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Background: Adipose-derived stem cell (ADSC) transplantation presents a
promising approach for osteoporosis (OP) treatment. However, the
therapeutic efficacy of ADSCs is hindered by low post-transplantation survival
rates and limited capacities for adhesion, migration, and differentiation. Icariin
(ICA), the primary active compound of Epimedium, has been shown to promote
cell proliferation and induce osteogenic differentiation; however, its specific
effects on ADSC osteogenesis and the mechanisms by which ICA enhances
osteoporosis treatment through cell transplantation remain inadequately
understood.

Purpose: This study investigates the effects of different concentrations of ICA on
the osteogenic and adipogenic differentiation of rat ADSCs, aiming to elucidate
the underlyingmechanisms. ADSCswere isolated from female SPF-grade SD rats,
with surface markers identified through flow cytometry. Osteogenic and
adipogenic differentiation were assessed using Alizarin Red and Oil Red O
staining, respectively. Third-generation ADSCs were divided into five groups:
control, resveratrol (100 μmol/L), and four ICA treatment groups (1, 10, 50, and
100 μmol/L). Western blottingwas performed to analyze the expression of factors
associated with the Hippo-YAP/TAZ signaling pathway and the adipogenic
marker PPARγ. Additionally, ADSCs were labeled with lentiviruses carrying
enhanced green fluorescent protein (EGFP) and 5-bromo-2-deoxyuridine
(BrdU) to assess their in vivo distribution, survival, proliferation, and
differentiation of ADSCs post-ICA intervention.

Results: In vitro, ICA significantly inhibited the Hippo pathway, reducing YAP and
TAZ phosphorylation and enhancing their transcriptional activity, while
simultaneously suppressing PPARγ. This promoted osteogenesis and inhibited
adipogenesis in ADSCs. In vivo, ICA-treated ADSCs demonstrated effective
distribution, survival, and osteogenic differentiation following subcutaneous
injection into allogeneic rats.
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Conclusion: Our study demonstrates that ICA significantly enhances the
osteogenic differentiation of ADSCs while inhibiting adipogenesis, providing
novel insights and therapeutic strategies for osteoporosis and related conditions.
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1 Introduction

Osteoporosis (OP) is a systemic bone disease characterized by
decreased bone mass, disrupted bone microarchitecture, and increased
bone fragility (Ramchand and Leder, 2024). The primary causes of OP
include reduced bone formation and increased bone resorption, leading
to an imbalance in bone remodeling (Zhou et al., 2019). Current
treatment options primarily focus on promoting bone formation or
inhibiting bone resorption through pharmacological agents. However,
these treatments do not reverse bone loss and are often associated with
adverse effects, such as thrombosis and stroke. Thus, there is an urgent
need for more effective therapeutic strategies that minimize side effects.

Mesenchymal stem cells (MSCs), the progenitors of both
osteoblasts and adipocytes, are central to maintaining the balance
between osteogenesis and adipogenesis, which is crucial for skeletal
health (Rosen and Klibanski, 2009). A shift in MSC differentiation
towards adipogenesis, resulting in increased adipocyte formation,
has been implicated in the pathogenesis of OP (Kelly et al., 2013;
Maurin et al., 2002). With advancing age, bone marrow adipocyte
numbers increase, and elevated adipocyte levels in the bone marrow
are often associated with decreased bone density (Bredella et al.,
2009; Scheller et al., 2015). Furthermore, MSC differentiation into
either osteocytes or adipocytes plays a critical role in various
pathological conditions, including obesity and type 2 diabetes
mellitus (T2DM) (Chen et al., 2016; Pino et al., 2012).

Adipose-derived stem cells (ADSCs) have emerged as a promising
cell therapy for OP, demonstrating therapeutic potential comparable to
that of bone mesenchymal stem cells (BMSCs) in rat models of
ovariectomy-induced osteoporosis (Cho et al., 2012; Uri et al., 2018;
Ye et al., 2014). ADSCs are abundant, easily obtainable, and associated
with fewer donor-site complications, making them ideal candidates for
regenerative therapies (Ciuffi et al., 2017). Previous studies indicate that
in osteoporotic rats, BMSCs tend to differentiate into adipocytes,
thereby diminishing their osteogenic potential. Therefore, inhibiting
the adipogenic differentiation of ADSCs could enhance their
osteogenic capacity.

The Hippo-YAP/TAZ signaling pathway plays a pivotal role in
regulating stem cell fate, tissue homeostasis, and regeneration. By
modulating the activity of YAP/TAZ, this pathway influences both
osteogenic and adipogenic differentiation. Targeting the Hippo-
YAP/TAZ pathway in ADSCs presents a promising approach to
enhancing osteogenesis while concurrently suppressing
adipogenesis, thus offering a novel strategy for the treatment of OP.

Icariin (ICA), a key bioactive compound derived from
Epimedium, has been recognized for its use in traditional
Chinese medicine for osteoporosis treatment. Research has
shown that ICA downregulates peroxisome proliferator-activated
receptor gamma (PPARγ) expression, promoting osteogenic
differentiation and inhibiting adipogenic differentiation in
osteoporotic rat BMSCs (Liu et al., 2017).

In this study, we investigated the effects of varying concentrations
of ICA on the osteogenic and adipogenic differentiation of rat ADSCs
and explored the underlying molecular mechanisms. ADSCs were
treated with different concentrations of ICA, and the effects on key
differentiation markers were assessed. Furthermore, ICA-
treated ADSCs were transplanted into rats to evaluate their
in vivo distribution, survival, and differentiation through
immunofluorescence and immunohistochemistry techniques.

2 Methods

2.1 Animals

Five healthy, 4-week-old, SPF-grade nulliparous female SD rats
were utilized for the preparation of ADSCs. The rats were sourced
from the Experimental Animal Center of Guangzhou University of
Chinese Medicine (License No: SCXK (Yue) 2016-0041) and housed
in the SPF-grade animal facility at Jinan University.

2.2 Reagents

Icariin (molecular formula: C33H40O15; molecular weight:
676.7 g/mol; purity ≥98.0%; #110737-201516) and Resveratrol
(molecular formula: C14H12O3; molecular weight: 228.243 g/mol;
purity ≥98.0%; #111535-201703) were purchased from the China
National Institutes for Food and Drug Control (Beijing, China).

2.3 Grouping

Resveratrol (RES) was utilized as a positive control, as it
preferentially induces osteogenic differentiation in both bone
marrow and adipose-derived stem cells (Bäckesjö et al., 2006;
Erdman et al., 2012). Based on prior research and relevant literature
(Yan et al., 2024a; Yan et al., 2024b), Icariin was set at a baseline
concentration of 1 μmol/L, with additional groups at 10, 50, and
100 times this concentration. Resveratrol was used at 100 μmol/L,
matching the highest Icariin concentration. Adipose-derived stem cells
were divided into six groups: control group, resveratrol group
(100 μmol/L), and Icariin groups (1, 10, 50, 100 μmol/L).

2.4 Isolation and culture of ADSCs

Adipose tissue was isolated from the inguinal and dorsal
subcutaneous fat pads of the rats and thoroughly washed with sterile
PBS to remove residual debris. The tissue was minced and digested at
37°C for 1 hour in 0.075% type I collagenase (#SCR103, Sigma) in
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α-MEMmediumwithout FBS, with constant stirring. The digested cells
were filtered and centrifuged at 300 g for 8 min. The cell pellet was
washed three times in culture medium, resuspended in α-MEM
medium supplemented with 10% fetal bovine serum, and cultured at
37°C in a 5% CO2 atmosphere. After 3–5 days, adherent cells were
retained, and non-adherent cells were discarded. ADSCs were passaged
three times before use in experiments, with cells utilized from passages
no greater than P6.

2.5 Flow cytometry

Cells were digested with trypsin protease and resuspended in PBS at
a concentration of 1 × 106cells/100 μL. Cells were incubated with PE
Anti-CD34 antibody [ICO-115] (#ab187284, Abcam) and FITC Anti-
CD90/Thy1 antibody [EPR28145-53] (#ab307736, Abcam) at 4°C in the
dark for 30 min. Stained cells were analyzed using a FACSCalibur™
flow cytometer (BD Biosciences), and data were processed using FlowJo
10 software. Each experiment was repeated three times.

2.6 Osteogenic and adipogenic
differentiation assays of ADSCs

Third-generation ADSCs were divided into osteogenic and
adipogenic induction groups and seeded into 6-well plates at a
density of 1 × 105 cells/well. Upon reaching 80%–90% confluence,
differentiation was assessed on days 7, 14, and 21 using Alizarin Red
staining for osteogenesis and Oil Red O staining for adipogenesis. The
osteogenic groupwas cultured with the Osteogenesis Differentiation Kit
(#A1007201, Gibco), while the adipogenic group utilized the
Adipogenesis Differentiation Kit (#A1007001, Gibco). Media were
changed every 3–4 days, and stainingwas observed under amicroscope.

2.7 Western blot analysis

Following treatment, ADSCs were washed three times with PBS,
and total proteins were extracted using RIPA lysis buffer containing
protease inhibitors, phosphatase inhibitors, and 0.1 M PMSF. The
lysates were centrifuged at 12,000 g at 4°C for 20 min, and total protein
was quantified using the BCAmethod. Samples were separated by SDS-
PAGE and transferred onto PVDF membranes. Membranes were
blocked in 5% skim milk for 1 h, incubated with primary antibodies
(1:1000) overnight at 4°C, and then washed with TBST three times.
Secondary antibodies were incubated for 1 h at room temperature.
Protein expression was detected using an ECL detection system (Bio-
Rad). The antibodies used were YAP (#4912), p-YAP (#4911), TAZ
(#83669), p-TAZ (#13008), GAPDH (#2118) from Cell Signaling
Technology (Boston, MA, United States), and PPARγ (#ab19481-
200) from Abcam (Cambridge, United Kingdom).

2.8 Lentiviral vector packaging and
transduction

Lentiviral particles were generated using plasmids encoding the
target gene along with helper plasmids (pGag/Pol, pRev, pVSV-G). The

plasmids were purified using endotoxin-free methods and co-
transfected into 293T cells using Lipofectamine™ 2000. Six hours
after transfection, the medium was replaced, and cells were cultured
for 72 h. The supernatant containing lentiviral particles was collected
and concentrated. Viral titers were confirmed to exceed 1 × 108 TU/mL
by infecting 293T cells. ADSCs were transduced at variousmultiplicities
of infection (MOI) to determine optimal infection efficiency, and cell
status was observed using a fluorescence microscope.

2.9 Cell injection

Fifty-four 3-month-old rats were divided into six groups: control,
resveratrol (100 μmol/L), and four different concentrations of ICA (1,
10, 50, 100 μmol/L). Labeled ADSCs (EGFP or BrdU) were injected
subcutaneously into the rats. At 10, 14, and 21 days post-injection, five
rats from each group were randomly selected for analysis.
Tissue samples from the injection sites were collected for
immunofluorescence and immunohistochemical analyses to evaluate
cell survival, distribution, and proliferation.

2.10 Immunohistochemical detection of
proliferation, osteogenic, and adipogenic
markers (BrdU, ALP, Stro-1, PGC-1α, PPARγ)

Tissues were fixed in paraformaldehyde, permeabilized with Triton
X-100, and blocked with goat serum. After overnight incubation with
primary antibodies, the tissues were washed and incubated with
secondary antibodies. DAB solution was used for staining, and
observations were made under a microscope. Staining was
terminated with distilled water, and coverslips were applied. Three
random samples from each tissue were selected for analysis the IOD/
area ratio using ImageJ software (Di et al., 2024; Zhang et al., 2023). The
antibodies used were BrdU (#ab6326), ALP (#ab108337), Stro-1
(#ab102969), PGC-1α (#ab54481), and PPARγ (#ab19481-200) from
Abcam (Cambridge, United Kingdom).

2.11 Statistical analyses

Statistical analyses were performed using SPSS 13.0 (IBM SPSS,
Chicago, United States). The statistical comparisons between the
groups were determined using one-way ANOVA, followed by
Dunnett’s test, and graphs were generated using GraphPad Prism
7.0 (San Diego, CA, United States). Data are expressed as the mean ±
SD of three independent experiments. A p-value <0.05 was
considered statistically significant.

3 Results

3.1 Characterization and identification
of ADSCs

Mononuclear cells isolated from rat adipose tissue were cultured
and passaged in Petri dishes, displaying a fibroblast-like morphology
with elongated, spindle-shaped cells (Figure 1A). Flow cytometry
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was employed to analyze the expression of cell surface markers,
revealing a strong positive expression of the mesenchymal stem cell
marker CD90 and a weak positive expression of the hematopoietic
stem cell marker CD34, confirming that the isolated cells were
adipose-derived mesenchymal stem cells (Figure 1B).

3.2 Differentiation ability of ADSCs

To evaluate the differentiation potential of ADSCs, the cells were
subjected to osteogenic and adipogenic induction. By day 7 of
osteogenic induction, minor cell overlap and a few calcified spots
were observed, though staining intensity was not prominent. By day
14, the number of calcified spots increased, appearing orange upon
staining, indicating the formation of calcified nodules. By day 21,
Alizarin Red staining revealed numerous orange-red mineralized
nodules, confirming successful differentiation of ADSCs into
osteoblasts (Figure 2A). In the adipogenic induction, few
translucent lipid droplets were visible near the nucleus by day 7.
By day 14, lipid droplets increased in both number and size, and by
day 21, substantial accumulation of orange-red lipid droplets of
varying sizes was observed in the cytoplasm, indicating successful
differentiation of ADSCs into adipocytes (Figure 2B).

3.3 Western blot detection of osteogenic
and adipogenic differentiation-related
proteins in rat ADSCs

Following treatment with different doses (1–100 μM) of ICA for
48 h, Western blot analysis assessed the expression levels of YAP,
p-YAP, PPARγ, TAZ, and p-TAZ (Figure 3). The results
demonstrated that, ICA treatment resulted in reduced
phosphorylation levels of YAP and TAZ, enhanced their
transcriptional activity, and inhibited the activity of the
adipogenesis-related factor PPARγ, thereby promoting the
osteogenic differentiation of ADSCs and suppressing adipogenic
differentiation. Furthermore, a linear relationship was observed
between YAP/TAZ/p-YAP/p-TAZ/PPARγ expression and ICA
concentration.

3.4 Tracking detection of lentiviral infection
of EGFP-ADSCs in rats

On day 10 post-transplantation of ADSCs, fluorescence was
observed in the blank group, control group, and ICA-treated
groups (1, 10, 50, 100 μmol/L). The control and 100 μmol/L ICA

FIGURE 1
Characterization and Identification of ADSCs. Adipose tissue from rat fat pads was digested in collagenase in α-MEM without FBS for 1 h, filtered,
centrifuged, washed, and resuspended in α-MEM with fetal bovine serum. ADSCs were passaged three times, being used up to P6. To analyze surface
markers, cells were incubated with PE Anti-CD34 and FITC Anti-CD90 antibodies for 30 min, followed by flow cytometry and data analysis with FlowJo
10. The data were obtained frommultiple analyses (n = 3). (A) Passage 1 ADSCs (left) and Passage 3 ADSCs (right) observed under ×100magnification.
(B) Flow cytometry analysis of ADSC surface markers CD90 and CD34.
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groups exhibited stronger fluorescence, whereas the blank group
and lower ICA concentrations showed weaker fluorescence. By
days 14 and 28, fluorescence intensity gradually decreased in all
groups, with near undetectable levels in the blank group and the
1 μmol/L ICA group by day 28 (Figure 4A). Quantitative analysis
of fluorescence intensity at different time points and in different
groups of EGFP-ADSCs in subcutaneous adipose tissue of
rats (Figure 4B).

3.5 Immunohistochemical detection of the
expression of genes related to proliferation,
osteogenesis, and adipogenesis

3.5.1 Proliferation-related gene BrdU
On day 10 post-transplantation, numerous BrdU-positive

nuclei, indicative of cell proliferation, were observed at the
transplantation sites in the ADSC, RES, and ICA-treated groups

FIGURE 2
Differentiation Ability of ADSCs. Third-generation ADSCs were cultured in 6-well plates and induced for osteogenesis or adipogenesis.
Differentiation was assessed on days 7, 14, and 21 by Alizarin Red and Oil Red O staining. Media were changed every 3–4 days, and staining was examined
microscopically. (A) Osteogenic differentiation of ADSCs. (B) Adipogenic differentiation of ADSCs (Microscope ×100, Scale = 200 μm).

FIGURE 3
Western blot analysis of YAP, p-YAP, TAZ, p-TAZ and PPARγ expression in each group. ADSCs were subjected toWestern blotting with the indicated
antibodies. GAPDH was used as a control. Quantitative results of the relative protein levels are shown on the right side. The data were obtained from
multiple analyses (n = 3). Statistical significance is indicated by: *p < 0.05, **p < 0.01 vs. the control group; #p < 0.05, ##p < 0.01 vs. the RES group.
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(1, 10, 50, and 100 μmol/L). The number of positive cells increased in
all groups over time, with 100 μmol/L ICA groups exhibiting the
highest counts of positive cells (Figure 5A). Quantitative analysis of
the BrdU-positive cell area at different time points and in various
groups within the subcutaneous adipose tissue of rats (Figure 5B).

3.5.2 Osteogenesis-related gene ALP
On day 10 post-transplantation, numerous ALP-positive cells

related to osteogenesis were observed in the ADSC, RES, and ICA-
treated groups (1, 10, 50, and 100 μmol/L). The number of ALP-positive
cells increased over time across all groups, with 100 μmol/L ICA groups
showing the highest counts (Figure 6A). Quantitative analysis of the

ALP-positive cell area at different time points and in various groups
within the subcutaneous adipose tissue of rats (Figure 6B).

3.5.3 Osteogenesis-related gene Stro-1
On day 10 post-transplantation, a significant number of Stro-1-

positive cells related to osteogenesis were observed at the
transplantation sites in the ADSC, RES, and ICA-treated groups
(1, 10, 50, and 100 μmol/L). The number of positive cells increased
across all groups over time, with 100 μmol/L ICA groups exhibiting
the highest counts (Figure 7A). Quantitative analysis of the Stro-1-
positive cell area at different time points and in various groups
within the subcutaneous adipose tissue of rats (Figure 7B).

FIGURE 4
Tracing Detection of Lentiviral Infection of EGFP-ADSCs In Vivo in Rats. Rats were divided into six groups: control, resveratrol (100 μmol/L), and ICA
(1, 10, 50, 100 μmol/L). Labeled ADSCs were injected subcutaneously, and tissue samples were collected at 10, 14, and 21 days post-injection for
immunofluorescence analysis. (A) Immunofluorescent detection of EGFP-ADSCs in subcutaneous adipose tissue of rats (Microscope ×100, Scale =
200 μm). (B)Quantitative analysis of fluorescence intensity at different time points and in different groups of EGFP-ADSCs in subcutaneous adipose
tissue of rats. The data were obtained frommultiple analyses (n = 3). Statistical significance is indicated by: *p < 0.05, **p < 0.01 vs. the control group; #p <
0.05, ##p < 0.01 vs. the RES group.
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3.5.4 Osteogenesis-related gene PGC-1α
On day 10 post-transplantation, a significant number of PGC-1α-

positive cells associated with osteogenesis were observed in the ADSC,
RES, and ICA-treated groups (1, 10, 50, and 100 μmol/L). The number of
positive cells increased over time across all groups, with 100 μmol/L ICA
groups exhibiting the highest counts (Figure 8A). Quantitative analysis of
the PGC-1α-positive cell area at different time points and in various
groups within the subcutaneous adipose tissue of rats (Figure 8B).

3.5.5 Adipogenesis-related gene PPARγ
On day 10 post-transplantation, PPARγ-positive cells associated

with adipogenesis were observed in the ADSC, RES, and ICA-treated

groups. Positive cell numbers increased over time, with higher
counts in the ADSC and lower concentration ICA groups, while
100 μmol/L ICA groups exhibited relatively fewer positive cells
(Figure 9A). Quantitative analysis of the PPARγ-positive cell area at
different time points and in various groups within the subcutaneous
adipose tissue of rats (Figure 9B).

4 Discussion

Osteoporosis is a long-term condition that leads to reduced
bone density and affects millions of people worldwide. The limited

FIGURE 5
Immunohistochemical Detection of the Expression of Genes Related to Proliferation. Rats were divided into six groups: control, resveratrol
(100 μmol/L), and ICA (1, 10, 50, 100 μmol/L). Tissue samples were collected at 10, 14, and 21 days for immunohistochemical analysis. (A) Expression of the
proliferation-related gene BrdU detected by immunohistochemistry (Left: Microscope ×100, Scale = 200 μm; Right: Microscope ×400, Scale = 50 μm).
(B)Quantitative analysis of the BrdU-positive cell area. The data were obtained frommultiple analyses (n = 3). Statistical significance is indicated by:
*p < 0.05, **p < 0.01 vs. the control group; #p < 0.05, ##p < 0.01 vs. the RES group.
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ability of bones to regenerate makes repairing bone damage a
major challenge in orthopedic and regenerative medicine.
Although bone mesenchymal stem cells (BMSCs) are well-
studied for their ability to self-renew and differentiate into
multiple cell types, their extraction is invasive and supplies are
limited, making them unsuitable for widespread clinical use in
advanced disease stages (Guo et al., 2022; Mohamed-Ahmed et al.,
2021; Zhu et al., 2021). In contrast, adipose-derived stem cells
(ADSCs) offer several benefits: they are easy to obtain,
straightforward to isolate, can be extensively expanded in vitro,
and have the potential for cross-germ layer differentiation. These
qualities position ADSCs as promising candidates for research and
treatment of osteoporosis.

Several traditional Chinese medicine (TCM) compounds, such
as Zuogui pill, Yougui pill, puerarin, salidroside, and total glycosides
from Eucommia ulmoides seeds, have been reported to induce
osteogenic differentiation in ADSCs (Li et al., 2018; Li et al.,
2021; Wang et al., 2011; Zhou and Xie, 2021). Epimedium has
been widely used in traditional Chinese medicine for treating
osteoporosis. Clinical studies have shown that Epimedium-
derived phytoestrogen flavonoids effectively prevent bone loss in
late postmenopausal women by maintaining bone mineral density
and reducing bone resorption markers without adverse effects on
serum estradiol or endometrial thickness (Zhang et al., 2007).
Additionally, Epimedium prenylflavonoids are safe for short-term
use, increase serum levels of bone anabolic markers such as bone-

FIGURE 6
Immunohistochemical Detection of the Expression of Genes Related to Osteogenesis. Rats were divided into six groups: control, resveratrol
(100 μmol/L), and ICA (1, 10, 50, 100 μmol/L). Tissue samples were collected at 10, 14, and 21 days for immunohistochemical analysis. (A) Expression of the
osteogenesis-related gene ALP detected by immunohistochemistry (Left: Microscope ×100, Scale = 200 μm; Right: Microscope ×400, Scale = 50 μm).
(B)Quantitative analysis of the ALP-positive cell area. The data were obtained from multiple analyses (n = 3). Statistical significance is indicated by:
*p < 0.05, **p < 0.01 vs. the control group; #p < 0.05, ##p < 0.01 vs. the RES group.
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specific alkaline phosphatase, and may reduce osteoclast activity
through suppression of TRAF6 in precursor monocytes. These
findings support its potential as a therapeutic agent for
osteoporosis by demonstrating both safety and efficacy in
enhancing bone health and preventing bone loss (Yong et al.,
2021). Building on this evidence, this study focuses on Icariin
(ICA), the bioactive component of Epimedium, to explore its
effects on the osteogenic differentiation of ADSCs in vitro and
elucidate the underlying mechanisms promoting bone formation.

The Hippo signaling pathway is crucial for controlling organ size,
wound healing, and tissue regeneration, and it significantly impacts
osteogenesis (Moya and Halder, 2019). Yes-associated protein (YAP)
and transcriptional coactivator with PDZ-binding motif (TAZ) are

key downstream coactivators of theHippo pathway and are known to
promote osteogenesis (Kovar et al., 2020). YAP and TAZ regulate
skeletal development by modulating osteoblast activity, osteoclast-
mediated remodeling, and matrix composition (Kegelman et al.,
2018). Specifically, TAZ enhances osteogenic differentiation as a
coactivator of RUNX2, a key transcription factor that upregulates
osteogenesis-related genes (Xue et al., 2013). The presence of TAZ in
the nucleus is essential for its interaction with transcription factors
and the activation of target genes. The localization and activity of
TAZ are influenced by external signals. These signals include the
Hippo and Wnt pathways (Lei et al., 2008; Liu et al., 2010).
Additionally, TAZ suppresses adipogenesis by interacting with
peroxisome proliferator-activated receptor γ (PPARγ) (Cui et al.,

FIGURE 7
Immunohistochemical Detection of the Expression of Genes Related to Osteogenesis. Rats were divided into six groups: control, resveratrol
(100 μmol/L), and ICA (1, 10, 50, 100 μmol/L). Tissue samples were collected at 10, 14, and 21 days for immunohistochemical analysis. (A) Expression of the
osteogenesis-related gene Stro-1 detected by immunohistochemistry (Left: Microscope ×100, Scale = 200 μm; Right: Microscope ×400, Scale = 50 μm).
(B)Quantitative analysis of the Stro-1-positive cell area. The data were obtained frommultiple analyses (n = 3). Statistical significance is indicated by:
*p < 0.05, **p < 0.01 vs. the control group; #p < 0.05, ##p < 0.01 vs. the RES group.
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2003; Hong et al., 2005). Notably, The TAZ agonist TM-25659
notably increases TAZ expression in adipose-derived stem cells
(ADSCs), which enhances their ability to differentiate into bone-
forming cells in vivo. This highlights TAZ as a vital regulator of
osteogenic differentiation in ADSCs. It also suggests that targeting
TAZ pharmacologically could effectively guide stem cell
differentiation, promote bone regeneration and repair, and reduce
bone loss (Jang et al., 2012). Likewise, YAP has comparable effects in
bone marrow-derived mesenchymal stem cells (BMSCs).
Phosphorylated YAP interacts with RUNX2 and PPARγ in the
nucleus. This interaction promotes osteogenic differentiation and
inhibits adipogenic differentiation. Additionally, there is a positive
correlation between the level of osteogenic differentiation and

cytoskeletal density, emphasizing the relationship between
cytoskeletal organization and osteogenic activity (Lei et al., 2008).

Our study found that ICA significantly increased the
expression of YAP and TAZ while decreasing the levels of
phosphorylated YAP and TAZ in a dose-dependent manner.
These findings indicate that ICA promotes the osteogenic
differentiation of ADSCs by inhibiting the Hippo pathway. This
inhibition reduces YAP and TAZ phosphorylation and facilitates
their translocation into the nucleus. Furthermore, we observed a
linear relationship between the expression levels of YAP and TAZ
and the concentration of ICA.

PPARγ is recognized as a master regulator of adipogenesis, and
no other factors are known to trigger this process without its

FIGURE 8
Immunohistochemical Detection of the Expression of Genes Related to Osteogenesis. Rats were divided into six groups: control, resveratrol
(100 μmol/L), and ICA (1, 10, 50, 100 μmol/L). Tissue samples were collected at 10, 14, and 21 days for immunohistochemical analysis. (A) Expression of the
osteogenesis-related gene PGC-1α detected by immunohistochemistry (Left: Microscope ×100, Scale = 200 μm; Right: Microscope ×400, Scale =
50 μm). (B) Quantitative analysis of the PGC-1α-positive cell area. The data were obtained from multiple analyses (n = 3). Statistical significance is
indicated by: *p < 0.05, **p < 0.01 vs. the control group; #p < 0.05, ##p < 0.01 vs. the RES group.
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presence (Stachecka et al., 2019). PPARγ, a ligand-activated nuclear
hormone receptor, plays a crucial role in initiating adipocyte
differentiation. It also promotes the expression of lipogenic genes,
which contributes to lipid accumulation (Lefterova et al., 2014).
Both human and animal studies have shown an increase in PPARγ
expression during the differentiation of fat cells (Lee et al., 2019).
Our findings show that ICA at a concentration of 100 μmol/L
significantly reduces PPARγ expression. This suggests that ICA
inhibits this adipogenic factor during the osteogenesis of ADSCs,
thereby promoting their differentiation into bone-forming cells.

When the Hippo signaling pathway is activated, YAP/TAZ
undergo phosphorylation, are sequestered in the cytoplasm, or are

degraded through the ubiquitination pathway, leading to inhibited
cell proliferation. Conversely, when the Hippo pathway is
inhibited, dephosphorylated YAP/TAZ move to the nucleus and
interact with transcription factors TEAD1-4, promoting the
expression of genes related to proliferation and migration
(Chen et al., 2019; Kovar et al., 2020; Xiong et al., 2018). The
movement of YAP/TAZ between the cytoplasm and nucleus, based
on their phosphorylation status, regulates the physiological
activities of osteoblasts, osteoclasts, and chondrocytes. (Xiong
et al., 2018).

While YAP/TAZ directly inhibits PPARγ, potential crosstalk
with Wnt/β-catenin or AMPK pathways cannot be excluded. Our

FIGURE 9
Immunohistochemical Detection of the Expression of Genes Related to Adipogenesis. Rats were divided into six groups: control, resveratrol
(100 μmol/L), and ICA (1, 10, 50, 100 μmol/L). Tissue samples were collected at 10, 14, and 21 days for immunohistochemical analysis. (A) Expression of the
adipogenesis-related gene PPARγ detected by immunohistochemistry (Left: Microscope ×100, Scale = 200 μm; Right: Microscope ×400, Scale = 50 μm).
(B)Quantitative analysis of the PPARγ-positive cell area. The data were obtained frommultiple analyses (n = 3). Statistical significance is indicated by:
*p < 0.05, **p < 0.01 vs. the control group; #p < 0.05, ##p < 0.01 vs. the RES group.
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findings show that ICA at a concentration of 100 μmol/L promotes
osteogenic differentiation in ADSCs. This occurs through the
inhibition of PPARγ expression and the reduction of YAP/TAZ
phosphorylation, leading to enhanced osteogenesis and decreased
adipogenesis. These molecular mechanisms synergistically enhance
osteogenesis while suppressing adipogenesis, thereby shifting the
differentiation balance toward bone formation. This dual regulatory
role highlights ICA as a promising pharmacological candidate for
developing treatments aimed at bone regeneration and metabolic
bone disorders.

Although most studies on ADSC osteogenic differentiation have
been conducted in vitro, the in vivo survival, proliferation,
distribution, and differentiation of ADSCs after transplantation
are still not well understood. The survival and proliferation of
ADSCs after transplantation are essential for effective tissue
repair. A significant challenge in stem cell therapy is the high
rate of cell death, including apoptosis and necrosis, that occurs
when stem cells are transplanted into regions with poor blood flow
and low oxygen levels, such as the infarcted myocardium. Previous
research has shown that ICA can reduce apoptosis in H9c2 rat
cardiomyocytes by blocking the JNK/NF-κB signaling pathway
influenced by reactive oxygen species (Zhou et al., 2015). In our
in vivo study, we observed that ICA-induced bone formation was
noticeable by day 10 and continued until day 28. Similarly, the
suppression of fat cell formation was consistent, indicating enduring
long-term effects. These findings show that ICA-treated ADSCs
were effectively distributed and survived after subcutaneous
injection into allogeneic rats. Furthermore, the ICA-treated
ADSCs demonstrated increased bone formation and a reduction
in fat cell formation.

5 Conclusion

In conclusion, our study shows that ICA-treated ADSCs
successfully localize and survive at the injection site following
subcutaneous transplantation in allogeneic rats, promoting
osteogenic differentiation and inhibiting adipogenesis. This effect
likely results from the inhibition of the Hippo signaling pathway,
which reduces YAP/TAZ phosphorylation, prevents YAP/TAZ from
translocating to the nucleus, and suppresses the adipogenic regulator
PPARγ. While additional research is required to reveal the exact
mechanisms of YAP/TAZ regulation in the cytoplasm and nucleus,
our findings significantly advance our understanding of how ICA
influences ADSC differentiation. Furthermore, ICA’s ability to
modulate both osteogenesis and adipogenesis makes it a promising
treatment for osteoporosis, metabolic bone diseases, and bone defects,
offering a comprehensive approach to restoring skeletal health. These
results provide critical experimental evidence supporting the clinical
application of ADSCs for bone-related therapies, offering a
comprehensive strategy to improve skeletal health.
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