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Background: Abdominal aortic aneurysm (AAA) is one of the most dangerous
types of vascular diseases worldwide. Metabolic disturbance affects disease risk
and provide underlying therapeutic targets. Previous studies have reported an
association betweenmetabolic disorders and AAA. However, evidence of a causal
relationship between blood metabolites and AAA is still lacking at present.

Methods:UsingMendelian randomization (MR), we assessed the causal association
between 1,400 serummetabolites and AAA. The inverse varianceweightedmethod
(IVW), weighted median, MR-Egger regression, simple mode, as well as weighted
mode methods were used for evaluating the causality between blood metabolites
and AAA. Pleiotropy and heterogeneity tests were further conducted.

Results: Through strict screening, 17 known metabolites, 7 unknown metabolites
and 5 metabolite ratios related to AAA were identified. Among all the metabolites,
24 were found to have negative associations, while 5 exhibited positive
associations. The top five metabolites associated with an increased risk of AAA
were Oleoyl-linoleoyl-glycerol (18:1/18:2) [2], Glycosyl-N-(2-hydroxynervonoyl)-
sphingosine (d18:1/24:1(2OH)), Glycochenodeoxycholate 3-sulfate, X-21441 and
X-24328. In contrast, the top five metabolites that were linked to a reduced risk of
AAA included Uridine to pseudouridine ratio, Octadecanedioate, Phosphate to
oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] ratio, 1-(1-enyl-palmitoyl)-GPE (p-16:0),
and 1-stearoyl-GPG (18:0).

Conclusion: Among the 1,400 blood metabolites, we identified 17 known
metabolites, 7 unknown metabolites, and 5 metabolite ratios associated with
AAA. This MR study may provide a novel significant insight for the screening and
prevention of AAA.
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1 Introduction

Abdominal aortic aneurysm (AAA) indicates as the maximal
localized dilation of the abdominal aorta with the diameter ≥30 mm
or 1.5 times greater than normal (Lu et al., 2022). The computed
tomography (CT), magnetic resonance imaging (MRI) and
ultrasound for aortic imaging are acceptable and reliable methods
for early detection of AAA (Sakalihasan et al., 2018). AAA leads to
about 200,000 deaths, including 9% in men over 65 years of age each
year worldwide. The proven risk factors for AAA include male sex,
age, smoking, hypercholesterolemia, hyperlipidemia, and
hypertension with high heritability (Sakalihasan et al., 2018).
Currently, surgical interventions including open aneurysm repair
or endovascular aneurysm repair (EVAR) are limited options for
patients with AAA larger than 5.5 cm in diameter (Vanmaele et al.,
2024). Its high mortality is mainly due to the clinical lack of reliable
and effective drugs treatment. The value of stains, β-blockers,
antibiotics, or anti-platelet therapy in reducing the progression of
AAA still needs further investigation (Zhang et al., 2024).

Metabolites are intermediates or end products of metabolic
reactions. Their levels are affected by genetics, lifestyle, diet, gut
microbiota and diseases. Besides, they can further influence disease
conditions and being potential therapeutic targets. Recently, several
studies have found that the plasma metabolites may be underlying
biomarkers to explore the diagnosis and prognosis of AAA, as well as
targets for alleviating the pathological progression of AAA (Tian
et al., 2022; Benson et al., 2023; Li et al., 2024). Metabolic changes in
patients with AAA are primarily related to carbohydrate and lipid
metabolism, insulin resistance, energy metabolism, and alterations
in amino acid (AA) metabolism (Li et al., 2024; Ling et al., 2022;
Lieberg et al., 2021).

Due to hereditary variations in certain metabolite levels, human
genetics can be utilized to assess the role of metabolites in disease
outcomes. Mendelian randomization (MR) is a causal inference
method that uses single nucleotide polymorphisms (SNPs)
occurring randomly in the human genome as instrumental
variables to test the impact of exposure, such as metabolites on
disease outcomes (Wang et al., 2023; Chen et al., 2023). Currently,
there is a lack of cohort-based causal studies linking metabolites to
AAA. Therefore, this study elucidates changes in metabolite
expression levels in AAA and their effects through
comprehensive blood metabolomics data collection and MR
analysis, providing new reliable targets for AAA diagnosis
and treatment.

2 Methods

2.1 Experimental design

The complete dataset in this study is publicly accessible from
published genome-wide association studies (GWAS) as reported on
the database website. Written informed consent was individually
obtained from all participants under approval from Institutional
Review Boards’ ethics committees. No further ethical approval or
informed consent is necessary. We conducted a comprehensive
assessment using MR to investigate the relationships between
metabolites as exposures and AAA as the outcome. A total of

1,400 metabolite, including 1,091 metabolites and 309 metabolite
ratios was incorporated. The clinical diagnosis of AAA was
determined as a localized dilatation of the abdominal aorta to a
diameter ≥3.0 cm (outer wall to outer wall), as measured by imaging
techniques such as using CT, MRI or ultrasound (Lu et al., 2022;
Sakalihasan et al., 2018).

Three critical assumptions are necessary for fully consideration
during the scientific MR studies. A), Genetic instruments should
strongly correlate with the exposure under study. B), Genetic
instrumental variables are not influenced by any known or
unknown confounding factors and independent of the outcome.
C), The instrumental variables should influence the outcome only
through their impacts on the exposure of interests. Therefore, this
dataset was used to investigate the role of 1,400 metabolites in
patients diagnosed with AAA and healthy individuals without AAA
using a MR analysis approach. The schematic illustration of this MR
study is shown in Figure 1.

2.2 Data sources

The Canadian Longitudinal Study on Aging (CLSA) is a large-
scale and long-term research, designed to investigate and track the
health status and life transitions in Canada over many years. It aims
to collect various aspects of participants’ lives for evaluating the
factors that contribute to healthy aging and the development of age-
related diseases. Chen et al. performed the GWAS, involving
metabolomic data of 1,091 metabolites and 309 metabolite ratios,
from a cohort of 8,299 participants belonging to CLSA dataset. The
results of this GWAS could be accessible including detailed human
plasma metabolomic data from the website http://metabolomics.
helmholtzmuenchen.de/gwas/.

The United Kingdom (UK) Biobank is a large-scale biomedical
research resource, including around 500,000 participants aged
40–69 years between 2006 and 2010, established in the UK. It
concludes detailed health information, lifestyle, donated biological
samples, genome-wide genotyping, results of imaging and medical
records over a period of decades. We defined AAA in the UK
Biobank dataset based on the electronic health recodes (ICD-9/
10 diagnosis and hospital procedure codes) from hospital episode
statistics and death certificates. Age, sex, principal components and
genotyping batch were all adjusted in the analysis. A total of
3,658 patients with AAA and 244,907 controls without AAA was
included. The results of this statistics for AAA were obtained from
Pan-UK Biobank service https://pan.ukbb.broadinstitute.org/.

2.3 Independent variable selection

In the MR analysis, the core assumptions refer to the
fundamental principles that underpin the effectiveness of using
genetic variants as proxies for modifiable exposures. Genetic
variants as instrumental variables (IV) are associated with the
environmental exposure as risk factors, independent of
confounding factors common in traditional observational studies.
Three core assumptions should be followed in the IV selection to
avoid the biased estimates in MRandomization studies, including
relevance (instrument-relevance assumption), independence
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(instrument-independence assumption) and exclusion restriction
(no pleiotropy). We established a threshold of p < 5*10–8 of each
metabolite for identifying SNPs that exhibit significant association
on a genome-wide scale. Pairs of SNPs were considered to exhibit
significant linkage disequilibrium if the squared correlation
coefficient (r̂2) was less than 0.1, and if the SNPs were located
within a 500-kilobase (kb) genomic radius (Yang et al., 2020).
Additionally, SNPs with an F-statistic below 10 were categorized
as weak instruments and underwent rigorous scrutiny to minimize
bias arising from weak instrumentality (Choi et al., 2019).

2.4 Sensitivity analysis

MR sensitivity analysis is a method performed to assess the
robustness of causal inference, testing the potential violating
assumptions or unmeasured confounding factors such as age, sex,
and lifestyle variables. Researchers typically assess these assumptions
rigorously through sensitivity analyses and by considering alternative
explanations for their findings. Specifically, employing the Inverse
Variance Weighted (IVW) method was used for assessing the causal
relationship between metabolites and AAA, as the cornerstone of this
analysis (Zhao and Liu, 2024). MR-Egger and the Weighted Median
(WM) were further performed as the secondary methods of
evaluation. First, Cochran’s Q test was conducted using both the
IVW and MR-Egger methods to detect potential violations of
assumptions due to heterogeneity in IV correlations. Second, the
MR-Egger intercept was then utilized to assess pleiotropy, ensuring
that genetic variants are independently associated with both
metabolites and AAA. Third, we employed WM and Mode-based
Estimation to enhance the reliability and stability of our hypothesis
testing. Last, individual SNP analyses and leave-one-out (LOO)
diagnostics were conducted to assess the robustness of observed
associations for each SNP. The MR analysis assumes causality
under the condition of genetic correlation between metabolites as
exposure and AAA as outcome. To mitigate bias, SNPs associated
with aneurysms were carefully selected, excluding those linked to
other traits. Nonetheless, SNPs lacking known associations may still
influence the incidence of AAA.

2.5 Statistical methods

MR analyses were conducted using the ‘Two Sample MR’
package in R software (version 4.2.1). Odds ratios (ORs) were

utilized to assess the magnitude and direction of the metabolic
impact, accompanied by their respective 95% confidence
intervals (CIs).

3 Results

Through strict screening, 17 known metabolites, 7 unknown
metabolites and 5 metabolite ratios related to AAA were identified.
Among all metabolites, 24 were found to have negative associations,
and 5 had positive associations. The top five metabolites that
increased the risk of AAA were Oleoyl-linoleoyl-glycerol (18:1/
18:2) [2], Glycosyl-N-(2-hydroxynervonoyl)-sphingosine (d18:1/
24:1(2OH)), Glycochenodeoxycholate 3-sulfate, X-21441 and X-
24328. Conversely, the top five metabolites that decreased the
risk of AAA were Uridine to pseudouridine ratio,
Octadecanedioate, Phosphate to oleoyl-linoleoyl-glycerol (18:1 to
18:2) [2] ratio, 1-(1-enyl-palmitoyl)-GPE (p-16:0), and 1-stearoyl-
GPG (18:0).

Based on the threshold of p < 5*10–8 of each metabolite for
identifying SNPs with significant associations on a genome-wide
scale, a total of 29 plasma metabolites and metabolite ratios were
selected. All computed F-statistics exceeded 10, indicating minimal
susceptibility to weak instrument bias. All metabolic analyses
utilized the IVW method as the primary approach,
demonstrating uniformity and robust instrument strength. After
screening for the primary outcomes and pleiotropy, 29 metabolites
related to AAAwere identified with IVW p < 0.05 and Pleiotropy p >
0.05, including 24 metabolites and 5 metabolite ratios.

Among the 24 metabolites, the chemical properties of
7 metabolites are unknown, while the remaining 17 known
metabolites belong to multiple categories, such as lipid
metabolism, bile acid metabolism, ketone body metabolism, and
sphingolipid metabolism. Remarkably, lipids metabolism
constitutes the most prevalent category, comprising
approximately 60% of the identified substances. Within the group
of 22 metabolites and metabolite ratios, only 3 known metabolites
show a positive association with AAA, while the other
14 metabolites and 5 metabolite ratios are negative associated
with the condition. The IVW forest plot depicting the association
of 29 significantly associated metabolites and metabolite ratios is
shown in Figure 2. The bubble plot is further performed to represent
visually the relationships between the metabolites and metabolite
rations and AAA as shown in Figure 3. Detailed results of alternative
MR analyses, Q-tests, and sensitivity analyses for the 29 identified

FIGURE 1
The schematic diagram of the MR study.
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metabolites are provided in Table 1. All instrumental variables (IVs)
passed rigorous sensitivity tests (p > 0.05).

Among the 17 identified metabolites, we found that
Octadecanedioate levels have the most significant negative
correlation with AAA (IVW OR = 0.692, 95% CI = 0.583–0.823,
p < 0.001), followed by 1-(1-enyl-palmitoyl)-GPE (p-16:0) levels
(IVW OR = 0.701, 95% CI = 0.515–0.954, p = 0.024), 1-stearoyl-
GPG (18:0) levels (IVW OR = 0.705, 95% CI = 0.582–0.854, p <
0.001), 2-linoleoylglycerol (18:2) levels (IVW OR = 0.96, 95% CI =
0.94–0.99, p = 0.003), 3beta-hydroxy-5-cholestenoate levels (IVW
OR = 0.753, 95% CI = 0.587–0.966, p = 0.025), 2R,3R-
dihydroxybutyrate levels (IVW OR = 0.816, 95% CI =
0.701–0.949, p < 0.001), Octadecenedioate (C18:1-DC) levels
(IVW OR = 0.830, 95% CI = 0.739–0.932, p < 0.001),
Octadecenedioylcarnitine (C18:1-DC) levels (IVW OR = 0.844,
95% CI = 0.743–0.958, p < 0.001), Octadecanedioylcarnitine
(C18-DC) levels (IVW OR = 0.854, 95% CI = 0.781–0.934, p <
0.001), Octadecadienedioate (C18:2-DC) levels (IVW OR = 0.861,
95% CI = 0.776–0.955, p < 0.001), Sphingomyelin (d18:1/25:0, d19:
0/24:1, d20:1/23:0, d19:1/24:0) levels (IVW OR = 0.864, 95% CI =

0.775–0.962, p < 0.001), Glycocholenate sulfate levels (IVW OR =
0.873, 95% CI = 0.770–0.990, p = 0.035), 6-bromotryptophan levels
(IVW OR = 0.879, 95% CI = 0.778–0.993, p = 0.038), and
Succinoyltaurine levels (IVW OR = 0.904, 95% CI = 0.824–0.992,
p = 0.033).

The most significantly known positive correlation with AAA
was observed in the Oleoyl-linoleoyl-glycerol (18:1/18:2) [2] levels
(IVWOR = 1.366, 95% CI = 1.168–1.597, p < 0.001), Glycosyl-N-(2-
hydroxynervonoyl)-sphingosine (d18:1/24:1(2OH)) levels (IVW
OR = 1.170, 95% CI = 1.035–1.323; p = 0.012), and
Glycochenodeoxycholate 3-sulfate levels (IVW OR = 1.158, 95%
CI = 1.015–1.32, p = 0.029).

In relation to metabolite ratios, a collective of 5 ratios all exhibit
a negative correlation with AAA. Among them, the most significant
negative correlation with AAA was observed in the ratio of Uridine
to pseudouridine (IVW OR = 0.609, 95% CI = 0.469–0.791, p <
0.001), followed by Phosphate to oleoyl-linoleoyl-glycerol (18:1 to
18:2) [2] ratio (IVW OR = 0.7, 95% CI = 0.595–0.822, p < 0.001),
Benzoate to oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] ratio (IVW
OR = 0.712, 95% CI = 0.539–0.941, p = 0.017), Cholesterol to oleoyl-

FIGURE 2
IVW forest maps of 29 significantly related metabolites.
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TABLE 1 Two MR models assessed causal relationships between 29 metabolites, their ratios, and AAA, examining heterogeneity and potential pleiotropy.

Class Metabolite name and number Method SNP(n) pval OR 95%CI Heterogeneity Pleiotropy

Qvalue P Intercept P

Lipid GCST90199780 Inverse variance weighted 3 3.5e-04 0.705 0.582–0.854 1.431 0.489

1-stearoyl-GPG (18:0) levels MR Egger 3 3.5e-04 0.705 0.582–0.854 0.697 0.404 0.044 0.549

Lipid GCST90199805 Inverse variance weighted 4 3.0e-05 0.692 0.583–0.823 0.515 0.916

Octadecanedioate levels MR Egger 4 3.0e-05 0.692 0.583–0.823 0.327 0.849 0.022 0.707

Bile acid GCST90199841 Inverse variance weighted 8 3.5e-02 0.873 0.770–0.990 18.989 0.008

Glycocholenate sulfate levels MR Egger 8 3.5e-02 0.873 0.770–0.990 18.966 0.004 −0.003 0.935

Ketone body GCST90199889 Inverse variance weighted 8 8.5e-03 0.816 0.701–0.949 10.574 0.158

2R,3R-dihydroxybutyrate levels MR Egger 8 8.5e-03 0.816 0.701–0.949 8.486 0.205 −0.032 0.27

Lipid GCST90199906 Inverse variance weighted 3 2.4e-02 0.701 0.515–0.954 1.112 0.574

1-(1-enyl-palmitoyl)-GPE (p-16:0) levels MR Egger 3 2.4e-02 0.701 0.515–0.954 0.047 0.829 0.265 0.49

Lipid GCST90199914 Inverse variance weighted 7 9.4e-05 1.366 1.168–1.597 7.098 0.312

Oleoyl-linoleoyl-glycerol (18:1/18:2) [2] levels MR Egger 7 9.4e-05 1.366 1.168–1.597 6.614 0.251 −0.018 0.572

Lipid GCST90199970 Inverse variance weighted 4 8.6e-03 0.844 0.743–0.958 5.579 0.134

Octadecenedioylcarnitine (C18:1-DC) levels MR Egger 4 8.6e-03 0.844 0.743–0.958 4.597 0.1 −0.023 0.581

Lipid GCST90199992 Inverse variance weighted 6 5.4e-04 0.854 0.781–0.934 4.683 0.456

Octadecanedioylcarnitine (C18-DC) levels MR Egger 6 5.4e-04 0.854 0.781–0.934 4.675 0.322 0.002 0.939

Lipid GCST90200014 Inverse variance weighted 4 2.5e-02 0.753 0.587–0.966 11.276 0.01

3beta-hydroxy-5-cholestenoate levels MR Egger 4 2.5e-02 0.753 0.587–0.966 4.501 0.105 −0.098 0.225

Bile acid GCST90200022 Inverse variance weighted 8 2.9e-02 1.158 1.015–1.320 7.047 0.424

Glycochenodeoxycholate 3-sulfate levels MR Egger 8 2.9e-02 1.158 1.015–1.320 3.672 0.721 0.039 0.116

Sphingolipid GCST90200117 Inverse variance weighted 6 1.2e-02 1.170 1.035–1.323 3.747 0.586

Glycosyl-N-(2-hydroxynervonoyl)-sphingosine (d18:1/24:1(2OH)) levels MR Egger 6 1.2e-02 1.170 1.035–1.323 1.342 0.854 −0.036 0.196

Lipid GCST90200134 Inverse variance weighted 4 7.6e-03 0.864 0.775–0.962 1.803 0.614

Sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0) levels MR Egger 4 7.6e-03 0.864 0.775–0.962 0.626 0.731 0.026 0.391

Lipid GCST90200165 Inverse variance weighted 3 1.6e-03 0.830 0.739–0.932 2.482 0.289

Octadecenedioate (C18:1-DC) levels MR Egger 3 1.6e-03 0.830 0.739–0.932 2.354 0.125 −0.013 0.854

(Continued on following page)
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TABLE 1 (Continued) Two MR models assessed causal relationships between 29 metabolites, their ratios, and AAA, examining heterogeneity and potential pleiotropy.

Class Metabolite name and number Method SNP(n) pval OR 95%CI Heterogeneity Pleiotropy

Qvalue P Intercept P

Lipid GCST90200170 Inverse variance weighted 4 4.7e-03 0.861 0.776–0.955 4.1 0.251

Octadecadienedioate (C18:2-DC) levels MR Egger 4 4.7e-03 0.861 0.776–0.955 3.82 0.148 −0.018 0.739

Metabolites GCST90200201 Inverse variance weighted 5 3.8e-02 0.879 0.778–0.993 3.336 0.503

6-bromotryptophan levels MR Egger 5 3.8e-02 0.879 0.778–0.993 0.992 0.803 −0.061 0.223

Metabolites GCST90200235 Inverse variance weighted 4 3.3e-02 0.904 0.824–0.992 1.956 0.581

Succinoyltaurine levels MR Egger 4 3.3e-02 0.904 0.824–0.992 1.947 0.378 0.003 0.931

Metabolites GCST90200357 Inverse variance weighted 4 2.4e-02 0.792 0.647–0.970 3.098 0.377

Adenosine 3\’,5\’-cyclic monophosphate (camp) levels MR Egger 4 2.4e-02 0.792 0.647–0.970 0.352 0.838 0.09 0.239

Unknown GCST90200553 Inverse variance weighted 4 1.6e-02 0.837 0.725–0.967 3.117 0.374

X-17653 levels MR Egger 4 1.6e-02 0.837 0.725–0.967 1.401 0.496 0.055 0.32

Unknown GCST90200578 Inverse variance weighted 6 3.6e-03 0.828 0.729–0.940 2.433 0.787

X-18922 levels MR Egger 6 3.6e-03 0.828 0.729–0.940 1.185 0.881 0.039 0.327

Unknown GCST90200581 Inverse variance weighted 7 3.2e-02 1.117 1.009–1.236 1.792 0.938

X-21441 levels MR Egger 7 3.2e-02 1.117 1.009–1.236 1.7 0.889 0.009 0.774

Unknown GCST90200624 Inverse variance weighted 6 7.8e-03 1.294 1.070–1.564 0.258 0.998

X-24328 levels MR Egger 6 7.8e-03 1.294 1.070–1.564 0.205 0.995 0.009 0.83

Unknown GCST90200630 Inverse variance weighted 4 1.8e-02 0.845 0.735–0.971 3.495 0.321

X-24546 levels MR Egger 4 1.8e-02 0.845 0.735–0.971 1.066 0.587 0.06 0.259

Unknown GCST90200636 Inverse variance weighted 5 1.6e-02 0.899 0.825–0.980 2.59 0.629

X-24544 levels MR Egger 5 1.6e-02 0.899 0.825–0.980 0.456 0.928 −0.028 0.24

Unknown GCST90200670 Inverse variance weighted 3 5.4e-03 0.798 0.680–0.935 1.548 0.461

X-26111 levels MR Egger 3 5.4e-03 0.798 0.680–0.935 0.061 0.805 0.044 0.437

Ratio GCST90200774 Inverse variance weighted 3 2.1e-04 0.609 0.469–0.791 0.071 0.965

Uridine to pseudouridine ratio MR Egger 3 2.1e-04 0.609 0.469–0.791 0.024 0.876 −0.042 0.865

Ratio GCST90200900 Inverse variance weighted 6 1.4e-05 0.700 0.595–0.822 5.307 0.38

Phosphate to oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] ratio MR Egger 6 1.4e-05 0.700 0.595–0.822 5.282 0.26 0.004 0.897

(Continued on following page)
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linoleoyl-glycerol (18:1 to 18:2) [2] ratio (IVWOR = 0.749, 95% CI =
0.647–0.868, p < 0.001), Retinol (Vitamin A) to oleoyl-linoleoyl-
glycerol (18:1 to 18:2) [2] ratio (IVW OR = 0.795, 95% CI =
0.641–0.987, p = 0.037).

In summary, MR estimates from IVW, WM, and MR-Egger
regression models across 24 metabolites and 5 metabolite ratios
consistently indicated both direction and magnitude, thereby
bolstering the robustness of causal inference, with the exception
of 3beta-hydroxy-5-cholestenoate levels (IVWOR= 0.753, 95%CI =
0.587–0.966, p = 0.025, heterogeneity Q value = 11.276; p = 0.01) and
Retinol (Vitamin A) to oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2]
ratio (IVW OR = 0.795, 95% CI = 0.641–0.987, p = 0.037,
heterogeneity Q value = 12.94, p = 0.048). No significant
heterogeneity was observed in the p-values from the Cochran Q
test across the remaining metabolites and metabolite ratios
(Table 1). The MR-Egger intercept did not suggest the presence
of pleiotropy (Table 1). Additionally, a LOO analysis did not reveal
any highly influential SNPs that could bias the aggregated effect
estimates (Supplementary Figures S1–S29). The funnel plot for the
distribution of SNPs, scatter plot for the causal effect and forest plot
of single SNP MR were also shown in (Supplementary Figures
S1–S29. Consequently, these 24 metabolites and 5 metabolite
ratios are identified as potential candidate markers in the
metabolomic profile associated with the pathogenesis of AAA.

4 Discussion

Our research findings substantiate a causal association between
24 metabolites and 5 metabolite ratios with AAA. The results indicate
potential causal links between circulating metabolites and AAA.
Specifically, increased levels of Oleoyl-linoleoyl-glycerol (18:1/18:2)
[2], Glycosyl-N-(2-hydroxynervonoyl)-sphingosine (d18:1/24:
1(2OH)), and Glycochenodeoxycholate 3-sulfate, exhibit a
protective role in patients with AAA. Conversely, the elevation of
19 other metabolites and metabolite ratios including
Octadecanedioate levels, 1-(1-enyl-palmitoyl)-GPE (p-16:0) levels,
1-stearoyl-GPG (18:0) levels, 2-linoleoylglycerol (18:2) levels, 3beta-
hydroxy-5-cholestenoate levels, 2R,3R-dihydroxybutyrate levels,
Octadecenedioate (C18:1-DC) levels, Octadecenedioylcarnitine
(C18:1-DC) levels, Octadecanedioylcarnitine (C18-DC) levels,
Octadecadienedioate (C18:2-DC) levels, Sphingomyelin (d18:1/25:0,
d19:0/24:1, d20:1/23:0, d19:1/24:0) levels, Glycocholenate sulfate
levels, 6-bromotryptophan levels, and Succinoyltaurine levels,
Uridine to pseudouridine ratio, followed by Phosphate to oleoyl-
linoleoyl-glycerol (18:1 to 18:2) [2] ratio (IVW OR = 0.7, 95% CI =
0.595–0.822, p = 0.000014), Benzoate to oleoyl-linoleoyl-glycerol (18:
1 to 18:2) [2] ratio, Cholesterol to oleoyl-linoleoyl-glycerol (18:1 to 18:
2) [2] ratio, as well as Retinol (Vitamin A) to oleoyl-linoleoyl-glycerol
(18:1 to 18:2) [2] ratio, are associated with adverse effects on AAA.

AAA is a critical health concern that influences individuals
throughout their entire lives (Lv et al., 2024a). It is characterized by
pathological changes such as the loss of smooth muscle cells,
alterations in extracellular matrix components, and significant
inflammatory cell infiltration, which compromise arterial wall
integrity (Xu et al., 2019). Additionally, metabolic homeostasis
is disrupted, leading to altered serum concentrations of lipids, with
elevated total cholesterol (TC), triglycerides and low-densityT
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lipoprotein cholesterol (LDL-C) as well as reduced high-density
lipoprotein cholesterol (HDL-C) and phosphatidylcholines
(Harrison et al., 2018). These changes lead to vascular dilation,
increased wall stress, and an elevated risk of rupture, underscoring
the importance of its early detection and monitoring (Golledge
et al., 2023). Clinically, aneurysms frequently remain
asymptomatic, but patients may report abdominal or back pain,
a noticeable pulsatile mass, and fluctuations in blood pressure
when symptoms do occur. Life-threatening complications, such as
rupture, can result in severe internal bleeding, highlighting the
importance of routine monitoring and imaging for those at higher
risk (Golledge et al., 2023; Chen Z. et al., 2024). Patients with AAA
are often complicated with atherosclerosis, hypertension, diabetes,
and coronary artery disease, which can exacerbate its progression.
Early identification and management of these comorbidities are
further essential for reducing AAA risk and improving overall
health outcomes.

The pathological process and progression of AAA are associated
with lipid levels, particularly elevated LDL-C, which plays a
significant role in atherosclerosis, a major contributor to AAA
formation (Nana et al., 2021). Effective management of
dyslipidemia may help mitigate AAA progression and enhance
cardiovascular health, underscoring the necessity for routine lipid
monitoring in at-risk individuals (Burillo et al., 2015). To our
knowledge, this is the first investigation employing a MR
approach to investigate the causal relationship between
1,400 blood metabolites and the risk of AAA.

After removing the unknown metabolites and metabolite ratios,
we identified 19 metabolites and metabolite ratios that decreased the
risk of AAA, including: Octadecanedioate, 1-(1-enyl-palmitoyl)-
GPE (p-16:0), 1-stearoyl-GPG (18:0), 2-linoleoylglycerol (18:2),
3beta-hydroxy-5-cholestenoate, 2R,3R-dihydroxybutyrate,
Octadecenedioate (C18:1-DC), Octadecenedioylcarnitine (C18:1-
DC), Octadecanedioylcarnitine (C18-DC), Octadecadienedioate
(C18:2-DC), Sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0,
d19:1/24:0), Glycocholenate sulfate, 6-bromotryptophan, and
Succinoyltaurine, Uridine to pseudouridine ratio, followed by
Phosphate to oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] ratio,
Benzoate to oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] ratio,
Cholesterol to oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] ratio, as
well as Retinol (Vitamin A) to oleoyl-linoleoyl-glycerol (18:1 to 18:2)
[2] ratio. Currently, no relevant studies have been found regarding
1-stearoyl-GPG (18:0), 3beta-hydroxy-5-cholestenoate, 2R,3R-
dihydroxybutyrate, Octadecenedioylcarnitine (C18:1-DC),
Sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0),
Phosphate to oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] ratio,
Benzoate to oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] ratio, and
Retinol (Vitamin A) to oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2]
ratio. Lower levels of Octadecanedioate are related to the decreased
odds of both preeclampsia and coronary heart disease (CHD) (Ross
et al., 2019; Feofanova et al., 2020). Genes related to
Octadecanedioate are significantly involved in the process of
apoptosis (programmed cell death) based on the DAVID analysis
(Feofanova et al., 2020). Different from the above two situations,

FIGURE 3
Bubble plot of 29 significantly related metabolites.
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exposure to Octadecanedioate downregulates the risk of AAA due to
our MR results. High level of 1-(1-enyl-palmitoyl)-GPE (p-16:0)
may be correlated with increased gastric cancer risk as a potential
risk biomarker (Shu et al., 2021). 2-linoleoylglycerol (18:2) is one of
reported circulating metabolome associated with colorectal cancer
(CRC) (Gao et al., 2022). High level of Octadecenedioate (C18:1-
DC) decreased susceptibility to CHD (Chen H. et al., 2024). Besides,
its generation could be potentially decreased in patients with rosacea
(Yao et al., 2024). Octadecanedioylcarnitine (C18-DC) mediates the
genetic predictive effects on Alzheimer’s disease risk (Chen G. et al.,
2024). Octadecadienedioate (C18:2-DC) is one of the plasma
metabolites as significant mediators in the relationships between
gut microbiota and type 2 diabetes (Zheng et al., 2024).
Glycocholenate sulfate may be a new metabolite significantly
associated with atrial fibrillation (AF), CHD, and CRC (Chen H.
et al., 2024; Alonso et al., 2019; Alonso et al., 2015). Its concentration
is negative associated with consumption of artificially sweetened
beverages (Jia et al., 2024). 6-bromotryptophan may serve as a
correlated metabolomics maker of kidney health, CKD
progression, patients with cirrhosis, responder (Sekula et al.,
2020; Tin et al., 2018; Sanchez et al., 2024). A MR study found a
negative causal relationship with Succinoyltaurine and the risk of
breast cancer (Ming et al., 2024). Uridine to pseudouridine ratio is
related to decreased the risk of ischemia stroke (He et al., 2024).
Sodium-glucose cotransporter 1 (SGLT1) and SGLT2 inhibitors play
protective roles in small vessel disease (SVD) via Cholesterol to
oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] ratio (Lv et al., 2024b).
The upregulation of these metabolites and metabolite ratios may
serve as good indicators for the occurrence and progression of AAA,
while their upregulation could exert a protective effect. The
metabolites are underlying diagnosis biomarkers and treatment
targets for AAA. Given the correlation between these metabolites
and AAA, it may be recommended to include clinical practice
guidance to explore the changes in these above metabolites. Their
downregulation may indicate early detection and development of
AAA, and clinicians should pay attention to these metabolic markers
for diagnosis and intervention.

After removing the unknown metabolites and metabolite ratios,
we identified only 3 known metabolites that increased the risk of
AAA, including: Oleoyl-linoleoyl-glycerol (18:1/18:2) [2], Glycosyl-
N-(2-hydroxynervonoyl)-sphingosine (d18:1/24:1(2OH)), and
Glycochenodeoxycholate 3-sulfate. Currently, no relevant studies
have been found regarding Glycosyl-N-(2-hydroxynervonoyl)-
sphingosine (d18:1/24:1(2OH)). Oleoyl-linoleoyl-glycerol (18:1/18:
2) is a type of diacylglycerol that enhances the production and
release of HDL-C and reduces the levels of TC and LDL-C by
promoting the clearance of LDL-C and inhibiting cholesterol
synthesis (Lv et al., 2024b). Glycochenodeoxycholate 3-sulfate,
also named GCDCA-S, is produced from Glycochenodeoxycholic
acid (GCDCA) in hepatocytes by sulfotransferase, reabsorbed in the
distal small intestine, and taken up again by hepatocytes via Oatps,
completing the enterohepatic circulation of bile acids (Li and
Dawson, 2019). It helps regulate cholesterol metabolism by
potentially reducing serum cholesterol levels and facilitates the fat
digestion and fat-soluble vitamins absorption. GCDCA-S has been
proved to be underlying diagnosis biomarkers for tuberculosis,
severity of patients with acute hepatitis E infection (Deng et al.,
2021;Wu et al., 2022), as well as the promising surrogate markers for

quantitatively evaluating potential drug-drug interactions mediated
by OATP1B (such as Rifampicin), OATP1B3 (such as micafungin),
and Oatps-mediated hepatic uptake of atorvastatin (Takehara et al.,
2018; Jin et al., 2022; Ma et al., 2021). The mediating effects of both
oleoyl-linoleoyl-glycerol (18:1/18:2) and glycochenodeoxycholate 3-
sulfate in the relationship between lipids and AAA further
underscore the significance of lipid and its homeostasis in AAA.
The upregulation of these three markers may serve as a risk signal for
the occurrence and progression of AAA, while their downregulation
could exert a protective effect. Treatment plans could consider
modifying diet, exercise, or pharmacological interventions to
address metabolic abnormalities associated with AAA, potentially
slowing disease progression. Such recommendations would provide
valuable insights for personalized treatment strategies.

This research presents numerous significant advantages. 1) By
leveraging GWAS data, our MR analysis reveals novel potential
causal mediators for 1,400 metabolites linked to AAAs. 2) The use of
multiple cohorts derived from original GWAS data strengthens our
ability to draw robust causal inferences across a large population,
thereby increasing the statistical power of our findings. This makes it
possible for developing potential effective drug targets and clinical
trials. Nonetheless, our study has several limitations. 1) Our MR
analysis is based on summary data from GWAS, while AAAs are
influenced by a range of factors beyond genetic predisposition.
Future research should prioritize investigating changes in relevant
biomarkers to identify additional therapeutic targets for AAAs. 2)
Our study predominantly involved individuals of European descent,
which reduces population stratification bias but limits the
generalizability of our findings to other ethnic groups. Further
exploration in diverse populations is crucial to validate our
results. 3) There may be overlap among participants in the
GWAS cohorts, which could lead to weak instrument bias. While
our F-statistics show that instrument bias is not present in the MR
analysis, additional studies using independent cohorts without
participant overlap are essential for deepening our understanding
of the genetic factors involved in the development of AAAs.

5 Conclusion

Through MR and comprehensive circulating metabolomics, this
study identified significant associations between metabolite
expression and AAA. First, changes in the levels of specific
metabolites may serve as indicators of AAA onset and
progression, offering a potential strategy for the early detection of
AAA. Second, certain metabolites could help predict a patient’s
response to specific treatments, laying the groundwork for
personalized therapy. Additionally, monitoring levels of
metabolites may enable real-time assessment of treatment efficacy
and guide necessary adjustments to the treatment, ultimately
improving clinical outcomes and reducing side effects. By
employing these strategies, personalized treatment not only
enhances patient outcomes but also optimizes clinical
management and overall prognosis. Therefore, the findings of
this study may provide valuable insights for the clinical
management of AAA and contribute to the advancement of
precision medicine. These findings highlight promising avenues
for the development of targeted diagnostic and therapeutic
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strategies for AAA, potentially improving patient outcomes and
clinical management.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

Author contributions

QG: Data curation, Software, Validation, Writing–original draft,
Visualization. XhX: Data curation, Investigation, Validation,
Writing–original draft, Formal Analysis, Software. XhL: Data
curation, Validation, Visualization, Writing–original draft,
Conceptualization, Investigation. YM: Methodology, Resources,
Software, Validation, Writing–original draft. SL: Investigation,
Methodology, Software, Validation, Visualization, Writing–original
draft. YY: Data curation, Investigation, Software, Validation,
Writing–original draft. XnL: Data curation, Writing–original draft.
YL: Data curation, Software, Writing–original draft. JF: Data curation,
Software, Validation, Writing–original draft. YS: Formal Analysis,
Resources, Visualization, Writing–original draft. XlX:
Conceptualization, Data curation, Investigation, Software,
Supervision, Visualization, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the National Natural Science Foundation of China
(82100439), China Postdoctoral Science Foundation
(2024M751844), Shandong Provincial Natural Science

Foundation (ZR2023MH267), Shandong Provincial Science and
Technology Department Youth Science Fund Project
(ZR2024QH242, ZR2022QH154), Key Laboratory of Medical
Electrophysiology of Ministry of Education (Southwest Medical
University) Open fund (KeyME-2021-05), and Natural Science
Foundation of Sichuan Province (2022NSFSC0538).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2024.1514293/
full#supplementary-material

References

Alonso, A., Yu, B., Qureshi, W. T., Grams, M. E., Selvin, E., Soliman, E. Z., et al.
(2015). Metabolomics and incidence of atrial fibrillation in african Americans: the
atherosclerosis risk in communities (ARIC) study. PLoS One 10, e0142610. doi:10.1371/
journal.pone.0142610

Alonso, A., Yu, B., Sun, Y. V., Chen, L. Y., Loehr, L. R., O’Neal, W. T., et al. (2019).
Serum metabolomics and incidence of atrial fibrillation (from the atherosclerosis risk
in communities study). Am. J. Cardiol. 123, 1955–1961. doi:10.1016/j.amjcard.2019.
03.017

Benson, T. W., Conrad, K. A., Li, X. S., Wang, Z., Helsley, R. N., Schugar, R. C., et al.
(2023). Gut microbiota-derived trimethylamine N-oxide contributes to abdominal
aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation 147,
1079–1096. doi:10.1161/CIRCULATIONAHA.122.060573

Burillo, E., Lindholt, J. S., Molina-Sanchez, P., Jorge, I., Martinez-Pinna, R., Blanco-
Colio, L. M., et al. (2015). ApoA-I/HDL-C levels are inversely associated with
abdominal aortic aneurysm progression. Thromb. Haemost. 113, 1335–1346. doi:10.
1160/TH14-10-0874

Chen, G., Jin, Y., Chu, C., Zheng, Y., Chen, Y., and Zhu, X. (2024c). Genetic prediction
of blood metabolites mediating the relationship between gut microbiota and
Alzheimer’s disease: a Mendelian randomization study. Front. Microbiol. 15,
1414977. doi:10.3389/fmicb.2024.1414977

Chen, H., Huang, Y., Wan, G., and Zou, X. (2024b). Circulating metabolites and
coronary heart disease: a bidirectional Mendelian randomization. Front. Cardiovasc
Med. 11, 1371805. doi:10.3389/fcvm.2024.1371805

Chen, Y., Lu, T., Pettersson-Kymmer, U., Stewart, I. D., Butler-Laporte, G., Nakanishi,
T., et al. (2023). Genomic atlas of the plasma metabolome prioritizes metabolites
implicated in human diseases. Nat. Genet. 55, 44–53. doi:10.1038/s41588-022-01270-1

Chen, Z., Gao, Q., Qiu, J., Ge, M., Wang, S., Liu, C., et al. (2024a). Genetic analysis
reveals Key regulatory Axis in aortic dissection: CBL regulated by HOXB13 and
microRNA-1321. CVIA 9 (1). doi:10.15212/cvia.2024.0034

Choi, K. W., Chen, C. Y., Stein, M. B., Klimentidis, Y. C., Wang, M. J., Koenen, K. C.,
et al. (2019). Assessment of bidirectional relationships between physical activity and
depression among adults: a 2-sample mendelian randomization study. JAMA Psychiatry
76, 399–408. doi:10.1001/jamapsychiatry.2018.4175

Deng, J., Liu, L., Yang, Q., Wei, C., Zhang, H., Xin, H., et al. (2021). Urinary
metabolomic analysis to identify potential markers for the diagnosis of tuberculosis and
latent tuberculosis. Arch. Biochem. Biophys. 704, 108876. doi:10.1016/j.abb.2021.108876

Feofanova, E. V., Chen, H., Dai, Y., Jia, P., Grove, M. L., Morrison, A. C., et al. (2020).
A genome-wide association study discovers 46 loci of the human metabolome in the
hispanic community health study/study of latinos. Am. J. Hum. Genet. 107, 849–863.
doi:10.1016/j.ajhg.2020.09.003

Gao, R., Wu, C., Zhu, Y., Kong, C., Zhu, Y., Gao, Y., et al. (2022). Integrated analysis of
colorectal cancer reveals cross-cohort gut microbial signatures and associated serum
metabolites. Gastroenterology 163, 1024–1037.e9. doi:10.1053/j.gastro.2022.06.069

Golledge, J., Thanigaimani, S., Powell, J. T., and Tsao, P. S. (2023). Pathogenesis and
management of abdominal aortic aneurysm. Eur. Heart J. 44, 2682–2697. doi:10.1093/
eurheartj/ehad386

Frontiers in Pharmacology frontiersin.org10

Guo et al. 10.3389/fphar.2024.1514293

https://www.frontiersin.org/articles/10.3389/fphar.2024.1514293/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2024.1514293/full#supplementary-material
https://doi.org/10.1371/journal.pone.0142610
https://doi.org/10.1371/journal.pone.0142610
https://doi.org/10.1016/j.amjcard.2019.03.017
https://doi.org/10.1016/j.amjcard.2019.03.017
https://doi.org/10.1161/CIRCULATIONAHA.122.060573
https://doi.org/10.1160/TH14-10-0874
https://doi.org/10.1160/TH14-10-0874
https://doi.org/10.3389/fmicb.2024.1414977
https://doi.org/10.3389/fcvm.2024.1371805
https://doi.org/10.1038/s41588-022-01270-1
https://doi.org/10.15212/cvia.2024.0034
https://doi.org/10.1001/jamapsychiatry.2018.4175
https://doi.org/10.1016/j.abb.2021.108876
https://doi.org/10.1016/j.ajhg.2020.09.003
https://doi.org/10.1053/j.gastro.2022.06.069
https://doi.org/10.1093/eurheartj/ehad386
https://doi.org/10.1093/eurheartj/ehad386
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1514293


Harrison, S. C., Holmes, M. V., Burgess, S., Asselbergs, F. W., Jones, G. T., Baas, A. F.,
et al. (2018). Genetic association of lipids and lipid drug targets with abdominal aortic
aneurysm: a meta-analysis. JAMA Cardiol. 3, 26–33. doi:10.1001/jamacardio.2017.4293

He, M., Xu, C., Yang, R., Liu, L., Zhou, D., and Yan, S. (2024). Causal relationship
between human blood metabolites and risk of ischemic stroke: a Mendelian
randomization study. Front. Genet. 15, 1333454. doi:10.3389/fgene.2024.1333454

Jia, H., Bernard, L., Chen, J., Du, S., Steffen, L. M., Wong, K. E., et al. (2024). Serum
metabolomic markers of artificially sweetened beverage consumption. J. Nutr. 154,
3266–3273. doi:10.1016/j.tjnut.2024.09.024

Jin, Y., Li, Y., Eisenmann, E. D., Figg,W. D., Baker, S. D., Sparreboom, A., et al. (2022).
Determination of the endogenous OATP1B biomarkers glycochenodeoxycholate-3-
sulfate and chenodeoxycholate-24-glucuronide in human and mouse plasma by a
validated UHPLC-MS/MS method. J. Chromatogr. B Anal. Technol. Biomed. Life
Sci. 1210, 123437. doi:10.1016/j.jchromb.2022.123437

Li, C., Liu, Z., Yang, S., Li, W., Liang, B., Chen, H., et al. (2024). Causal relationship
between gut microbiota, plasma metabolites, inflammatory cytokines and abdominal
aortic aneurysm: a Mendelian randomization study. Clin. Exp. Hypertens. 46, 2390419.
doi:10.1080/10641963.2024.2390419

Li, J., and Dawson, P. A. (2019). Animal models to study bile acid metabolism.
Biochim. Biophys. Acta Mol. Basis Dis. 1865, 895–911. doi:10.1016/j.bbadis.2018.05.011

Lieberg, J., Wanhainen, A., Ottas, A., Vähi, M., Zilmer, M., Soomets, U., et al. (2021).
Metabolomic profile of abdominal aortic aneurysm. Metabolites 11, 555. doi:10.3390/
metabo11080555

Ling, X., Jie, W., Qin, X., Zhang, S., Shi, K., Li, T., et al. (2022). Gut microbiome sheds
light on the development and treatment of abdominal aortic aneurysm. Front.
Cardiovasc Med. 9, 1063683. doi:10.3389/fcvm.2022.1063683

Lu, S., White, J. V., Nwaneshiudu, I., Nwaneshiudu, A., Monos, D. S., Solomides, C.
C., et al. (2022). Human abdominal aortic aneurysm (AAA): evidence for an
autoimmune antigen-driven disease. Autoimmun. Rev. 21, 103164. doi:10.1016/j.
autrev.2022.103164

Lv, Y., Cheng, X., and Dong, Q. (2024b). SGLT1 and SGLT2 inhibition, circulating
metabolites, and cerebral small vessel disease: a mediation Mendelian Randomization
study. Cardiovasc Diabetol. 23, 157. doi:10.1186/s12933-024-02255-6

Lv, Y., Shen, D., Zhang, G., Wang, B., Wang, H., Zhang, J., et al. (2024a). Causal
associations between the gut microbiome and aortic aneurysm: a mendelian
randomization study. CVIA 9 (1). doi:10.15212/cvia.2024.0023

Ma, Y., Xin, M., Wen, Y., Wang, H., Zhang, G., Dai, J., et al. (2021). The utility of
endogenous glycochenodeoxycholate-3-sulfate and 4β-hydroxycholesterol to evaluate
the hepatic disposition of atorvastatin in rats. Asian J. Pharm. Sci. 16 (4), 519–529.
doi:10.1016/j.ajps.2021.03.002

Ming, R., Wu, H., Liu, H., Zhan, F., Qiu, X., and Ji, M. (2024). Causal effects and
metabolites mediators between immune cell and risk of breast cancer: a Mendelian
randomization study. Front. Genet. 15, 1380249. doi:10.3389/fgene.2024.1380249

Nana, P., Dakis, K., Brodis, A., Spanos, K., and Kouvelos, G. (2021). Circulating
biomarkers for the prediction of abdominal aortic aneurysm growth. J. Clin. Med. 10,
1718. doi:10.3390/jcm10081718

Ross, K. M., Baer, R. J., Ryckman, K., Feuer, S. K., Bandoli, G., Chambers, C., et al.
(2019). Second trimester inflammatory and metabolic markers in women delivering
preterm with and without preeclampsia. J. Perinatol. 39, 314–320. doi:10.1038/s41372-
018-0275-8

Sakalihasan, N., Michel, J. B., Katsargyris, A., Kuivaniemi, H., Defraigne, J. O.,
Nchimi, A., et al. (2018). Abdominal aortic aneurysms. Nat. Rev. Dis. Prim. 4, 34.
doi:10.1038/s41572-018-0030-7

Sanchez, J. I., Fontillas, A. C., Kwan, S. Y., Sanchez, C. I., Calderone, T. L., Lee, J. L.,
et al. (2024). Metabolomics biomarkers of hepatocellular carcinoma in a prospective
cohort of patients with cirrhosis. JHEP Rep. 6, 101119. doi:10.1016/j.jhepr.2024.
101119

Sekula, P., Tin, A., Schultheiss, U. T., Baid-Agrawal, S., Mohney, R. P., Steinbrenner,
I., et al. (2020). Urine 6-bromotryptophan: associations with genetic variants and
incident end-stage kidney disease. Sci. Rep. 10, 10018. doi:10.1038/s41598-020-66334-w

Shu, X., Cai, H., Lan, Q., Cai, Q., Ji, B. T., Zheng, W., et al. (2021). A prospective
investigation of circulating metabolome identifies potential biomarkers for gastric
cancer risk. Cancer Epidemiol. Biomarkers Prev. 30, 1634–1642. doi:10.1158/1055-
9965.EPI-20-1633

Takehara, I., Yoshikado, T., Ishigame, K., Mori, D., Furihata, K. I., Watanabe, N., et al.
(2018). Comparative study of the dose-dependence of OATP1B inhibition by
Rifampicin using probe drugs and endogenous substrates in healthy volunteers.
Pharm. Res. 35, 138. doi:10.1007/s11095-018-2416-3

Tian, Z., Zhang, Y., Zheng, Z., Zhang, M., Zhang, T., Jin, J., et al. (2022). Gut
microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting
neutrophil extracellular trap formation. Cell Host Microbe 30, 1450–1463.e8. doi:10.
1016/j.chom.2022.09.004

Tin, A., Nadkarni, G., Evans, A. M., Winkler, C. A., Bottinger, E., Rebholz, C. M., et al.
(2018). Serum 6-bromotryptophan levels identified as a risk factor for CKD progression.
J. Am. Soc. Nephrol. 29, 1939–1947. doi:10.1681/ASN.2017101064

Vanmaele, A., Bouwens, E., Hoeks, S. E., Kindt, A., Lamont, L., Fioole, B., et al. (2024).
Targeted proteomics and metabolomics for biomarker discovery in abdominal aortic
aneurysm and post-EVAR sac volume. Clin. Chim. Acta 554, 117786. doi:10.1016/j.cca.
2024.117786

Wang, Q., Dai, H., Hou, T., Hou, Y., Wang, T., Lin, H., et al. (2023). Dissecting causal
relationships between gut microbiota, blood metabolites, and stroke: a mendelian
randomization study. J. Stroke 25, 350–360. doi:10.5853/jos.2023.00381

Wu, J., Xu, Y., Cui, Y., Bortolanza, M., Wang, M., Jiang, B., et al. (2022). Dynamic
changes of serum metabolites associated with infection and severity of patients with
acute hepatitis E infection. J. Med. Virol. 94, 2714–2726. doi:10.1002/jmv.27669

Xu, X., Zhang, F., Lu, Y., Yu, S., Sun, W., Sun, S., et al. (2019). Silencing of NONO
inhibits abdominal aortic aneurysm in apolipoprotein E-knockout mice via collagen
deposition and inflammatory inhibition. J. Cell Mol. Med. 23, 7449–7461. doi:10.1111/
jcmm.14613

Yang, J., Yan, B., Zhao, B., Fan, Y., He, X., Yang, L., et al. (2020). Assessing the causal
effects of human serum metabolites on 5 major psychiatric disorders. Schizophr. Bull.
46, 804–813. doi:10.1093/schbul/sbz138

Yao, H., Shen, S., Gao, X., Song, X., and Xiang, W. (2024). The causal relationship
between blood metabolites and rosacea: a Mendelian randomization. Skin. Res. Technol.
30, e13796. doi:10.1111/srt.13796

Zhang, F., Li, K., Zhang, W., Zhao, Z., Chang, F., Du, J., et al. (2024). Ganglioside
GM3 protects against abdominal aortic aneurysm by suppressing ferroptosis.
Circulation 149, 843–859. doi:10.1161/CIRCULATIONAHA.123.066110

Zhao, X., and Liu, L. (2024). Mendelian randomization analyses for the causal
relationship between early age at first sexual intercourse, early age at first live birth,
and postpartum depression in pregnant women. Front. Psychiatry 15, 1287934. doi:10.
3389/fpsyt.2024.1287934

Zheng, X., Chen, M., Zhuang, Y., Zhao, L., Qian, Y., Xu, J., et al. (2024). Genetic
associations between gut microbiota and type 2 diabetes mediated by plasma
metabolites: a Mendelian randomization study. Front. Endocrinol. (Lausanne) 15,
1430675. doi:10.3389/fendo.2024.1430675

Frontiers in Pharmacology frontiersin.org11

Guo et al. 10.3389/fphar.2024.1514293

https://doi.org/10.1001/jamacardio.2017.4293
https://doi.org/10.3389/fgene.2024.1333454
https://doi.org/10.1016/j.tjnut.2024.09.024
https://doi.org/10.1016/j.jchromb.2022.123437
https://doi.org/10.1080/10641963.2024.2390419
https://doi.org/10.1016/j.bbadis.2018.05.011
https://doi.org/10.3390/metabo11080555
https://doi.org/10.3390/metabo11080555
https://doi.org/10.3389/fcvm.2022.1063683
https://doi.org/10.1016/j.autrev.2022.103164
https://doi.org/10.1016/j.autrev.2022.103164
https://doi.org/10.1186/s12933-024-02255-6
https://doi.org/10.15212/cvia.2024.0023
https://doi.org/10.1016/j.ajps.2021.03.002
https://doi.org/10.3389/fgene.2024.1380249
https://doi.org/10.3390/jcm10081718
https://doi.org/10.1038/s41372-018-0275-8
https://doi.org/10.1038/s41372-018-0275-8
https://doi.org/10.1038/s41572-018-0030-7
https://doi.org/10.1016/j.jhepr.2024.101119
https://doi.org/10.1016/j.jhepr.2024.101119
https://doi.org/10.1038/s41598-020-66334-w
https://doi.org/10.1158/1055-9965.EPI-20-1633
https://doi.org/10.1158/1055-9965.EPI-20-1633
https://doi.org/10.1007/s11095-018-2416-3
https://doi.org/10.1016/j.chom.2022.09.004
https://doi.org/10.1016/j.chom.2022.09.004
https://doi.org/10.1681/ASN.2017101064
https://doi.org/10.1016/j.cca.2024.117786
https://doi.org/10.1016/j.cca.2024.117786
https://doi.org/10.5853/jos.2023.00381
https://doi.org/10.1002/jmv.27669
https://doi.org/10.1111/jcmm.14613
https://doi.org/10.1111/jcmm.14613
https://doi.org/10.1093/schbul/sbz138
https://doi.org/10.1111/srt.13796
https://doi.org/10.1161/CIRCULATIONAHA.123.066110
https://doi.org/10.3389/fpsyt.2024.1287934
https://doi.org/10.3389/fpsyt.2024.1287934
https://doi.org/10.3389/fendo.2024.1430675
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1514293

	Assessing the relationships of 1,400 blood metabolites with abdominal aortic aneurysm: a Mendelian randomization study
	1 Introduction
	2 Methods
	2.1 Experimental design
	2.2 Data sources
	2.3 Independent variable selection
	2.4 Sensitivity analysis
	2.5 Statistical methods

	3 Results
	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


