity
through a variety of mechanisms. Ren et al. found that ADSC-Exos
effectively alleviate hypoxia- and serum deprivation-induced
osteocyte apoptosis, while also reducing the ratio of RANKL to
OPG, thereby inhibiting osteocyte-mediated osteoclastogenesis (Ren
et al., 2019). ADSC-Exos also inhibit the activation of the
NLRP3 inflammasome within osteoclasts, diminishing bone
resorption and contributing to the recovery from bone loss
(Zhang L. et al., 2021). Within ADSC-Exos, OPG, miR-21-5p,
and let-7b-5p are abundant, and they significantly suppress
osteoclast differentiation and reduce the expression of genes
associated with bone resorption through the inhibition of
RANKL and ACVR2A (Lee et al., 2021).

ADSC-Exos inhibit the degradation of articular cartilage by
promoting chondroanabolic metabolism and preventing
chondrolytic metabolism. Studies have demonstrated that ADSC-
Exos reduce the expression of MMP-13, caspase-1, and IL-1 in IL-
1β-induced chondrocytes and significantly improve the condition of
articular cartilage in animal models. They can decrease the loss of
proteoglycans and promote matrix synthesis, as well as increase the
expression of collagen type II and aggrecan both in vitro and in vivo
(Zhao et al., 2023; Xu et al., 2022; Liu Q. et al., 2024). MiRNAs serve
as a crucial pathway for the functional effects of ADSC-Exos.
Evidence has shown that ADSC-Exos, through miR-376c-3p,
target Wnt3 or Wnt9a to inhibit the Wnt/β-catenin pathway,
thereby alleviating chondrocytes degradation caused by OA (Li F.
et al., 2023). Additionally, research indicates that ADSC-Exos can
target and inhibit RUNX2 throughmiR-338-3p, effectively repairing
the inflammatory damage induced by IL-1β in the murine
chondrogenic cell line ATDC5 and promoting cell proliferation
(Li C. et al., 2022). However, in contrast to normal ADSCs, aged
ADSCs (etoposide-induced senescent cells) induce a catabolic and
pro-inflammatory gene signature in mouse joints and fail to mitigate
collagenase-induced chondrocyte damage (Boulestreau et al., 2024).

Some studies have demonstrated that osteoarthritis ().

3.1.3 Exosomes derived from endothelial
progenitor cells

Exosomes derived from endothelial progenitor cells (EPC-Exos)
do not directly promote the osteogenic differentiation of BMSCs
(Qin and Zhang, 2017). Therefore, some studies suggest that EPC-
EVs may primarily facilitate bone regeneration indirectly by
accelerating angiogenesis (Bouland et al., 2021). In the research
by Lu and Chen, it was confirmed that EPC-Exos can exert
osteogenic effects through the osteoblast lineage (Lu et al., 2019;
Chen G. H. et al., 2019). Studies have shown that EPC-Exos can
inhibit glucocorticoid-induced oxidative damage and ferroptosis in
osteoblasts through the miR-126-mediated ERK1/2/BCL-2 pathway,
thereby promoting bone regeneration.

EPC-Exos also participate in promoting bone repair by
enhancing the recruitment and differentiation of RAW264.7 cells.
The mechanism of action may be related to the interaction between
lncRNA-MALAT1 and miR-124 within EPC-Exos (Cui et al., 2019;
Ohnuma et al., 2019).

To date, no studies have explored the role of EPC-Exos in
cartilage metabolism; however, given their potent anti-inflammatory
and reparative properties (Yuan et al., 2023), this area of research
holds significant potential.

3.1.4 Exosomes derived from synovial
mesenchymal stem cells

Exosomes derived from synovial mesenchymal stem cells
(SMSC-Exos) primarily influence cartilage metabolism. They can
promote the migration and proliferation of chondrocytes, improve
matrix metabolism, reduce IL-1β-induced cellular inflammation and
apoptosis, and facilitate chondrogenesis in vitro, thereby reducing
the destructive effects of OA on articular cartilage. This may be
associated with the miR-320c-mediated ADAM19/WNT pathway,
miR-130b-3p-mediated LRP12/AKT/β-catenin pathway, miR-26a-
5p/PTEN axis, MATN3/IL-17A-mediated PI3K/AKT/mTOR
pathway, and the CXCL5/CXCL6 axis (Zhu et al., 2017; Kong
et al., 2022; Kong et al., 2023; Zeng et al., 2022; Lu et al., 2021;
Long et al., 2023; Kawata et al., 2021). Overexpressing the
chondroprotective miRNAs in SMSC-Exos can further enhance
their protective effects. Tao et al. have revealed that SMSC-Exos
overexpressing miR-140-5p can promote cartilage regeneration and
delay the progression of knee OA (Tao et al., 2017). Wang et al.
found that SMSC-Exos overexpressing miR-155-5p promote
chondrocyte migration and proliferation, inhibit apoptosis,
enhance extracellular matrix secretion, and effectively prevent
cold-induced OA (Wang Z. et al., 2021). Wang et al. indicated
that SMSC-EVs overexpressing miR-31 enhance chondrocyte
proliferation and migration by targeting KDM2A, alleviating
cartilage damage and inflammation in the knee (Wang et al.,
2020). Additionally, LPS appears to further enhance the
therapeutic effects of SMSC-Exos on OA, which may be related
to the high expression of miRNAs induced by LPS (Duan
et al., 2021).

3.2 Exosomes derived from vascular cells

Studies have indicated that exosomes derived from vascular
endothelial cells (EC-Exos) possess potent bone-targeting
properties. They can reverse steroid-induced osteogenic
inhibition by inhibiting ferroptosis, which is dependent on
ferritin autophagy (Yang et al., 2021a). EC-Exos can deliver
NEAT1 through the DDX3X/NLRP3 axis to promote bone
generation mediated by M2 polarized macrophages (Chen et al.,
2023). Additionally, they can inhibit osteoclast activity by
upregulating miR-155 (Song et al., 2019). However, the impact of
EC-Exos on cartilage metabolism is detrimental; they reduce the
ability of chondrocytes to resist oxidative stress by inhibiting
autophagy and P21 expression, thereby increasing cellular ROS
levels and inducing apoptosis (Yang et al., 2021b).

Exosomes derived from vascular pericytes negatively regulate
osteoclast development and bone resorption, primarily through the
inhibition of the TRAF3-mediated NF-κB pathway (Cai et al., 2023).

Exosomes derived from vascular smooth muscle cells are
enriched with protein transcripts linked to the osteocyte
phenotype, as well as molecules involved in the WNT/β-catenin
signaling pathway. These exosomes can promote the differentiation
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of BMSCs into osteocytes, thereby contributing to improved bone
regeneration (Fernandes et al., 2024).

3.3 The exosomes of muscle-derived cells

Exosomes of myogenic origin play a role in promoting bone
formation. Studies have shown that myoblasts C2C12 can increase
the level of miR-27a-3p in MC3T3-E1 cells, thereby reducing APC
expression, activating the β-catenin pathway, and promoting the
differentiation of MC3T3-E1 cells into osteoblasts (Xu Q. et al.,
2018). Additionally, they can transfer PRRX2, which promotes the
transcriptional activation of MIR22HG by sequestering miR-128,
thereby activating the YAP pathway and enhancing the osteogenic
differentiation of BMSCs (Li Y. et al., 2023). Mechanical stress
increases the secretion of exosomes from C2C12 cells and enhances
their osteogenic effect. Xu et al. suggest that exosomes derived from
C2C12 cells induced by mechanical stress can promote the
proliferation and osteogenic differentiation of BMSCs through
the miR-92a-3p/PTEN/AKT signaling pathway (Xu et al., 2023).
However, after inducing senescence in C2C12 cells using
hydroxides, the extracted exosomes reduced the activity of
BMSCs and increased the senescence of BMSCs, which may be
associated with the elevated levels of miR-34a in the exosomes
(Fulzele et al., 2019).

3.4 Exosomes derived from neurogenic cell

Schwann cells, a type of specialized glial cell primarily found in
the peripheral nervous system, have recently garnered significant
attention for their regulatory role in bone formation. Numerous
studies have demonstrated that Schwann cells can promote the
migration, proliferation, and differentiation of BMSCs through
exosome-mediated communication, with the underlying
mechanisms primarily involving the let-7c-5p/TGF-β pathway
and the TGF-β1/SMAD2/3 pathway (Wu et al., 2020; Wang T.
et al., 2023; Hao et al., 2022). Compared to exosomes from other
sources, there is a paucity of research on the regulation of bone
homeostasis by neurogenic exosomes. However, in recent years, a
growing number of researchers have focused on the neuro-skeletal
axis, emphasizing the interactions between the nervous and skeletal
systems, as well as the contributions of neural influences on skeletal
metabolism, homeostasis, and injury repair. It is believed that
research related to neurogenic exosomes will be further expanded
in the near future (Li J. et al., 2024; Wan et al., 2021; Chen
et al., 2024).

In short, exosomes derived from cells outside the skeletal
microenvironment exert a targeted regulatory effect on bone
tissue through distant actions, influencing bone metabolism.
Those derived from umbilical cord mesenchymal stem cells,
adipose-derived stem cells, and vascular endothelial cells both
stimulate bone formation and suppress bone resorption.
Exosomes from endothelial progenitor cells, vascular smooth
muscle cells, and myoblasts mainly enhance bone formation,
while those from vascular pericytes primarily inhibit bone
resorption, collectively facilitating bone growth and regeneration.
Additionally, endothelial progenitor cell-derived exosomes also

contribute to bone repair by boosting the recruitment and
differentiation of osteoclast precursors. Regarding cartilage
metabolism, exosomes from umbilical cord mesenchymal stem
cells, adipose-derived stem cells, and synovial mesenchymal stem
cells promote cartilage matrix synthesis and prevent degradation,
whereas vascular endothelial cell-derived exosomes negatively
impact cartilage metabolism by accelerating chondrocyte apoptosis.

4 Conclusion

In summary, exosomal communication plays a pivotal role in
maintaining bone homeostasis by facilitating the interplay between
various cells within the bone microenvironment and outside
through the delivery of bioactive molecules. This process
regulates bone formation, bone resorption, and cartilage
metabolism. In-depth investigation of the mechanisms underlying
exosomal communication is instrumental in unraveling the
pathogenesis and development of bone metabolic diseases,
thereby contributing to the development of more scientific,
effective, and innovative therapeutic strategies.

It is noteworthy that there exist opposing conclusions in the
research on the efficacy of exosomes derived from osteoblasts and
osteoclasts in bone formation and bone resorption. In response to
this phenomenon, we believe that it is essential to first eliminate the
interference caused by exosomal heterogeneity resulting from
different isolation techniques and preprocessing methods.
Certainly, OB-Exos and OC-Exos are expected to have negative
feedback mechanisms to prevent excessive bone formation or
resorption, regulating the dynamic transition between the bone
formation and bone resorption phases. This is obviously related
to thematurity stage of osteoblasts and osteoclasts. However, to date,
due to the complexity of exosomal components and their multi-
target effects, the regulatory mechanisms of the exosomal network in
bone turnover remain to be elucidated.

Furthermore, external factors such as mechanical stimulation,
aging, and inflammation have a profound impact on the release and
biological effects of exosomes. However, how these complex factors
precisely regulate the secretion of exosomes, the selection of their
contents, and their functions in target cells remains a challenging
area of scientific research.

Compared to the well-studied exosomes derived from cells
within the skeletal microenvironment, research on exosomes
from extra-osseous cells remains limited. Through this review,
We have highlighted that bone tissue and extra-osseous tissue,
using exosomes as a medium, form a mutually influential entity
that collectively plays a significant role in the regulation of bone
homeostasis. We also use this opportunity to call for greater
attention to the distant communication effects of exosomes in
future research.

Exosomes, as key regulators of bone homeostasis, are also
involved in the pathological processes of bone metabolic diseases
such as OP and O Numerous studies have confirmed that active
components of traditional Chinese medicine can regulate bone and
cartilage metabolism by affecting the production, release, or
composition of exosome contents (Wu et al., 2022; Huang M. Z.
et al., 2022; Yan et al., 2024). Exosomes serve as an important target
for their therapeutic effects in bone metabolic diseases. This
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understanding provides new insights and inspiration for more
effectively utilizing exosomes to modulate bone homeostasis and
develop novel treatment methods in the future.

Exosomes exhibit favorable biocompatibility, stability, targeting
efficiency, as well as low immunogenicity and toxicity (Wang C.
et al., 2023). Owing to their lipid bilayer structure, they can readily
penetrate biological barriers and are considered a significant cell-free
therapeutic approach in bone metabolic disorders. As vectors for
drug delivery, the combination of exosomes with biomaterials or the
modification of exosomal contents through genetic engineering,
biochemical methods, or other technical strategies represent the
three major research directions in the field of exosome-based
therapeutics (Vig and Fernandes, 2022). Preclinical models have
already confirmed their substantial clinical potential. Although
exosome therapy holds great promise in clinical applications,
there is still a long way to go before it can be practically applied
in clinical practice. Currently, there are no clinical trials of exosome
therapy for the treatment of osteoporosis or osteoarthritis in the
ClinicalTrials database (https://clinicaltrials.gov/), and no relevant
research papers can be found in the PubMed database. Moving
forward, it is imperative to continue advancing clinical trials to
comprehensively evaluate the true clinical value of exosomes in the
management of bone metabolic diseases.

As mentioned above, despite the recognized key role of
exosomes in bone metabolism, the underlying molecular
mechanisms and signaling pathways are still poorly understood.
Additionally, technical challenges in the field of exosome research,
such as efficient isolation and purification, precise identification, and
compositional analysis, are also obstacles that need to be addressed.
In the future, efforts must be made to achieve technological
innovation and method standardization. Through
multidisciplinary collaborations involving molecular biology,
bioinformatics, nanomedicine, materials science, and other fields,
we aim to further elucidate the network regulatory mechanisms of
exosomes in bone homeostasis. This will enable us to better
understand and harness the potential value of exosomes in
disease diagnosis, treatment, and prevention.
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