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Introduction: Chronic kidney disease (CKD) is a substantial global health issue
with high morbidity and mortality. Yishen Paidu Pills (YSPDP) are effective
concentrated water pills composed of four herbs developed by Wuhan Union
Hospital to treat CKD. However, the mechanism of YSPDP action is largely
unknown. This study combined metabolomics, network pharmacology,
transcriptomics, and experimental verification to elucidate and identify the
effects and potential mechanisms of YSPDP against CKD.

Methods: Firstly, we used metabolomics analyses to identify the chemical
components of YSPDP. Then, network pharmacology was conducted and
indicated the predicted signaling pathways regulated by YSPDP. Next, we
conducted a 5/6 subtotal nephrectomy (5/6 SNx) rat model and treated these
rats with YSPDP or Losartan for 10 weeks to evaluate the effect of YSPDP on CKD.
To further analyze the underlyingmechanism of YSPDP in CKD, the kidney tissues
of 5/6 SNx rats treated with vehicle and YSPDP were performed with
transcriptome sequencing. Finally, the western blot was performed to validate
the signaling pathways of YSPDP against CKD.

Results: Twenty-four classes of chemicals were identified by metabolomics in
YSPDP. YSPDP markedly hindered CKD progression, characterized by the
restoration of body weight and serum albumin levels, improved renal function,
diminished tissue injury, and hampered renal fibrosis in 5/6 SNx rats. The efficacy
of YSPDP in ameliorating the progression of CKD was comparable to that of
losartan. Furthermore, network pharmacology, transcriptomics, and functional
enrichment analysis indicated the PI3K/AKT/mTOR signaling pathwaywas the key
pathway regulated by YSPDP. Western blot validated the inhibition of PI3K/AKT/
mTOR signaling in the kidney of 5/6 SNx rats treated by YSPDP.

Conclusion: The study identified the chemicals of YSPDP and revealed that
YSPDP prevented the progression of CKD by inhibiting PI3K/AKT/mTOR
signaling in 5/6 SNx rats.
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1 Introduction

Chronic kidney disease (CKD) is a substantial global health issue
with high morbidity and mortality. The worldwide prevalence of CKD
ranges from 8% to 16% (Jha et al., 2013), with CKD considered to
become the fifth most prevalent chronic condition by 2040 (Foreman
et al., 2018). Although diabetes mellitus, hypertension, and
glomerulonephritis are recognized as the major causes of CKD,
multiple other risk factors, including dyslipidemia, ischemia,
obesity, infection, toxins, as well as autoimmune and inflammatory
diseases, also contribute to the development and progression of CKD
(Snively and Gutierrez, 2004; Xie et al., 2018). The pathological process
of CKD is characterized by progressive loss of renal function and
extensive renal fibrosis caused by massive deposition of extracellular
matrix (ECM), which mainly includes glomerulosclerosis and renal
interstitial fibrosis, eventually leading to end-stage renal disease
(ESRD) (Angela et al., 2017; Zhao, 2019). The treatment options
for CKD in the international medical community are limited.
Angiotensin II receptor blockers or angiotensin-converting enzyme
inhibitors are typically employed as first-line therapies to effectively
delay the progression of CKD (Lambers Heerspink and de Zeeuw,
2013; Ruiz-Ortega et al., 2020). However, some patients are resistant to
renin-angiotensin system inhibitors or hardly tolerate severe side
effects from these drugs. Thus, it’s critical to find novel drugs that
are effective in preventing and treating CKD. The efficacy of traditional
Chinese medicine (TCM), an integral component of complementary
and alternative medicine, in safeguarding human health has been
demonstrated over millennia. Both preclinical investigations and
clinical trials have illustrated the potential of TCM therapy in
managing CKD, specifically in ameliorating proteinuria, mitigating
the adverse effects, and reducing the risk of ESRD by 60%
(Wojcikowski et al., 2006; Lin et al., 2015). Yishen Paidu Pills
(YSPDP) are concentrated water pills developed by Wuhan Union
Hospital based on folk prescriptions and modern medical theories,
This pill is composed of four Chinese herbals which include Rheum
officinale, Astragalus membranaceus, Bombyx batryticatus, andHirudo
(Deng et al., 2019), which collectively contribute to the nourishing of
Qi and kidney, ascending lucidity and descending turbidity, activating
blood circulation and removing blood stasis. YSPDP has been used in
our hospital to treat CKD for 20 years, and clinical application has
proven efficacy in protecting renal function (Jie et al., 2012; Deng et al.,
2019). Despite its widespread use in CKD treatment, the underlying
mechanism of its action remains unclear.

Network pharmacology (NP) is a novel field that blends biology,
pharmacology, and informatics (Hopkins, 2007), which has recently
emerged as a scientific approach for investigating the relationship
between diseases and components (Nogales et al., 2022; Zhao et al.,
2023). Transcriptomics, a method utilized to examine an organism’s
transcriptome, which encompasses all its RNA transcripts, has been
instrumental in identifying differentially expressed genes (DEGs) in
individuals (Finotello and Di Camillo, 2015). Thus, the integration of
network pharmacology and transcriptomics holds promise for effectively
discerning the active constituents andmolecularmechanisms underlying
the therapeutic efficacy of TCM in treating diseases.

In this study, we evaluated the effect of YSPDP on CKD by
constructing an animal model of 5/6 subtotal nephrectomy (5/6 SNx)
revealing the molecular mechanism of YSPDP in treating CKD at the
level of “ingredients-core target-pathway” by integrating NP and

transcriptomics, and finally verified the potential molecular
mechanism using experiments.

2 Materials and methods

2.1 Drugs and reagents

YSPDP was purchased from Wuhan Union Hospital (Hubei
Medicine Number Z20181033, production batch number:
20220504). Losartan potassium tablet, a commonly used renin-
angiotensin system inhibitor for CKD, was chosen as the positive
control and obtained from Merck Sharp & Dohme Limited
(Hangzhou, China). Both YSPDP and Losartan were ground into
powder and mixed with ddH2O sufficiently before gavage.

2.2 Metabolomics profiling

Metabolomics profiling was supported by Metware
Biotechnology Co., Ltd. (Wuhan, China). Liquid nitrogen was
used to freeze-dry and crush the YSPDP. Afterward, 20 mg of
the lyophilized powder was reconstituted in A 400 μL solution
(Methanol: Water = 7:3, V/V). After shaking and centrifugation, the
supernatant was filtered for analysis on the UPLC-MS/MS system. A
UPLC system (ExionLC AD) coupled with a quadrupole-time-of-
flight mass spectrometer (TripleTOF 6,600, AB SCIEX) was used to
characterize chemical components in YSPDP. Chromatographic
and mass spectrometry acquisition conditions and related data
acquisition instrument systems are shown in Supplementary File S1.

2.3 Network pharmacology

2.3.1 Screening of active compounds and targets
of YSPDP

According to the drug description of YSPDP, it consists of
Rheum officinale, Astragalus membranaceus, Bombyx batryticatus,
and Hirudo. The active compounds and corresponding targets of
Rheum officinale and Astragalus membranaceuswere screened using
the Traditional Chinese Medicine Systems Pharmacology database
(TCMSP, https://tcmspw.com/tcmsp.php) and The Encyclopedia of
Traditional Chinese Medicine database (ETCM, http://www.tcmip.
cn/ETCM/index.php/Home/Index/) (Ru et al., 2014; Xu et al., 2019).
Bombyx batryticatus and Hirudo are animal-based traditional
Chinese medicines, so their chemical components and targets are
collected through a literature search. Effective compounds were
chosen based on a criterion requiring an oral bioavailability (OB)
according to Veber’s filter, a drug-likeness (DL) following Lipinski
rule of 5, and a high gastrointestinal (GI) absorption (Lipinski et al.,
2001; Veber et al., 2002; Daina and Zoete, 2016). Then we imported
the chemical components obtained into the Swiss Target Prediction
database (https://www.expasy.org/resources/swisstargetprediction)
to search for potential targets of YSPDP (Duvaud et al., 2021).
When constructing the component-target network, molecules that
were not predicted as targets by the Swiss Target Prediction database
were not displayed, and chemical components contained in multiple
monomers were only displayed in one monomer.
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2.3.2 Collection of CKD-related genes
The information on CKD-related genes was collected from the

following resources. The Online Mendelian Inheritance in Man
database (OMIM, https://www.nslij-genetics.org/omim/), DisGeNET
database (http://www.disgenet.org/), National Center for
Biotechnology Information database (NCBI, https://www.ncbi.
nlm.nih.gov/), and Genecards database (https://www.genecards.
org/) were adopted by search “CKD” and extracting the
corresponding gene sets (Hamosh et al., 2005; Barrett et al.,
2012; Stelzer et al., 2016; Piñero et al., 2020). Venn diagrams were
then mapped to identify the intersection of CKD-related
potential targets with drug component-related targets to serve
as core targets for subsequent YSPDP treatment of CKD
applied analysis.

2.3.3 GO and KEGG analysis
The selected core targets were imported into The Database for

Annotation, Visualization and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/) for GO enrichment analysis and KEGG
pathway analysis (Jiao et al., 2012).

2.3.4 Protein-protein interaction (PPI) network
construction

The core targets were imported to the STRING database 11.5
(https://cn.string-db.org/) to construct the PPI network with the
scoring condition to > 0.7 (Szklarczyk et al., 2021). The results
obtained from STRINGwere uploaded into Cytoscape 3.9.0 software
to visualize.

2.3.5 Construction of the “component-targets-
pathway” network

The components, core targets, and KEGG pathway data were
used to construct a visualized “component-core targets-pathway”
(C-T-P) regulatory network using Cytoscape 3.9.0 software.

2.4 Experimental protocols for animals

Animal studies were conducted following the National Institutes
of Health (NIH) Guidelines for the Use and Care of Laboratory
Animals and approved by Ethics Committee of Huazhong
University of Science and Technology. 50 eight-week-old male
Sprague-Dawley rats were purchased from Charles River (Beijing,
China). The rats were kept in controlled conditions, with a
temperature maintained at 23°C ± 2°C and humidity ranging
from 30% to 70%, following a 12-hour dark/light cycle. They
were provided ad libitum access to standard mouse chow and tap
water. One week after purchase, animals were randomly assigned to
5 groups with 10 in each group: Sham; 5/6 SNx + Vehicle; 5/6 SNx +
Losartan; 5/6 SNx + YSPDP-L; 5/6 SNx + YSPSP-H. The 5/6 SNx
operation was performed as follows: amputation of the poles of the
left kidney at week 1, followed at week 2 by uninephrectomy (Uni-
Nx) of the remaining kidney. Sham operations were performed at
the same time points. At 2 weeks after surgery, Rats in the Losartan
group were gavaged losartan at a dose of 33.3 mg/kg/d for 10 weeks.
Rats in the YSPDP-L and YSPDP-H groups were gavaged with
YSPDP of 1.5 g/kg/d and 3 g/kg/d, Rats in the Sham and the 5/6 SNx
+ Vehicle groups were given an equal volume of ddH2O in the same

way. 10 weeks after treatment, the animals were sacrificed and the
blood, urine, and renal samples were collected for further analysis.

2.5 Biochemical parameters detection

Rat blood samples were allowed to clot at room temperature for
2 h. Subsequently, both blood and urine samples underwent
centrifugation at 3,000 rpm for 10 min to collect the supernatant.
The serum and urine samples were thereafter stored at −80°C until
further analysis. Serum levels of albumin, alanine aminotransferase
(ALT), aspartate aminotransferase (AST), Serum creatinine (Scr),
blood urea nitrogen (BUN), and urine protein/creatinine were
detected by Automatic Biochemistry Analyzer (Technicon, RA-
1640, United States).

2.6 Histology and immunohistochemistry

Kidney tissues underwent fixation in 4% paraformaldehyde,
followed by embedding in paraffin and sectioned at 4 μm
thickness. Kidney sections were stained with Periodic acid-Schiff
(PAS) and Masson’s trichrome as per the manufacturer’s
instructions. Immunohistochemical staining involved overnight
incubation at 4°C with primary antibodies, including anti-FN
(F3648, Sigma-Aldrich, United States) and anti-Col-III (22734-1-
AP, Proteintech). Subsequently, the sections were treated with
biotinylated secondary antibodies for 1 h at 37°C, following
standard protocols. Post-staining with 3,3′-Diaminobenzidine and
counterstaining with hematoxylin, the density of positively stained
areas was determined using Image-Pro Plus software.

2.7 Western blot analysis

Total tissue proteins were extracted using RIPA buffer
(Beyotime Biotechnology, Shanghai, China). Proteins were
separated using SDS-PAGE and transferred to PVDF membranes
(Merck Millipore, MA, United States). The membranes were
blocked with 5% BSA for 1 h, incubated with primary antibody
overnight at 4°C, then incubated with secondary antibodies for 1 h,
finally detected using enhanced chemiluminescence solution. The
western blot images were analyzed by ImageJ software (National
Institutes of Health, Bethesda, MD, United States). The following
primary antibodies were used in this study: anti-FN (F3648, Sigma-
Aldrich), anti-COl-I (14695-1-AP, Proteintech), anti-α-SMA
(14395-1-AP, Proteintech), anti-mTOR (2983T, Cell Signaling
Technology), anti-p-mTOR (5536T, Cell Signaling Technology),
anti-p-PI3K (4228T, Cell Signaling Technology), anti-
PI3K(20584-1-AP, Proteintech), anti-p-AKT (66,444-1- Ig,
Proteintech), anti-AKT (9272T, Cell Signaling Technology), and
anti-β-actin (20536-1-AP, Proteintech).

2.8 RNA sequencing analysis

Kidney tissue from the Sham, 5/6 SNx + Vehicle, and 5/6 SNx +
YSPDP-H groups was used for transcriptomics sequencing.
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FIGURE 1
Characterization of chemical components in YSPDP (A). The total ion current chromatogram in negative ion mode of YSPDP (B). The total ion
current chromatogram in positive ionmode of YSPDP (C). The proportion of the twenty-four classes of chemical components in YSPDP (D). The numbers
of each class of chemical components in YSPDP.
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Transcriptomics sequencing was performed byMetware Biotechnology
Co., Ltd. (Wuhan, China). We utilized DESeq2 to identify differentially
expressed genes, applying the criteria of |log2(FoldChange)| > 1 and
padj<0.05. For differential gene enrichment analysis, GOSeq and
KOBAS were employed, focusing on corrected p-values < 0.05 for
both GO and KEGG enrichment analyses.

2.9 Statistical analysis

All data are presented as Mean ± SEM. Statistical analyses were
performed using GraphPad Prism 10.0 software (La Jolla,
United States). The unpaired t-test was used to compare the
differences between the two groups. Statistical significance was
defined as p < 0.05.

3 Results

3.1 Characterization of chemical
components in YSPDP

Metabolomics was used to identify the chemical components of
YSPDP. The total ion flow profiles in negative and positive ion mode
for identifying compounds in the alcohol extract of YSPDP were

shown in Figures 1A, B. Twenty-four classes of chemicals were
identified. Among them, amino acid and its metabolites were the
most abundant chemical class in YSPDP, which contained
896 chemicals (Figures 1C, D). Further, we listed the top
abundant 20 chemicals in YSPDP, which were shown in Table 1.

3.2 Network pharmacology prediction of
YSPDP for CKD

To explore the therapeutic mechanism of YSPDP in CKD,
network pharmacology was employed to predict its potential
targets. The primary herbal ingredients in YSPDP include Rheum
officinale, Astragalus membranaceus, Bombyx batryticatus, and
Hirudo. Based on a criterion requiring an OB according to
Veber’s filter, a DL following Lipinski rule of 5, and a high GI
absorption, 127 compounds were determined from YSPDP. Among
them, 45 compounds were in Rheum officinale, 30 compounds were
in Astragalus membranaceus, 18 compounds were in Bombyx
batryticatus, and 25 compounds were in Hirudo. 538 potential
targets of these chemicals were obtained using the Swiss Target
Prediction website (Figure 2A). The 175 potential targets of YSPDP
exhibited significant alterations in the kidney of CKD (Figure 2B).
175 intersection targets were input into STING to construct PPI
networks (Figure 2C) depicting YSPDP’s interference with CKD-

TABLE 1 The top 20 abundant chemicals in YSPDP revealed by metabolomic.

Name Formula MW Class

L-Proline C5H9NO2 115.063 Amino acid and its metabolites

1-Aminocyclobutanecarboxylic acid C5H9NO2 115.063329 Amino acid and its metabolites

2-Hydroxyadenosine C10H13N5O5 283.0916,685 Nucleotide and its metabolites

Rhein C15H8O6 284.0320,881 Benzene and substituted derivatives

5,7-Dimethoxyflavanone C17H16O4 284.1,048,591 Aldehyde, Ketones,Esters

3-Hydroxycinnamic acid C9H8O3 164.047345 Organic acid and its derivatives

Lunarine C25H31N3O4 437.2,314,566 Heterocyclic compounds

Liquiritin C21H22O9 418.1,263,824 Flavonoids

PC(16:0/2:0) C26H52NO8P 537.343,056 PC(16:0/2:0)

Adrenosterone C19H24O3 300.172,545 Hormones and hormone related compounds

Metribuzin C8H14N4OS 214.0888,318 Heterocyclic compounds

Deethylatrazine C6H10ClN5 187.0624,731 Heterocyclic compounds

4-Chloro-L-phenylalanine C9H10ClNO2 199.0400,063 Amino acid and its metabolites

L-Phenylalanine C9H11NO2 165.079 Amino acid and its metabolites

Chrysin C15H10O4 254.0579,089 Flavonoids

Gefitinib C22H24ClFN4O3 446.1,520,967 Heterocyclic compounds

(9R,13R)-10,11-dihydro-12-oxo-15-phytoenoic acid C18H30O3 294.2,194,949 FA

Eicosanoyl-EA C22H45NO2 355.345,029 Organic acid and its derivatives

3-Hydroxypyruvic acid C3H4O4 104.01096 Organic acid and its derivatives

11,12,14-Trihydroxy-7-methoxy-8,11,13-abietatrien-20,6-olide C21H28O6 376.1,885,888 Benzene and substituted derivatives
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related target genes. Based on the degree value of nodes, we further
selected the top ten targets as the hub genes, including VEGFA, SRC,
PIK3CA, AKT1, EGFR, PIK3R1, HRAS, APP, HSP90AA1, and

TNF. The top 25 targets in action frequency are shown in
Figure 2D. The DAVID tool website were used to analyze GO
function annotation and KEGG pathway enrichment. GO

FIGURE 2
Network pharmacology analysis of YSPDP treatment of CKD (A). The component-target network of YSPDP (The rhombuses represent the active
components of Rheum officinale (yellow), Astragalus membranaceus (green), Bombyx batryticatus (pink) and Hirudo (purple); the blue circles represent
the targets of the active components of YSPDP) (B). Venn diagram of intersected targets of YSPDP and CKD (C). The protein-protein interaction network
of drug-disease intersected targets (D). The top 25 targets in action frequency (E). GO enrichment analysis. The top 10 significantly enriched terms of
BP and the top 5 significantly enriched terms of CC and MF (F). Top 20 enriched KEGG signaling pathways (G). The “compounds-targets-pathways”
network of YSPDP treatment of CKD. BP, biological process; CC, cell component; MF, molecular function.
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enrichment analysis indicated that the biological processes of
YSPDP on CKD were related to the negative regulation of the
apoptotic process, positive regulation of cell proliferation,
response to hypoxia, positive regulation of MAP kinase activity,
and positive regulation of cell migration (Figure 2E). KEGG
enrichment analysis revealed that the pathways of YSPDP on
CKD were predominantly involved in PI3K-AKT, Rap1, HIF-1,
FoxO, ErbB and VEGF signaling pathway and focal adhesion
(Figure 2F). Finallly, based on these signaling pathway, the
network of “compounds-targets-pathways” was constructed to
reveal the therapeutic targets and pharmacological mechanisms
of YSPDP against CKD (Figure 2G).

3.3 YSPDP improved biochemical
parameters in 5/6 SNx rats

To evaluate the effect of YSPDP on CKD, we created a murine
model of 5/6 SNx and then treated rats with YSPDP for 10 weeks,
starting at 2 weeks after 5/6 SNx. The flowchart of the study is
illustrated in Figure 3A. 5/6 SNx caused a decrease in body weight
and albumin (Alb), while losartan and YSPDP treatment led to
restoration of body weight and Alb (Figures 3B, C). There were no
significant differences in the aspartate aminotransferase (AST) and
alanine aminotransferase (ALT) of all rats (Figures 3D, E),
indicating YSPDP has no side effects on liver function. As shown

FIGURE 3
YSPDP improved biochemical parameters in 5/6 SNx rats (A). Schematic representation of experimental animal research design. B-H. The body
weight (B), Alb (C), AST (D), ALT (E), BUN (F), Scr (G), and Urine protein/creatinine (H) levels at the end of week 14 in rats from Sham, 5/6 SNx, Losartan
(33.3 mg/kg/d) treated, YSPDP-low dose (1.5 g/kg/d) and YSPDP-high dose (3 g/kg/d) treated groups. Values are presented as the means ± SEM (n = 6).
The symbols * and # represent statistical comparisons with the Sham and 5/6 SNx + Vehicle groups, respectively. * /#P < 0.05; **/## P < 0.01; ***
/### P < 0.001.
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in Figures 3F–H, serum creatinine (Scr), blood urea nitrogen (BUN),
and urine protein/creatinine levels were higher in the 5/6 SNx group
than in the Sham group. Both Losartan and YSPDP significantly
ameliorated Scr, BUN, and urine protein/creatinine. The efficacy of
YSPDP in ameliorating the progression of CKD was comparable to
that of losartan. Furthermore, there were no statistically significant
differences observed between the YSPDP-high dose (YSPDP-H) and
YDSPDP-low dose (YSPDP-L) treated groups. In conclusion,
YSPDP effectively improved the renal function of 5/6 SNx-
induced CKD rats.

3.4 YSPDP improved the pathological
damage in 5/6 SNx rats

To further evaluate the effect of YSPDP on renal function and
structure, we examined renal pathology in these groups using Masson
and PAS staining (Figure 4A). From the representative images of
Masson staining, the 5/6 SNx group showed tubular degeneration,

luminal dilation, and ECM deposition in the renal interstitium. The
presence of glomerular sclerosis in the kidneys of the 5/6 SNx group
was demonstrated through PAS staining. However, treatment with
losartan, YSPDP-L, and YSPDP-H effectively mitigated tubular injury
and glomerular sclerosis in 5/6 SNx rats (Figures 4B, C).

3.5 YSPDP hampers renal fibrosis in 5/
6 SNx rats

Immunohistochemical staining analysis showed that
Fibronectin (FN) expression in the glomerulus in 5/6 SNx group
was significantly increased, while losartan, YSPDP-L, and YSPDP-H
treatment effectively decreased the glomerular deposition of FN in 5/
6 SNx rats (Figure 5A). Immunohistochemical staining of Collagen
III (COL-III) showed that renal tubulointerstitial COL-III
expression in the 5/6 SNx group was significantly enhanced and
residual renal tissue staining in the losartan, YSPDP-L, and YSPDP-
H treated groups was reduced (Figure 5B). The quantitative analysis

FIGURE 4
YSPDP improved the pathological damage in 5/6 SNx rats (A). Photomicrographs illustrating Masson and Pas staining of kidney tissue. The top panel
of Masson staining showed renal tubular injury in indicated groups. The bottom panel of PAS staining showed glomerular sclerosis in indicated groups.
Scar bar = 50 μm (B). Kidney tubular injury score based onMasson staining (n = 6) (C). Glomerulosclerosis index based on PAS staining (n = 6). The symbols
* and # represent statistical comparisons with the Sham and 5/6 SNx + Vehicle groups, respectively. * /#P < 0.05; **/##P < 0.01; *** /### P < 0.001.
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FIGURE 5
YSPDP hampers renal fibrosis in 5/6 SNx rats (A). Immunohistochemical staining of FN and collagen III. Scale bar = 50 µm (B, C). The percentage of
FN (B) and collagen III (C) positive areas relative to the whole area was quantified (n = 6) (D). Whole kidney tissue lysates were subjected to immunoblot
analysis with specific antibodies against FN, collagen I, α-SMA, or β-Actin. Expression levels of FN (E), and collagen I (F), α-SMA (G) were quantified by
densitometry analysis and then normalized with β-Actin (n = 4). The symbols * and # represent statistical comparisons with the Sham and 5/6 SNx +
Vehicle groups, respectively. * /#P < 0.05; **/## P < 0.01; ***/### P < 0.001.
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of the FN and COL-III staining intensity and area showed that the
expression of FN and COL-III was decreased by losartan, YSPDP-L,
and YSPDP-H treatment significantly (Figures 5C, D). Western
blotting showed that FN, collagen I (COL-I) and α-SMA protein
expression in the 5/6 SNx group was significantly increased and that
their expression in the losartan, YSPDP-L, and YSPDP-H treated
groups was decreased (Figures 5D–G).

3.6 Transcriptomics analysis results of 5/
6 SNx rats treated with YSPDP

To further analyze the underlying mechanism of YSPDP in
CKD, the kidney tissues of 5/6 SNx rats treated with vehicle and
YSPDP-H were performed with transcriptome sequencing. The
OPLS-DA analyses showed the gene expression between the two
groups was quite different from each other (Figure 6A).
851 differentially expressed genes (DEGs) were found in the
YSPDP group, including 471 upregulated and 380 downregulated
genes compared to the 5/6 SNx group (Figures 6B–D). The DEGs
were subsequently analyzed using GO and KEGG databases. The
enrichment analysis results revealed that YSPDP could regulate
several molecular functions, such as collagen fibril organization,
oxidative phosphorylation, and oxygen transport, and was involved
in important biological processes, including extracellular matrix
organization and inflammatory response (Figure 6E). KEGG
pathway enrichment analysis further demonstrated that the DEGs
were enriched in various inflammation- and apoptosis-related
pathways including the PI3K-AKT signaling pathway (Figure 6F).

3.7 YSPDP inhibited the PI3K/AKT/mTOR
signaling pathway of 5/6 SNx rats

Based on the network pharmacology and Transcriptomics, we
propose that the PI3K/AKT signaling pathway may serve as the
primary mechanism by which YSPDP exerts its therapeutic effects
in CKD. This pathway is crucial for regulating cell survival,
proliferation, and apoptosis, all of which are critical processes in
the progression of CKD. Moreover, activation of the PI3K/AKT
pathway has been implicated in mediating renal inflammation and
fibrosis, which are key features of CKD pathophysiology (Li et al.,
2017; Zhang et al., 2021;Wang et al., 2024). To investigate this further,
we examined the expression of key proteins in the PI3K/AKT pathway
in 5/6 SNx rats. Compared to the sham group, the phosphorylation
levels of PI3K, AKT, andmTORwere significantly increased following
5/6 SNx treatment. Importantly, the phosphorylation levels of PI3K,
AKT, and mTOR induced by 5/6 SNx were significantly decreased by
YSPDH treatment (Figures 7A– D). These results suggest that the
therapeutic effects of YSPDP in CKD are closely associated with the
modulation of the PI3K/AKT/mTOR pathway.

4 Discussion

CKD is a complex, multifactorial condition that can arise from
various causes, including hypertension, diabetes, and primary
glomerulonephritis (Zhang et al., 2012). Once CKD progresses to

ESRD, the only available therapeutic option is renal replacement
therapies, such as dialysis or kidney transplantation (Liu, 2013).
These treatments are not only expensive but are also associated with
a high burden of morbidity and mortality (Ng and Li, 2018).
Therefore, the exploration of novel therapeutic options, especially
those that can halt or reverse the progression of CKD and prevent
the onset of ESRD, is critical for improving patient outcomes.

In recent years, a growing body of evidence has demonstrated the
therapeutic potential of natural products in the management of CKD,
particularly in combatting renal fibrosis, the hallmark of disease
progression (Chen et al., 2018). Renal fibrosis is characterized by
excessive deposition of extracellular matrix (ECM) components,
leading to structural damage and functional impairment of the
kidney. Research into traditional Chinese medicine (TCM) has
shown that various herbs, herbal extracts, and TCM formulations
can slow or even reverse renal fibrosis (Li et al., 2022).

In this study, we focused on YSPDP, a well-established TCM
remedy that has been used clinically in Wuhan Union hospital for the
treatment of CKD. YSPDP is composed of four key herbs: Rheum
officinale, Astragalus membranaceus, Bombyx batryticatus, andHirudo.
These herbs are known for their anti-inflammatory, anti-fibrotic, and
kidney-protective properties (Wang et al., 2012; Yang et al., 2021; Shen
et al., 2023). Given its strong clinical efficacy, YSPDP has garnered
interest as a potential therapeutic agent for CKD, prompting us to
investigate the underlying mechanisms of its renal protective effects.

To elucidate the pharmacological basis of YSPDP’s efficacy, we
identify some active components of this formulation including
Nicotinamide, Rutin, Kaempferol, Astragaloside IV, Ursolic Acid,
Emodin, Rhein, Quercetin, and Hederagenin. These compounds
have been reported to exert anti-renal fibrosis effects through
various mechanisms, such as autophagy regulation, antioxidant
activity, anti-inflammation, and apoptosis modulation (Wang
et al., 2016; Wang et al., 2023; Lu et al., 2018; Thakur et al.,
2018; Wu et al., 2020; Kumakura et al., 2021; Guan et al., 2023;
Jia et al., 2023; Li et al., 2023). The identification of these bioactive
compounds provides compelling evidence supporting the renal
protective function of YSPDP, as these compounds target key
pathways involved in fibrosis and inflammation.

We utilized The 5/6 SNx model, which is widely acknowledged as
the classical model that most closely resembles human CKD (Kim
et al., 2021). Our findings demonstrated that treatment with YSPDP
markedly hindered the progression of CKD, as evidenced by
restoration of body weight and serum Alb levels, improved renal
function, and diminished renal injury in 5/6 SNx rats. Specifically,
YSPDP decreased proximal tubule atrophy, limited inflammatory cell
infiltration, reduced collagen accumulation, and inhibited fibrous
tissue proliferation. Renal fibrosis is the common outcome of most
progressive CKD, irrespective of the underlying causes, and closely
correlates with the decline in renal function (Liu, 2011), these findings
suggest that YSPDP has broad reno-protective effects.

To explore the molecular mechanisms underlying these
protective effects, we examined key fibrotic markers, including
FN, COL-I, COL-III, and α-SMA, using immunohistochemistry
and Western blot analysis. YSPDP treatment significantly
reduced the expression of these fibrotic markers, further
supporting its role in attenuating renal fibrosis.

Network pharmacology was employed to explore the potential
active ingredients andmolecular targets of YSPDP. By intersecting the
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FIGURE 6
Transcriptomic analysis results of 5/6 SNx rats treated with YSPDP (A). OPLS-DA score plot of transcriptomic analysis in YSPDP (5/6 SNx + YSPDP-H)
and 5/6 SNx (5/6 SNx + Vihicle) group (n = 4) (B). Identification of DEGs (q-value <0.05, |log2FC| ≥ 1) (C). Volcano plots of DEGs; (D). Heatmap of DEGs (E).
GO enrichment analysis. The top 5 significantly enriched terms of BP and the top 15 significantly enriched terms of CC (F). Top 50 enriched KEGG
signaling pathways.
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potential targets of YSPDP with CKD-associated targets, we
constructed a protein interaction network. The top 10 targets
identified included key signaling molecules such as VEGFA, SRC,
PIK3CA, AKT1, EGFR, PIK3R1, HRAS, APP, HSP90AA1, and TNF.
GO functional analysis and KEGG enrichment analysis revealed that
the PI3K/AKT signaling pathway is central to the mechanism of
YSPDP’s anti-CKD effects. These results were further supported by
transcriptomics data, which indicated that YSPDPmodulatesmultiple
cellular processes involved in renal fibrosis and inflammation.

The PI3K/AKT pathway plays a critical role in regulating a wide
range of cellular functions, including cell proliferation, survival,
differentiation, and metabolism (Yu and Cui, 2016). PI3K is an
enzyme involved in neural signal transduction, activated by various
receptors such as tyrosine kinase, G protein-coupled cytokine, and
Ras-associated GDP enzyme receptors. This activation promotes
processes like cell proliferation, survival, adhesion, differentiation,
and cytoskeletal organization (Yu et al., 2022). AKT, a downstream
target of PI3K, is crucial in regulating multiple cellular functions,
including proliferation, apoptosis, glucose metabolism, cell
migration, and transcription (Manning and Toker, 2017). The
phosphorylation of the PI3K/AKT/mTOR signaling cascade
modulates various downstream effector molecules, influencing
several biological processes in kidney tissue, such as cell death,
lipid metabolism, and epithelial-mesenchymal transition (EMT).

These processes contribute directly to the advancement of renal
fibrosis and CKD (Lee et al., 2007). In our research, we observed
elevated phosphorylation levels of PI3K, AKT, and mTOR in the
kidneys of CKD model rats, indicating activation of this signaling
cascade. Importantly, YSPDP treatment significantly reduced the
phosphorylation of these proteins, suggesting that YSPDP exerts its
protective effects by inhibiting the PI3K/AKT/mTOR pathway.

In addition to the PI3K/AKT pathway, transcriptomics analysis
also showed that YSPDP may influence cellular senescence. Research
has demonstrated that the cellular senescence of renal tubular
epithelial cells plays a key role in driving renal fibrosis. Slowing
down this process is considered an effective approach to mitigating
renal fibrosis and is a crucial strategy for delaying the progression of
CKD (Li et al., 2021; Wang et al., 2021). YSPDP may prevent renal
fibrosis by delaying cell senescence, which needs further verification.

Our study showed the efficacy of YSPDP in ameliorating the
progression of CKD was comparable to that of losartan. Clinically,
some patients exhibit resistance to renin-angiotensin system
inhibitors or experience significant intolerance toward severe side
effects associated with these medications, such as hyperkalemia,
hypotension, and even renal failure (Laurent, 2017). However, in our
clinical practice, YSPDP has demonstrated a lack of these adverse
effects. In subsequent studies, we will focus on the adverse drug
reactions and long-term prognosis of YSPDP to CKD.

FIGURE 7
YSPDP inhibited the PI3K/AKT/mTOR signaling pathway of 5/6 SNx rats (A). Whole kidney tissue lysates were subjected to immunoblot analysis with
specific antibodies against p-PI3K, PI3K, p-AKT, AKT, p-mTOR, mTOR, or β-Actin. (B-D). Relative protein levels of p-PI3K/PI3K (B), p-AKT/AKT (C),
p-mTOR/ mTOR (D) (n = 4). The symbols * and # represent statistical comparisons with the Sham and 5/6 SNx + Vehicle groups, respectively. * /#P <
0.05; **/## P < 0.01; *** /### P < 0.001.
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Although this study provides important insights into the
mechanism by which YSPDP alleviates renal fibrosis, several
limitations warrant further investigation. First, CKD can result
from a wide range of etiologies, and it is essential to test YSPDP’s
efficacy in other CKD models, such as diabetic nephropathy, to
determine its broader applicability. Second, although we identified
multiple bioactive compounds in YSPDP, future studies should focus
on elucidating the specific roles of these individual compounds in
mediating the observed effects. Finally, genetic knockout models
could provide more definitive evidence regarding the molecular
pathways through which YSPDP exerts its reno-protective effects.
Addressing these limitations in future research will help to solidify
YSPDP’s potential as a novel therapeutic option for CKD.

In conclusion, our study highlighted the protective effects of
YSPDP in a 5/6 SNx model using SD rats. By integrated network
pharmacology, transcriptomic analysis, and pharmacological
assessment, we predicted and confirmed that the therapeutic
mechanism of YSPDP in addressing 5/6 SNx-induced renal
fibrosis may involve inhibition of the PI3K/AKT/mTOR signaling
pathway. These findings suggest that YSPDP could be a potential
therapeutic candidate for managing renal fibrosis.
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