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Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are
the main nutrients or indispensable components of the human body.
Dysregulation in the processes of absorption, transport, metabolism, and
excretion of these metabolites can lead to the onset of severe metabolic
disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and
hyperbilirubinemia. As the second largest membrane receptor supergroup,
several major families in the solute carrier (SLC) supergroup have been found
to play key roles in the transport of substances such as carbohydrates, lipids,
urate, bile acids, monocarboxylates and zinc ions. Based on common metabolic
dysregulation and related metabolic substances, we explored the relationship
between several major families of SLC supergroup and metabolic diseases,
providing examples of drugs targeting SLC proteins that have been approved
or are currently in clinical/preclinical research as well as SLC-related diagnostic
techniques that are in clinical use or under investigation. By highlighting these
connections, we aim to provide insights that may contribute to the development
of improved treatment strategies and targeted therapies for metabolic disorders.
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1 Introduction

In recent years, with improvements in people’s living standards and changes in lifestyle,
the incidence of metabolic diseases, which have become a major public health problem
affecting global economic and social development, is increasing annually worldwide.
According to the latest Global Burden of Disease study published in the Lancet in
2020, the greatest risk to health between 1990 and 2019 came from a significant
increase in metabolic risk factors (Collaborators, 2020). The metabolic diseases,
including type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD),
hyperlipidemia, obesity, hyperuricemia, gout, and other related diseases, are associated
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with dysregulated metabolic processes that involve insulin
resistance, the homeostasis of glucose, lipids, and other nutrients,
as well as metabolic inflammation (Sunny et al., 2011; Samuel and
Shulman, 2016; Xie et al., 2021). These conditions can be either
congenital or acquired. Furthermore, increasing understanding
underscores the intricate relationship between cancer and
metabolic processes, which has led to identifying cancer as a
metabolic disorder in which major metabolic pathways are rewired.

The SLC supergroup is the second largest group of membrane
proteins, whose members are expressed to varying degrees in
different tissues and organs throughout the body and can be
distributed in the cell from the nuclear membrane to the plasma
membrane of various biological membrane structures. SLC
transporters mediate the influx and efflux of ions, amino
acids, carbohydrates, neurotransmitters and other endogenous
and exogenous substances across biological membranes, which is
closely connected to the metabolic equilibrium. Studies have
shown that at least 80 SLC proteins are associated with
human metabolic diseases, including obesity, T2D, NAFLD,
and multiple insulin resistance-related metabolic diseases (Lin
et al., 2015a; Schumann et al., 2020), emphasizing the importance
of SLC family in regulating normal physiological and
pathological functions. However, compared to other
membrane protein families, the functions and regulatory
mechanisms of SLC membrane proteins are far from well
characterized, and only a few members have been identified as
drug targets (Schumann et al., 2020). In this review, we will
investigate the relationship between SLC families, their
corresponding transport substrates, and metabolic diseases,
aiming to provide new ideas for the treatment of and targeted
drug development against metabolic diseases.

2 The SLC proteins

2.1 Naming and classification

The SLC gene nomenclature system originated in the 1990s and
the naming system begins with “SLC”, followed by “a number
representing a family”, then “an English letter (usually A)”, and
finally, the number represents “the number of the member in the
family” (Hediger et al., 2013). For example, for SLC1A1, this SLC
transporter is the first member of the first subfamily of the SLC
supergroup.

The Genome Organization Gene Nomenclature Committee
(HGNC) mainly classifies SLC proteins based on the different
characteristics, homologies, functions and structures of genes,
and those with at least 20% sequence identity are considered to
constitute the same subfamily (Perland and Fredriksson, 2017). To
date, more than 400 SLC proteins have been identified, and have
been divided into 65 families based on sequence homology
(Pizzagalli et al., 2021), but the exact number of specific proteins
remains difficult to determine. Gyimesi et al. identified 120 potential
SLC-like proteins using the Transporter Classification Database and
Protein families databases (Gyimesi and Hediger, 2022). It is
believed that there are many unidentified SLC proteins in the
human genome, which need further systematic analysis.

2.2 Structural features and functions

To date, the number of three-dimensional structures of eukaryote-
derived SLC transporters that have been analyzed is very limited. The
analyzed SLC proteins are highly diverse in structure but usually have
two common structural characteristics, namely, an asymmetric
transmembrane helical structure and a discontinuous helical
structure, and their structures often contain multiple folding modes.
At present, the twomost common folding patterns in the known three-
dimensional structure of human SLC proteins are MFS folding and
LeuT folding (Bai et al., 2017; Han et al., 2022). The MFS fold usually
contains 12 transmembrane helical domains, representing the largest
fold cluster in SLC (Colas et al., 2016; Bai et al., 2017), and this fold is
found in subfamily proteins, such as SLC2, SLC15, SLC16, SLC17,
SLC21, and SLC22 (Doki et al., 2013; Pedersen et al., 2013; Anne and
Gasnier, 2014; Holman, 2020). The structural basis of LeuT folding is
the 5 + 5 helix structure, which forms two bundles of structures with
antiparallel symmetry (Bai et al., 2017) and is found in SLC3, SLC5,
SLC6, SLC7 and other subfamily proteins. However, SLC3A1 and
SLC3A2 are not transporters, but ancillary proteins involved in the
membrane trafficking of other SLC transporters. In addition to the two
typical folding patterns of the transporter protein family, there are other
transporters with special folding patterns, such as SLC1 with “HP
domains”, SLC25 with 6 TMs and 3 similar repeats, and SLC30 with a
“V”-shaped homodimer and a C-terminal domain (Bai et al., 2017).

In general, SLC transporters have four main biological functions
(Colas et al., 2016): (1) mediating the uptake and transmembrane
transport of nutrients or energy materials needed for life activities; (2)
participating in the absorption of ions ormicronutrients in the body; (3)
regulating the transmembrane transport and signaling of
neurotransmitters; and (4) working together to transport and efflux
drugs, toxins and metabolic wastes. The above biological functions
indicate that SLC proteins are involved in the uptake and transport of
various metabolites and nutrients within the organism, while metabolic
diseases are usually caused by metabolic disorders of related substances
in the body, the member names and transport substrates of each SLC
family mentioned are presented in Table 1. The following sections will
focus on the correlation and regulatory mechanisms between SLC
proteins, their transport substrates, and metabolic diseases.

3 The role of SLC transporters and
related substrates inmetabolic diseases

Metabolic diseases are a class of disorders caused by dysregulation
in metabolic processes within the body, resulting from genetic factors,
environmental influences, endocrine imbalances, immune responses,
and other factors. Commonmetabolic diseases can be categorized based
on the affected metabolic pathways, including disorders of
carbohydrate, lipid, purine metabolism and so on. Next, we will
elucidate the role of SLC proteins in metabolic diseases from the
perspective of the transport of carbohydrates, bile acids, urate, lipids,
monocarboxylates, tricarboxylic acid cycle intermediates, and inorganic
ions, as well as the metabolic dysregulation caused by their
corresponding SLC transporters.

The tissue distribution of some SLC protein family members and
their corresponding transport substrates are shown in Figure 1.
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TABLE 1 SLC protein family members, their transport substrates, and associated metabolic diseases.

Family Member Substrate Related metabolic diseases

SLC2 GLUT1-12/SLC2A1-12, GLUT13/SLC2A13/
HMIT

glucose, fructose, etc. (Raja et al., 2012) T2D, insulin resistance, NASH, obesity,
GLUT1 DS, Fanconi-Bickel Syndrome (Akcan and
Silan, 2024)

SLC5 SGLT1, 2/SLC5A1,2 glucose, etc. (Sano et al., 2020) obesity, diabetes, glucose/galactose malabsorbtion
and cardiovascular disease

SGLT3/SLC5A4 /a diabetes

SGLT4/SLC5A9 mannose, glucose, fructose, etc. (Tazawa et al.,
2005)

diabetes, obesity, diabetic retinopathy

SGLT5/SLC5A10 mannose, fructose, glucose, galactose (Grempler
et al., 2012)

diabetes, chronic nephrosis

SGLT6/SLC5A11 myo-inositol and D-glucose (Baader-Pagler et al.,
2018)

rheumatism (Mathew et al., 2024)

SLC10 NTCP/SLC10A1, ASBT/SLC10A2 bile acid (Kubitz et al., 2014) sodium-taurocholate cotransporting polypeptide
deficiency, hypercholesteremia, NAFLD, diabetes,
cholestasis, gall-stone, primary biliary cholangitis
(PBC), cholestasis syndrome

SOAT/SLC10A6 cholesterol, fatty acids (Bhattacharjee et al., 2022)

P3/SLC10A3 amino acid

P4/SLC10A4, P5/SLC10A5, SLC10A7 /b T2D, osteochondrodysplasia

SLC13 NaS1/SLC13A1, SLC13A4 sulfate, selenate, thiosulfate (Bergeron et al., 2013) NAFLD, neutrophilic granulocytopenia, diarrhea,
hypothioemia

NaDC1/SLC13A2, NaDC3/SDCT2/SLC13A3,
NaCT/SLC13A5

citric acid, α-ketoglutaric acid, succinic acid (Pajor,
2014)

kidney disease, diabetes, epilepsy, obesity, NAFLD

SLC16 MCT1/SC16A1, MCT2/SC16A7, MCT3/
SLC16A8, MCT4/SL16A3

L-lactate, pyruvate, short-chain fatty acids, and
monocarboxylate drugs, etc. (Felmlee et al., 2020;
Bosshart et al., 2021)

lactic acid transport deficiency (Felmlee et al.,
2020), monocarboxylate transporter 1 deficiency,
diabetic nephropathy, T2D

MCT5/SLC16A4, MCT11/SLC16A11, MCT13/
SLC16A13, MCT14/SLC16A14

/c

MCT6/SL16A5 xenobiotics (bumetanide, nateglinide, probenecid)
(Jones et al., 2017)

MCT7/SLC16A6 ketone bodies (Felmlee et al., 2020)

MCT8/SLC16A2 thyroid hormones (Thomas et al., 2023) Allan-Herndon-Dudley syndrome, non-thyroidal
illness syndrome (NTIS)

MCT9/SLC16A9, MCT12/SLC16A12 carnitine (Suhre et al., 2011; Abplanalp et al., 2013) gout

MCT10/SLC16A10 aromatic amino acid, thyroid hormones (Halestrap
and Meredith, 2004)

inflammatory bowel disease, NTIS, transient
neonatal zinc deficiency (TNZD)

SLC17 NPT1/SLC17A1, NPT3/SLC17A2, NPT4/
SLC17A3, NPT5/SLC17A4

inorganic phosphate, organic anions (urate,
sulfate), glutamate

hyperuricemia, gout and kidney disorders

SLC17A5 sialic acid, inorganic phosphate sialic acid storage disease

VGLUT1/SLC17A7, VGLUT2/SLC17A6,
VGLUT3/SLC17A8

glutamate, asparate obesity, insulin resistance, T2D, NAFLD, hepatic
steatosis

VNUT/SLC17A9 nucleotides (ATP, ADP) diabetes and metabolic disorders

SLC22 OCT1-3/SLC22A1-3 cationic drugs, carnitine, acetylcholine, dopamine
(Nigam, 2018)

OCTN1-2/SLC22A4-5 carnitine, acetylcholine, cholin

OAT1/SLC22A6 anionic drugs, α-ketoglutarate, urate, indoxyl
sulfate

gout, diabetes

(Continued on following page)
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3.1 Carbohydrate transport and metabolism
dysregulation

Glucose cannot freely cross the lipid bilayer of the cell
membrane, and cellular glucose uptake requires glucose
transporters on the cell membrane. Glucose transporters are
present in various tissues throughout the body and are
classified into two categories: one is sodium-dependent

glucose transporter (SGLT) encoded by SLC5, which
transports glucose against its concentration gradient, and the
other is glucose transporter (GLUT) encoded by SLC2, which
transports glucose along the concentration gradient in the way of
facilitated diffusion without consuming energy. Abnormal
glucose transport and metabolism can lead to diabetes
mellitus, hypoglycemia, hyperglycemia, glycogen storage
diseases, impaired glucose tolerance, and insulin resistance.

TABLE 1 (Continued) SLC protein family members, their transport substrates, and associated metabolic diseases.

Family Member Substrate Related metabolic diseases

OAT2/SLC22A7 anionic drugs, cGMP, carnitine renal tubular dysfunction

OAT3/SLC22A8 anionic drugs, bile acid, carnitine, estrone sulfate

OAT7/SLC22A9 estrone sulfate

SLC22A10 /d

OAT4/SLC22A11,OAT10/SLC22A13 urate, estrone sulfate

URAT1/SLC22A12 urate

SLC22A14-25 estrone sulfate

SLC25 CIC/SLC25A1 citrate, isocitrate, malate, phosphoenolpyruvate

ORC2/SLC25A2 ornithine, citrulline, lysine, arginine, histidine

PHC/SLC25A3 phosphate

ANT1/SLC25A4
ANT2/SLC25A5
ANT3/SLC25A6

ADP, ATP

UCP1/SLC25A7, UCP2/SLC25A8, UCP3/
SLC25A9

H+(Bouillaud et al., 2016) obesity, diabetes, hepatitis

UCP5/BMCP1/SLC25A14 inorganic anions (sulfate, sulfite, thiosulfate and
phosphate), dicarboxylates (e.g., malonate, malate
and citramalate), aspartate, glutamate and
tricarboxylates (Gorgoglione et al., 2019)

UCP6/KMCP1/SLC25A30 inorganic anions (sulfate, sulfite, thiosulfate and
phosphate), dicarboxylates (e.g., malonate, malate
and citramalate), aspartate (Gorgoglione et al.,
2019)

DIC/SLC25A10 malate, phosphate, succinate, sulphate, thiosulphate

OGC/SLC25A11 2-oxoglutarate, malate

AGC1/SLC25A12
AGC2/citrin/SLC25A13

glutamate, aspartate (Tavoulari et al., 2022) steatosis, NASH

CACT/SLC25A20 carnitine, acylcarnitine (Giangregorio et al., 2017)

SCaMC-3/SLC25A23, APC1/SLC25A24,
SLC25A25

Mg-ATP/Pi, phosphate and imports adenine
nucleotides (Harborne et al., 2017)

fontaine syndrome (Writzl et al., 2017)

SLC27 FATP1-4/SLC27A1-4, FATP6/SLC27A6 LCFA, VLCFA (Pohl et al., 2004; Holloway et al.,
2011)

diabetes, NAFLD

FATP5/SLC27A5 LCFA, bile acids (Kumari et al., 2020; Xu et al.,
2023)

SLC30,
SLC39

SLC30s/ZnTs
SLC39s/ZIPs

Zn2+(Huang and Tepaamorndech, 2013;
Thingholm et al., 2020)

diabetes, insulin resistance, TNZD (Lasry et al.,
2012)

aSGLT3 acts as a glucose sensor rather than a sugar transporter (Soták et al., 2017).
bSLC10A4 appears to be a protease-activated transporter and transports bile acids; the transport substrates for SLC10A5 and SLC10A7 have not yet been determined (Geyer et al., 2006; Godoy

et al., 2007).
cThe transport substrates for MCT5, MCT11, MCT13 and MCT14 have not yet been determined (Bosshart et al., 2021).
dSLC22A10 is classified as an orphan transporter with unknown substrates and function (Yee et al., 2023).
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Apart from classic metabolic diseases, carbohydrate transport
dysregulation is also implicated in tumor development. Cancer cells,
even when oxygen-rich, still tend to produce energy through aerobic
glycolysis, rather than relying on the more efficient mitochondrial
oxidative phosphorylation pathway that normal differentiated cells
do, a phenomenon termed “the Warburg effect” (Vander Heiden
et al., 2009). Due to the presence of the Warburg effect, we have also
included the potential relationship between the glucose transporter
subfamily of SLC supergroup and tumors.

3.1.1 SLC2 and dysregulation of glucose transport
GLUT encoded by SLC2 is mainly responsible for the

transmembrane transport of glucose in tissues such as liver,
skeletal muscle and adipose tissue to ensure a homeostatic
balance of blood glucose levels. Thus, most of its members
contribute to the development of metabolic diseases such as
blood glucose-related T2D and insulin resistance (Chadt and Al-
Hasani, 2020). GLUTs facilitate glucose transport through a passive
transport mechanism known as facilitated diffusion. Fourteen
GLUT protein subtypes have been identified to date and these
subtypes can be classified into three subtypes (Mueckler and
Thorens, 2013) based on sequence similarity: (1) GLUT1-4
(SLC2A1-4) and 14 (SLC2A14); (2) GLUT5, 7, 9 and 11
(SLC2A5, 7, 9, 11); and (3) GLUT6, 8, 10, 12 (SLC2A6, 8, 10,
12) as well as HMIT (SLC2A13).

GLUT1-4 have been studied in depth. GLUT1 is found in almost
every tissue with different levels of expression in different cell types,
not including normal liver tissue. And it is expressed in the
basolateral membrane. GLUT2 is mainly present in the

basolateral membrane of intestine and kidney absorptive
epithelial cells (Thorens, 2015), which is also required for glucose
sensitive units, particularly in the hepatic portal vein, hypothalamus,
and brain stem. GLUT1 and GLUT3 have been proved to be
associated with multiple tumor formations and aggressiveness
(Ismail and Tanasova, 2022) and have a low correlation with
metabolic diseases. Given GLUT2’s involvement in intestinal
carbohydrate uptake, it becomes a target of interest for diabetes
prevention and treatment by inhibiting intestinal glucose absorption
thereby reducing blood glucose levels (Goto et al., 2012).

At the same time, the role of GLUT4 in the regulation of glucose
has also attracted much attention. Some existing studies have shown
that GLUT4 levels reflect insulin-dependent glucose uptake (Taha
et al., 1999). GLUT4 is usually found only in insulin-sensitive
skeletal muscle and adipocytes, and decreased SLC2A4 expression
or GLUT4 activity can cause insulin resistance. For example,
Guilherme et al. reported that reduced SLC2A4 mRNA and
protein levels led to insulin-resistant glucose transport inhibition
in adipose tissue in obese or diabetic patients (Guilherme et al.,
2008). Slc2a4 knockout mice have elevated serum glucose and
insulin levels, reduced glucose uptake in muscle, and high blood
pressure, which are similar to those in T2D (Fam et al., 2012). Mice
with homozygous Slc2a4 gene inactivation are dwarfed, have
enlarged hearts, shorter lifespan, and exhibit hyperinsulinemia
and insulin resistance in the feeding state (Zisman et al., 2000).
The aforementioned research indicates that maintaining
GLUT4 protein levels and activity is crucial for glycemic stability.
Impairment of GLUT4 translocation is also one of the key factors
leading to insulin resistance. Currently, some compounds targeting

FIGURE 1
Transporter proteins regulate the movement of various substances, which are categorized by their chemical properties and correspond to specific
SLC subtypes. The subtypes, shown with their tissue distributions, are color-coded to match the substance categories. Abnormalities in these
transporters are linked to metabolic diseases. This figure was created using BioRender.
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TABLE 2 Promising SLC target drugs and the related metabolic diseases.

Targeted SLC members Metabolic disease Drugs

GLUT1 GLUT1 deficiency syndrome Triheptanoin (NCT02014883), Compd 4b (Angeli et al., 2023)

insulin resistance Marein (Jiang et al., 2016)

breast cancer, lung cancer, colon cancer WZB117 (Zhao et al., 2016), BAY-876 (Guo et al., 2022), STF-
31 (Kraus et al., 2018), Glutora(Reckzeh et al., 2019)

lung fibrosis Phloretin (Liu et al., 2012)

GLUT4 diabetes Rhoifolin (Rao et al., 2011)
MOTS-c (human) acetate (Lee et al., 2016a)
Nepodin (Ha et al., 2014)

GLUT9 gout, hyperuricemia URAT1/GLUT9-IN-1a(Shi et al., 2024)

SGLT1 diabetes KGA-2727a(Shibazaki et al., 2012)

chronic constipation Mizagliflozin (NCT02281630)

diabetic kidney disease Mizagliflozin

SGLT2 T2D Canagliflozin (NCT01032629, NCT01989754,
NCT02065791), Dapagliflozin (NCT01730534), Ertugliflozin
(NCT01986881), Ipragliflozin (UMIN000018440,
UMIN000018084), Tofogliflozin (UMIN000017607,
UMIN000032601), Luseogliflozin (UMIN000019072,
UMIN000021658), Henagliflozin (CTR20131986,
CTR20140132)
Empagliflozin (NCT01131676)

hypertension NCT05090358

advanced solid tumors Serabelisib in Combination with Canagliflozin
(NCT04073680)

SGLT1, SGLT2 T2D, T1D Spotagliflozin (NCT02384941, NCT02421510,
NCT02531035)

SLC9A3 constipated irritable bowel syndrome, dialysis chronic kidney
disease, end-stage renal disease, synucleinopathy-related
constipation

Tenapanor (NCT02819687, NCT02796131, NCT06460038,
NCT02727751)

MCT1, MCT4 colorectal carcinoma BAY-8002a, AZD3965 (NCT01791595)

VNUT chronic neuropathic pain Clodronatea

URAT1 gout Lesinurad (NCT01508702, NCT01510158, NCT01808131,
NCT01808144)
Dotinurad (NCT02347046, NCT03100318, JPRN-
UMIN000054142, NCT06056570)
Verinurad (NCT04550234, NCT04532918)

OAT3 hypertension Thiazide diuretics (NCT02841280, NCT00131846)

NTCP hepatitis B virus, chronic hepatitis D Myrcludex B (NCT03852719, NCT03852433, NCT03546621)

ASBT T2D, primary biliary cholangitis Linerixibata(Wu et al., 2013)
Odevixibata (Baghdasaryan et al., 2016)

chronicconstipation, irritable bowel syndrome Elobixibat (JPRN-jRCTs031200172, JapicCTI-153061 and
JapicCTI-153062)

SLC25A4, SLC25A5, SLC25A6 osteoporosis Clodronate (NCT06263517)

UCP2 T2D Genipina(Hu et al., 2017)

SLC25A1, GLUT4 NASH, obesity CTPI-2a(Tan et al., 2020)

ZIP7 hepatocellular carcinoma, T cell acute lymphoblastic leukemia NVS-ZP7-4a

aThese compounds have not yet entered clinical trials.

Abbreviation: T2D:Type 2 diabetesmellitus; NAFLD: nonalcoholic fatty liver disease; SGLT: Sodium-dependent glucose transporter; GLUT: glucose transporter; FATPs: Fatty acid transport proteins;NASH:

nonalcoholic steatohepatitis; ASBT: Sodium-dependent bile acid transporter; NTCP: Na+-taurocholate co-transport polypeptide; SOAT: Sodium ion-dependent organic anion transporter; NPT: Na+

dependent phosphate transporter; VGLUT: vesicular glutamate transporters; VNUT: vesicular nucleotide transporter; OAT: organic anion transporter; OCT: organic cation transporter; OCTN: organic

cation/carnitine transporter; SO42-: inorganic anion sulfate; NAS1: The Na+-sulfate cotransporter; SAT1: sulfate anion transporter; NAS: sodium sulfate cotransporters; NADC: Sodium-dependent

dicarboxylate transporters; MCT: monocarboxylate transporter protein; ZIP: Zrt-and Irt-like protein family; ZnT: Zinc transporter ZnT family; T1D: Type 1 diabetes mellitus; UCP: uncoupling protein;

SDCT: High-affinity sodium-dependent dicarboxylate co-transporter; CACT: Carnitine/acylcarnitine translocase; LC-FAOD: long-chain fatty acid oxidation disorders; IBS: irritable bowel syndrome; PBC:

primary biliary cholangitis; NTIS: Non-thyroidal illness syndrome; TNZD: transient neonatal zinc deficiency.
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GLUT4 activity have entered preclinical studies. Details of other
preclinical, clinical trial, and marketed drugs targeting SLC can be
found in Table 2.

GLUT family-mediated glucose transport is the pacesetter of
aerobic glycolysis and, thus, is critical for cancer cell metabolism.
Almost all proteins in the SLC2 family have been shown to be
associated with the development of cancer (Macheda et al., 2005;
Chen and Chen, 2022; Ismail and Tanasova, 2022).
GLUT1 upregulation has been observed in cancers such as
pancreatic cancer (Li et al., 2023), gastric cancer (Huber and
DeRoche, 2023), lung cancer (Zhang et al., 2019), ovarian cancer
(Rudlowski et al., 2004), cervical cancer (Rudlowski et al., 2003), and
kidney cancer. GLUT3 has been found to be upregulated in various
tumors, such as gastric cancer (Yang et al., 2023), colorectal cancer
(Dai et al., 2020), and breast cancer (Tsai et al., 2021). Due to its high
expression in neurons, GLUT3 is also observed to be upregulated in
certain specific tumors, such as neuroblastoma (Ni et al., 2015) and
glioblastoma (Libby et al., 2021). GLUT4 and GLUT5 are often
found to be upregulated in breast and prostate cancer while
GLUT12 is upregulated in human breast tumors. Inhibiting the
GLUT12-mediated Warburg effect has been shown to suppress the
proliferation, migration, and invasion of breast cancer cells and
xenograft tumors (Shi et al., 2020). Other members of the
SLC2 family have also been found to be upregulated in various
types of cancer; however, research on the mechanisms linking
SLC2 to cancer development is still in its early stages.

Current research focuses on inhibiting the function of GLUT
proteins, thereby restricting glucose uptake by cancer cells and
subsequently inhibiting tumor growth and metastasis (Yadav
et al., 2024). These strategies include the use of GLUT small
molecule inhibitors (Temre et al., 2022; Chen et al., 2023) and
the combination of GLUT inhibitors with chemotherapeutic agents
(Weng et al., 2022).

SLC2 family proteins are also implicated in the development of
NAFLD, as their transport substrates can either interconvert with
lipids or play a role in the physiological regulation of lipid
metabolism (Softic et al., 2016). A high-sugar diet, particularly
one rich in fructose, is considered a significant contributor to the
onset of NAFLD. Unlike glucose, fructose is primarily metabolized
in the liver, where excessive intake promotes fat accumulation via
the de novo lipogenesis pathway. This metabolic process enhances
lipid synthesis, making fructose more prone than glucose to induce
hepatic fat deposition. Moreover, a high-sugar diet can lead to
insulin resistance, a hallmark of NAFLD. Insulin resistance
exacerbates hepatic steatosis by further promoting fat
accumulation in the liver, thereby contributing to the progression
of NAFLD.

The expression levels of several SLC2 family members, including
GLUT1, GLUT3, GLUT5, GLUT6, GLUT8, GLUT9, and GLUT12,
are significantly upregulated in nonalcoholic steatohepatitis
(NASH), a progressive form of NAFLD (Karim et al., 2014). A
study on single nucleotide polymorphisms (SNPs) in NAFLD
candidate genes revealed 11 SNPs associated with NAFLD, in
which 7 were located in the SLC2A1 gene (Vazquez-Chantada
et al., 2013). Further cell experiments demonstrated that silencing
SLC2A1 led to fat accumulation and increased oxidative damage. In
addition, studies have shown that GLUT2 and GLUT8 contribute to
NAFLD by facilitating fructose uptake (Douard and Ferraris, 2013;

DeBosch et al., 2014). Therefore, in the current absence of effective
therapeutic strategies for NAFLD, GLUTs may represent a
promising therapeutic target.

In addition to common metabolic diseases such as T2D and
NAFLD, as well as cancer, abnormalities in GLUT function may also
lead to certain rare genetic disorders, which are often associated with
congenital metabolic dysfunction. Although epilepsy is typically
considered a neurological disorder, certain types of epilepsy are
closely related to metabolic abnormalities, particularly in cases of
inherited metabolic diseases. For example, mitochondrial
dysfunction, amino acid metabolism disorders (such as
phenylketonuria), and GLUT1 deficiency syndrome (GLUT1 DS)
can also trigger epileptic seizures. A congenital defect in SLC2A1 has
been shown to cause epilepsy, along with developmental delays,
microcephaly, dyskinesia, and other neurological symptoms
(Haridas and Kossoff, 2022). Regarding other rare metabolic
diseases, SLC2A2 mutations can lead to the rare genetic disorder
Fanconi-Bickel syndrome (Setoodeh and Rabbani, 2012; Shah et al.,
2016), which causes excessive excretion of glucose, bicarbonate,
phosphate, uric acid, potassium, and certain amino acids in
the urine.

3.1.2 SLC5 and dysregulation of glucose transport
Sodium-glucose cotransporters belong to the SLC5 gene family

and mainly mediate glucose transport. Unlike GLUTs, SGLTs are
secondary active transport proteins that rely on the sodium ion
concentration gradient to actively transport glucose. They co-
transport glucose with sodium ions from a region of lower
concentration to a region of higher concentration, a process that
requires energy expenditure (Han et al., 2022). To date, six subtypes
of SGLT proteins, namely, SGLT1-6, which are encoded by the
SLC5A1, SLC5A2, SLC5A4, SLC5A9, SLC5A10 and SLC5A11 genes,
respectively, have been identified. Among these proteins, SGLT1
(SLC5A1) and SGLT2 (SLC5A2) are the most studied. SGLT1 is
expressed in the brush border membrane of enterocytes and on the
apical membranes of kidney of epithelial cells of the proximal
straight tubules. SGLT2 is mostly expressed on the apical
membranes of the early segment of the proximal tubule in the
kidney (Ghezzi et al., 2018).

In preclinical studies, both SGLT1 and SGLT2 have been
identified as potential targets for the treatment of glucose
metabolism abnormalities due to their glucose transport
functions. Osswald et al. reported that increased
SGLT1 expression in the intestinal epithelium of mice regulated
by RSC1A1 (Regulatory Solute Carrier Protein 1A1) enhanced
glucose absorption and contributed to non-leptin-mediated
obesity (Osswald et al., 2005). Similarly, Slc5a2 knockout mice
exhibited both significant glycosuria and improved glycemic
control (Powell et al., 2013). However, the regulation of glucose
absorption by SGLT1 in the gastrointestinal and renal tracts may
result in additional gastrointestinal side effects of SGLT1 inhibition
due to the influence on normal glucose absorption.

In addition to the widely studied SGLT1 and SGLT2, SGLT5 has
also been linked to abnormal glucose metabolism, including diabetes
and obesity. The SGLT5 protein is located in the apical membrane of
kidney tubule epithelium and primarily transports mannose and
fructose, with glucose and galactose being transported to a lesser
extent. Under a high-fat diet, Slc5a10 knockout mice exhibited more
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severe hepatic steatosis compared to wild-type mice, indicating a
previously unrecognized link between renal fructose reabsorption
and hepatic lipid metabolism mediated by SGLT5 (Fukuzawa et al.,
2013). A genome-wide association study of 1,5-anhydroglucitol, a
biomarker of hyperglycemic fluctuations linked to diabetic
complications, identified SLC5A10 as a novel locus associated
with glucose metabolism (Li et al., 2017).

3.2 Bile acid transport and metabolic
dysregulation

Bile acids (BAs) are initially synthesized from cholesterol in the
liver as primary BAs and excreted into the bile. Primary BAs are then
metabolized by gut microbiota to form secondary BAs. Both primary
and secondary BAs can be conjugated with glycine or taurine are
classified as conjugated bile acids. While unconjugated bile acids can
diffuse across cell membranes, conjugated bile acids require active
transport. The bile salt export pump (BSEP, also known as
ABCB11), located on the canalicular membrane of hepatocytes,
transfers conjugated bile acids from hepatocytes into bile
canaliculi. The Na⁺/taurocholate cotransporting polypeptide
(NTCP, encoded by the SLC10A1 gene), located on the
basolateral membrane of hepatocytes, actively transports
conjugated and some unconjugated bile acids from portal venous
blood into hepatocytes. Similarly, the apical sodium-dependent bile
acid transporter (ASBT, encoded by the SLC10A2 gene), located on
the brush-border membrane of intestinal epithelial cells in the
terminal ileum, actively absorbs conjugated and unconjugated
bile acids from the intestinal lumen into enterocytes. This
process contributes to the enterohepatic circulation of bile acids
(Zhou et al., 2014). As a metabolite and a signaling molecule, bile
acids can activate various receptors and signaling pathways in the
liver and other organ tissues, and play a role in regulating blood
glucose and lipid metabolism, increasing insulin sensitivity, and
maintaining energy homeostasis (Huang et al., 2019). Albaugh et al.
(2017) mentioned that bile acids involved in regulating glucose and
lipid metabolism through the activation of the farnesol X receptor
(FXR) and the G protein-coupled bile acid receptor (GBPAR,
TGR5). The disorder of bile acid metabolism in vivo can lead to
the occurrence of metabolic diseases such as obesity, T2D, NAFLD,
cholestasis, and gallstones (Cai et al., 2022).

3.2.1 SLC10 and dysregulation of bile acid transport
The SLC10 protein family consists of seven members, including

NTCP, ASBT, the sodium ion-dependent organic anion transporter
(SOAT, encoded by the SLC10A6 gene), SLC10A3, SLC10A4,
SLC10A5, and SLC10A7 (Claro da Silva et al., 2013). Among them,
NTCP and ASBT are mainly responsible for the transport of bile acids.
NTCP is an influx transporter located exclusively on the basolateral
membrane of hepatocytes. ASBT is located on the apical membrane of
ileal enterocytes, renal proximal tubule cells, bile duct cells and
gallbladder epithelial cells, which are responsible for absorbing bile
acids from the intestine into intestinal cells. Growing evidence indicates
that bile acids play a critical role in metabolic diseases (Thomas et al.,
2008; McGlone and Bloom, 2019). Bile acids can improve insulin
sensitivity and reduce fat accumulation, thereby decreasing the
occurrence of obesity, T2D, and NAFLD.

NTCP (SLC10A1) and ASBT (SLC10A2), as bile acid
transporters, are indeed associated with the occurrence and
development of metabolic diseases and may be potential
therapeutic targets (Donkers et al., 2019b; Yang et al., 2020).
Mutations in the human SLC10A2 gene may lead to bile acid
malabsorption, enterohepatic circulation disruption, and lower
plasma cholesterol (Slijepcevic and van de Graaf, 2017), and
ASBT deficiency may lead to inflammatory bowel disease,
constipation and alagille syndrome, familial hypertriglyceridemia,
congenital chronic diarrhea, irritable bowel syndrome (IBS), NASH
(Dawson, 2011). Studies have shown that in animal models of
diabetes, ASBT inhibitors can effectively improve insulin
sensitivity, reduce blood glucose and increase insulin levels (Chen
et al., 2012; Wu et al., 2013). In 2015, Vaz et al. reported the first case
of SLC10A1 deficiency, which presented with hypercholesterolemia
and normal levels of bilirubin, dysplasia but no pruritus or jaundice
(Vaz et al., 2015). However, unlike patients with ASBT deficiency,
most patients with NTCP deficiency turned out to be asymptomatic.

Mutations in other proteins within the SLC10 family can result
in inherited metabolic diseases. It has been reported that SLC10A7
mutation can lead to the occurrence of congenital glycosylation
disorder, a rare hereditary metabolic disorder (Durin et al., 2022).
Related patients present with skeletal dysplasia, accompanied by
multiple large joint dislocations, short stature and enamel
imperfection. This effect may be mediated by
glycosaminoglycan deficiency.

In addition to their role in contributing to metabolic diseases,
bile acids are essential for the absorption and metabolism of fatty
acids. As a result, the SLC10 family is linked to lipid metabolism
disorders. Donkers et al. reported that Slc10a1 deficiency could
prevent obesity and hepatic steatosis induced by a high-fat diet in
mice, which may result from the decrease of bile acid uptake
(Donkers et al., 2019a). The increase of peripheral bile acid,
which activates FXR, induces the expression of Tgr5 gene,
stimulates the secretion of glucagon peptide-1, and thus improves
liver glucose and lipid metabolism (Chiang and Ferrell, 2020).
Therefore, targeting NTCP-mediated bile acid uptake may offer a
novel approach to treating obesity and obesity-related cirrhosis.
Several studies have shown that the application of ASBT inhibitors
can ameliorate high-fat diet-induced hepatic steatosis, reduce
hepatic lipid accumulation, and improve insulin sensitivity in
NAFLD mice (Rao et al., 2016; Ge et al., 2019). This effect was
verified in Slc10a2 knockout mice (Kunst et al., 2022). Oral
administration of an ASBT inhibitor protected hamsters from
high-fat diet-induced NAFLD by regulating bile acids and lipid
homeostasis (Ge et al., 2019). Inhibition of ASBT also changes the
composition of bile acids in the liver, resulting in the increase of bile
acids with FXR activation. When FXR is activated in the liver, bile
acid synthesis increases and the expression of lipid synthesis gene
Srebp1 is reduced, thereby reducing cholesterol accumulation (Rao
et al., 2016).

3.3 Uric acid transport and metabolic
dysregulation

Uric acid, derived from the metabolism of purines, is excreted
through the kidneys, helping to maintain a dynamic balance of uric
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acid levels within the body. However, excessive intake of purine-rich
foods within a short period can overwhelm the body’s ability to
metabolize and eliminate uric acid. Additionally, genetic defects or
kidney dysfunction can lead to uric acid accumulation in the blood,
resulting in hyperuricemia and gout. SLC2A9 (GLUT9) and
SLC16A9 (MCT9) are directly identified as urate transporters,
while certain members of the SLC17 and SLC22 protein families
are also considered primary transporters of urate. Therefore, these
transporters are closely associated with the development of
hyperuricemia and gout.

3.3.1 SLC17 and dysregulation of urate transport
The SLC17 family can be classified based on substrate transport

into the following types: Na+-dependent phosphate transporters
(NPT1/3-5; SLC17A1–4, primarily responsible for transporting
organic anions), a lysosomal acidic sugar transporter (SLC17A5),
vesicular glutamate transporters (VGLUT1–3; SLC17A7, SLC17A6,
and SLC17A8, respectively), and a vesicular nucleotide transporter
(VNUT; SLC17A9) (Reimer, 2013). Among them, SLC17A1 (NPT1)
and SLC17A3 (NPT4) are considered the primary transporters of
urate (Andrade Sierra and Flores Fonseca, 2018). NPT1, mainly
expressed in the kidney, is localized to the apical membrane of the
renal proximal tubule. NPT1 mediates both the absorption and
excretion of urate. When the cell membrane is depolarized by a high
concentration of exogenous potassium (K⁺), NPT1 facilitates the
absorption of urate into the cell (Bhatnagar et al., 2016). Conversely,
when the cell membrane exhibits a negative potential,
NPT1 promotes the efflux of urate (Chiba et al., 2015).

Vávra et al. (2024) discovered the p.W75C variant in the
SLC17A1 gene in a cohort of 150 hyperuricemia and gout
patients, as well as 150 healthy controls. Functional in vitro
assays revealed that, unlike the wild-type protein, the p.W75C
variant significantly limited urate transport activity. Another
study in Japan shows that SLC17A1 rs1165196 variants and the
I269T mutation significantly reduce the risk of gout due to renal
under-excretion and enhance renal urate secretion in patients with
gout (Chiba et al., 2015). Based on previous studies, it is clear that
directly targeting the SLC17A1 transporter to enhance its transport
function or protein levels can increase renal urate excretion and
improve the condition of gout patients.

SLC17A3 (NPT4), expressed in the kidneys, liver and small
intestine, is mainly located at the apical side of renal tubules, and
functions as an apical voltage-driven urate efflux transporter
(Jutabha et al., 2010). NPT4 works synergistically with basolateral
organic anion transporters 1/3 (OAT1/OAT3) in urate excretion
(Jutabha et al., 2011). Serum uric acid is taken up by OAT1/
OAT3 into tubular cells, and then intracellular urate is excreted
by NPT4 into the urinary lumen (Jutabha et al., 2011). In several
cohort studies, the rs12664474 (Hollis-Moffatt et al., 2012) and
rs1165205 (Dehghan et al., 2008) polymorphisms of the SLC17A3
gene have been associated with gout, although the results vary across
different population cohorts (Wan et al., 2015). Similarly, the
rs9358890 polymorphism of the SLC17A4 (NPT5) gene has also
been associated with gout (Togawa et al., 2012).

3.3.2 SLC22 and dysregulation of urate transport
SLC22 transporters fall into at least six subfamilies: OAT

(organic anion transporter), OAT-like, OAT-related, OCT

(organic cation transporter), OCTN (organic cation/carnitine
transporter), and OCT/OCTN-related (Nigam, 2018). Among
them, SLC22A6/7/8/11 (OAT1-4) and SLC22A12 (URAT1) are
considered to be involved in regulating serum urate levels.
SLC22A6 (OAT1) and SLC22A8 (OAT3), as urate/dicarboxylate
exchangers, are located on the basolateral side of the proximal tubule
for urate uptake and overall function in renal urate secretion (So and
Thorens, 2010). SLC22A11 (OAT4) and SLC22A12 (URAT1) are
identified as apical transporters in proximal tubule cells (Hagos
et al., 2007).In contrast to the other SLC22 transporters, SLC22A7
(OAT2) has a wide tissue distribution. In the kidney, OAT2 is
located on the basolateral side of the proximal tubule, serving as a
urate uptake transporter (Sakurai, 2013).

A cohort study demonstrated that the rs45566039
polymorphism of the SLC22A6 gene reduces urate excretion in
patients (Vávra et al., 2022). Deletion of Slc22a6 and Slc22a8 in
mice leads to decreased urate excretion (Chung and Kim, 2021).
Rs2078267, rs2186571, rs17299124 and rs17300741 of SLC22A11
gene are associated with the renal underexcretion type of gout
(Sun et al., 2021). Punicalagin gavage in hyperuricemia mice can
downregulate the expression of urate reabsorption proteins
URAT1 and GLUT9, while up-regulating the expression of
urate excretion protein OAT1, thereby lowering serum uric
acid levels (Han et al., 2024). Dysfunctional variants of
SLC22A12 have been identified as pathophysiological causes of
renal hypouricaemia. Specifically, the rs121907892 and p.W258X
in the SLC22A12 gene significantly reduces the risk of gout
(Toyoda et al., 2021). In contrast, the rs475688 variant (C/C
genotype) and the p.N82N synonymous mutation in
SLC22A12 are positively associated with an increased risk of
gout (Pavelcova et al., 2020). Interestingly, administration of the
URAT1 inhibitor dotinurad in mice improves hepatic steatosis
and insulin resistance induced by a high-fat diet, highlighting the
potential role of URAT1 in regulating glucose metabolism
(Tanaka et al., 2022).

3.3.3 Other urate transports and metabolic
dysregulation

GLUT9, encoded by SLC2A9, is primarily expressed in renal
tubules responsible for uric acid reabsorption and also facilitates the
transport of small amounts of monosaccharides and L-lactate. The
decline in its function reduces the kidneys’ ability to excrete uric
acid, leading to hyperuricemia. Lin et al. (2024) conducted a
population study and found that SLC2A9 rs3733591-TC + CC
genotypes were closely related to the development of gout.
Through organoid-based assessments, Wu et al. (2023)
demonstrated that SLC2A9 rs16890979 reduces uric acid
absorption. Other genetic association studys also revealed that
certain single nucleotide polymorphisms (SNPs) in the SLC2A9
gene are associated with uric acid levels (Jeroncić et al., 2010; Polasek
et al., 2010; Lukkunaprasit et al., 2020).

SLC16A9 (MCT9) is primarily localized in the small intestine
and kidneys, and mainly transports small organic acids such as
lactate, creatine, and pyruvate. Although the relationship between
SLC16A9 and urate is not yet clear, several cohort studies have
found that variants of SLC16A9 rs2242206 (Nakayama et al., 2013)
and rs1171614 (Butler et al., 2021) significantly increase the risk of
renal overload gout.
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3.4 Lipid transport and metabolic
dysregulation

Fatty acids are transported into the epithelial cells of the small
intestine via fatty acid transport proteins (FATPs, encoded by
SLC27). Excess body fat accumulation can lead to overweight and
obesity, which increases the risk of NAFLD, T2D, insulin resistance,
hypertension, hyperlipidemia, and cardiovascular disease. Given the
modern human diet, which is often high in salt, carbohydrate, and
fat, FATPs, primarily responsible for the absorption and transport of
fatty acids into cells, are major factors in the rising incidence of lipid
metabolism disorders.

3.4.1 SLC27 and dysregulation of lipid transport
SLC27, also known as the family of fatty acid transporter

proteins, was originally discovered in the mouse 3T3-L1
adipocyte cDNA library using cloning technology (Schaffer and
Lodish, 1994). Currently, there are six members of the family
(SLC27A1–6) that encode the FATP1–6 proteins. Although
FATPs share sequence similarity, their expression in the human
body is tissue specific. For instance, FATP1 and FATP3 are
distributed across nearly all organs. FATP4 is predominantly
expressed in the colon and small intestine, while
FATP6 expression is higher in the adrenal glands, heart, and
testes. In contrast, FATP2 is mostly found in the liver and
kidneys, and FATP5 is almost exclusively found in the liver.

As a major transporter of fatty acids, FATPs have been shown to
be strongly associated with the development of NAFLD. Liver-
specific knockdown of Fatp2 using shRNA improved high-fat
diet-induced hepatic steatosis and increased insulin sensitivity in
mice (Falcon et al., 2010). Mice with the hepatic Slc27a5 gene
silenced showed that inhibiting the expression of FATP5 reversed
NAFLD induced by a high-fat diet and improved hyperglycemia
(Doege et al., 2008). In addition, a population study suggested that
polymorphisms in the SLC27A5 promoter may be associated with
the clinical symptoms of hepatic steatosis and metabolic syndrome
(Auinger et al., 2010).As the research progressed, people realized
that excessive accumulation of fatty acids can cause insulin
resistance. Emerging evidence indicates that fatty acid
transporters contribute to the development of T2D, with skeletal
muscle insulin resistance being a critical factor in its pathogenesis.
Kim et al. reported that knockout of Slc27a1 gene inhibited diet-
induced insulin resistance in skeletal muscle of mice (Kim et al.,
2004). Khan et al. reported that knocking down Slc27a2 reduced the
abnormally elevated blood glucose concentration in model mice
(Khan et al., 2020), indicating that FATP2 could regulate blood
glucose homeostasis and the progression of diabetic nephropathy.
Thus, FATPs may be a new potential therapeutic target for
treating diabetes.

3.5 Monocarboxylate transport and
metabolic dysregulation

3.5.1 SLC16 and dysregulation of
monocarboxylate transport

Monocarboxylate is a major participant in cellular energy
metabolism and a product of anabolic substrates and catabolic

pathways in various tissues. The entry and exit of
monocarboxylic acid through cells are mainly mediated by
monocarboxylate transporter protein (MCT). This protein family
is encoded by the SLC16 family of genes, which include 14 members
that regulate the cellular acid‒base balance and participate in
various metabolic pathways (Felmlee et al., 2020), including
glucose homeostasis and gluconeogenesis.

SLC16A1 (MCT1), the first and most common member of the
SLC16 family, is widely distributed in various tissues and cells (Leu
et al., 2021). MCT1 is expressed in both the apical and basolateral
membrane of cells (Sivaprakasam et al., 2017), and is involved in the
transmembrane transport of lactate, pyruvate, and ketone bodies.
Studies have shown that MCT1 is related to human metabolic
characteristics and involved in regulating insulin secretion
(Galcheva et al., 2018). Constructing Slc16a1 knockout mouse
model demonstrated that SLC16A1 may contribute to the
treatment of exercise-induced hyperinsulinemia (Pullen et al.,
2012), at the same time, it may exacerbate ketoacidosis
(Balasubramaniam et al., 2016).

MCT10, encoded by the SLC16A10 gene, transports aromatic
amino acids and is highly expressed in skeletal muscle and heart. A
genomic study of branched-chain amino acid metabolism in
patients at different stages of NAFLD revealed that SLC16A10
gene expression was reduced in NASH (Lake et al., 2015);
however, it is necessary to expand the sample size and include
multiple populations for genetic studies and related regulatory
mechanisms. Another member of the SLC16 family, SLC16A3/
MCT4, has been found to be associated with diabetic
nephropathy (Lokman et al., 2011).

Recent studies have revealed that mutations in the SLC16A11
gene encoding MCT11 are associated with an increased risk of
developing T2D. T2D susceptibility mutations in the
SLC16A11 coding region produce gain-of-function mutant
proteins, resulting in the upregulation of hepatic Lipin1 protein
expression and an abnormal accumulation of lipid droplets,
ultimately contributing to the onset of T2D (Zhao et al., 2019b).
Otherwise, the knockdown of Slc16a11 improved glucose tolerance
and insulin sensitivity in mice fed a high-fat diet (Zhang et al., 2021).
Although the specific mechanisms by which SLC16A11 plays a role
in T2D risk and progression have not yet been fully elucidated, the
evidence of its clinical impact on T2D warrants further experimental
investigation while also potentially providing new ideas for other
metabolic diseases. As a member of the same family, the SLC16A13
gene encoding MCT13 has also recently been identified as a
potential susceptibility gene for diabetes. The rs312457 genotype
of the SLC16A13 gene was associated with the occurrence of diabetes
in a Chinese population (Zheng et al., 2021).The knockdown of
Slc16a13 ameliorated hepatic lipid accumulation and insulin
resistance in mice (Schumann et al., 2021), indicating that
SLC16A13 may be a potential therapeutic target for both T2D
and NAFLD.

In addition to the SLC2 family, the SLC16 family is also closely
associated with tumorigenesis. Cancer cells undergoing aerobic
glycolysis produce lactate and release it into the extracellular
compartment (Walenta et al., 2001), altering the tumor
microenvironment. Accumulated lactate not only induces
metabolic reprogramming but also promotes tumor inflammation
and acts as a signaling molecule to stimulate tumor angiogenesis
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(Chen et al., 2024). Additionally, it affects the function,
differentiation, and metabolism of immune cells, contributing to
tumor immune evasion and promoting tumor progression (Doherty
and Cleveland, 2013; Wang et al., 2021). The MCT family, which is
primarily responsible for the transmembrane transport of
monocarboxylates (such as lactate and pyruvate), is involved in
metabolic reprogramming, adaptation to acidic environments, and
intercellular communication in cancer cells.

Of all the MCT proteins, MCT1 and MCT4 have been the most
studied in relation to tumors. Xiaowei She et al. found that
MCT1 methylation modification was upregulated and positively
correlated with tumor progression and overall survival in colorectal
cancer (She et al., 2023). Marte Eilertsen et al. put forward the view
that MCT1 is a candidate marker for prognostic stratification in
non-small cell lung cancer (Eilertsen et al., 2014). Other researchers
found that silencing SLC16A1 inhibited breast cancer (Weng et al.,
2019), bladder cancer (Zhang et al., 2018) and lung cancer (Liu et al.,
2023) progression. Meanwhile, MCT4 is found to be upregulated in
triple-negative breast cancer (Duan et al., 2022), bladder cancer
(Zhong et al., 2023) and prostate cancer (Sun et al., 2019). Xiao Hu
et al. found that the mutation of Lys448 (K448) inhibited the
SUMOylation of MCT4, promoting MCT4 degradation, thereby
slowing the progression of breast cancer (Hu et al., 2021). Although
there are few studies on other members of the SLC16 family and
tumors, some reports have described the upregulated expression of
MCT family proteins in tumor tissues. For example,
MCT5 expression was upregulated in colon cancer (Lin et al.,
2019). MCT3, MCT8, MCT9 are upregulated in breast cancer
(Sohrabi et al., 2021). MCT8 was downregulated in thyroid
cancers (Badziong et al., 2017). These findings demonstrate the
potential of SLC16 family proteins as tumor markers and
therapeutic targets. Targeting MCT-mediated lactic acid influx
and efflux in cancer cells has become an effective strategy for
inhibiting tumor cell growth in vitro (Payen et al., 2020).
MCT1 inhibitors are in advanced stages of drug development
(Phase I/II clinical trials), while MCT4 inhibitors remain in the
drug discovery phase (Singh et al., 2023). Combining dual
MCT1 and MCT4 inhibitors with metformin depletes NAD+ in
cancer cells, resulting in synthetic lethality (Benjamin et al., 2018).
Inhibition of MCT1 or MCT4 in combination with chemotherapy
has demonstrated additive or synergistic effects (Zhao et al., 2014;
Lee et al., 2016b). Co-administration of the MCT4 inhibitor and
immune checkpoint blockade increased intratumoral pH, improved
leukocyte infiltration and T-cell activation, delayed tumor growth,
and prolonged survival in vivo (Babl et al., 2023).

3.6 Tricarboxylic acid cycle intermediates
transport dysregulation

Citrate, succinate, and α-ketoglutarate, intermediates of the
tricarboxylic acid cycle (TCA), are key regulators of energy
metabolism, transported by sodium-dependent transporters sodium-
dependent dicarboxylic acid transporters, including SLC13A2,
SLC13A3, and SLC13A5. The metabolic disorders of these
intermediates can lead to conditions such as intestinal inflammation
(Connors et al., 2018), cancer, insulin secretion, histone acetylation,
neurological diseases, and NAFLD (Iacobazzi and Infantino, 2014).

Pyruvate metabolism mainly occurs in the mitochondrial TCA
and is closely related to cellular energy metabolism. At the same
time, pyruvate is also related to carbohydrate and fat metabolism
(Deja et al., 2024). Pyruvate enters mitochondria and is converted
into acetoacetate, amino acids, and other substances under the
catalytic action of various enzymes. The former is not only a key
intermediate of gluconeogenesis, but also can synthesize citric acid
with acetyl CoA as a raw material for the synthesis of fatty acid and
cholesterol. The disorders of lactate and pyruvate metabolism can
lead to acidosis, hyperketonemia, psychomotor disorders, etc. (Gray
et al., 2014).

Inorganic anions (sulfate, sulfite, thiosulfate, and phosphate),
dicarboxylates (e. g., malonate, malate, and citrate), aspartate,
glutamate, and tricarboxylate are all transport substrates for the
uncoupling protein (UCP) encoded by the mitochondrial carrier
protein family SLC25. These substances are involved in almost
important biological metabolic processes, such as oxidative
phosphorylation, citric acid cycle, fatty acid oxidation,
gluconeogenesis, lipogenesis, urea synthesis, amino acid
metabolism, and thermogenesis. Glycolysis/gluconeogenesis and
tricarboxylic acid circulating metabolites are associated with T2D
(Guasch-Ferré et al., 2020), and citrate is reported (Yadikar et al.,
2022) to modulate insulin sensitivity for further treatment of
hyperlipidemia-induced glucose metabolism disorders. Glycolysis/
gluconeogenesis and tricarboxylic acid cycle metabolites are also
involved in the hepatic lipid production process and are associated
with NAFLD progression (Zhao et al., 2020).

3.6.1 SLC13 and dysregulation of intermediates of
the tricarboxylic acid cycle transport

As mentioned earlier, sodium-dependent dicarboxylate
transporters, including SLC13A2, SLC13A3, and SLC13A5, which
mainly transport intermediates of the tricarboxylic acid cycle, such
as citrate, succinate and α-ketoglutarate.

The SLC13 family consists of five members, SLC13A1–5 and
comprises transporters (Bergeron et al., 2013) with
8–13 transmembrane domains in their structures. According to
their functions, members of this family can be divided into two main
types (Markovich, 2012): (1) sodium sulfate cotransporters (NAS),
which include both SLC13A1 and SLC13A4, the main transporters
of sulfate, selenate and thiosulfate; and (2) sodium-dependent
dicarboxylate transporters (NADC), including SLC13A2,
SLC13A3, and SLC13A5, which mainly transport intermediates
of the tricarboxylic acid cycle, such as citrate, succinate, and α-
ketoglutarate.

The NADC1 protein encoded by the SLC13A2 gene is mainly
found in the apical membranes (Pajor, 2014) of the proximal renal
tubules cells and small intestinal cells, and the main physiological
role of NADC1 protein is responsible for citric acid reabsorption and
regulation of citric acid excretion in the proximal renal tubules
(Okamoto et al., 2007; Chi et al., 2024). Current research shows that
NADC1 is mainly related to the formation of kidney stones (Yang
et al., 2021). Patients with kidney stones often have low levels of
urine citrate. Blocking NADC1 can inhibit the renal reuptake of
citric acid and increase the renal excretion of citric acid, preventing
calcium deposition from forming kidney stones. In addition, there is
no evidence that SLC13A2 polymorphisms are directly related to
obesity, diabetes, insulin resistance, or fatty liver in humans.
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SLC13A3, also known as NADC3 or SDCT2 (high-affinity
sodium-dependent dicarboxylate co-transporter), is present in
various tissues but is mainly located on the basolateral
membrane in the kidney and liver (Pajor et al., 2001;
Schlessinger et al., 2014). Genome-wide association studies
revealed that NADC3 may be involved in diabetic nephropathy
as well as chronic kidney disease (Bento et al., 2008; Ju et al., 2009;
Nanayakkara et al., 2014). At present, there are very few reports on
the role of NADC3 in metabolic diseases such as obesity, diabetes
and NAFLD. Only one article describing the transcriptomic analysis
of the livers of diabetic rats found that the expression level of the
Slc13a3 gene in the livers of diabetic rats increased, and its
expression level recovered after intervention treatment (Li et al.,
2020), suggesting that it may be highly correlated with glucose
metabolism. A connection between NADC3 and NAFLD has not yet
been reported.

The protein NACT, encoded by the SLC13A5 gene, is a sodium-
dependent citric acid transporter and a switch that controls citric
acid transport (Akhtar et al., 2023). NACT is found on the
basolateral membrane of hepatocytes and on the plasma
membrane of neurons and astrocytes. The association between
NACT and metabolic disease has been well validated in animal
models. The researchers verified that siRNA silencing of Slc13a5 or
knockout of Slc13a5 in the liver of mice can improve obesity, insulin
resistance, and liver steatosis induced by a high-fat diet. This may be
related to the fact that decreased NACT expression promotes liver
mitochondrial biosynthesis, enhances lipid oxidation, and reduces
de novo lipogenesis in the liver (Birkenfeld et al., 2011; Brachs et al.,
2016). NACT inhibitors block NACT-mediated citrate uptake in
mice and humans, thereby reducing liver steatosis and body fat, and
improving blood glucose regulation (Zahn et al., 2022). This result is
consistent with that obtained by knocking out Slc13a5 gene in mice.
More importantly, Loeffelholz et al. reported that SLC13A5 gene
expression levels were significantly increased and independently
correlated with hepatic steatosis in liver samples from NAFLD
patients with obesity for the first time (von Loeffelholz et al.,
2017), revealing the relationship between NACT and hepatic
steatosis in humans.

3.6.2 SLC25 and dysregulation of intermediates of
the tricarboxylic acid cycle transport

SLC25 is the largest family of the SLC transporter supergroup
and currently consists of 53 members (Rochette et al., 2020).
However, there are seven non-function pseudogenes, namely,
SLC25A5P1, SLC25A6P1, SLC25A15P, SLC25A20P, and
SLC25A51P1-3 (Palmieri, 2013). Most members of this family
are localized to the inner mitochondrial membrane and function
through the transport of various solutes across the mitochondrial
membrane. The nature, size and mode of transport of the transport
substrate of SLC25 vary greatly. Studies have shown that
SLC25 family proteins participate in many important metabolic
pathways, including oxidative phosphorylation, the citric acid cycle,
fatty acid oxidation, gluconeogenesis, lipogenesis, urea synthesis,
amino acid metabolism and thermogenesis (Palmieri, 2013; Palmieri
andMonné, 2016; Zhao et al., 2019a). Therefore, loss or abnormality
of SLC25 family proteins can lead to a variety of metabolic diseases.

Uncoupling protein, a well-studied subfamily of the
SLC25 family, has been shown to directly transport protons and

subsequently regulate energy metabolism. At present, five UCP
homologs have been identified in mammals, namely, UCP1
(SLC25A7), UCP2 (SLC25A8), UCP3 (SLC25A9), UCP4
(SLC25A27), and UCP5 (SLC25A14) (Zhao et al., 2019a), among
which UCP1–3 are the most well studied. UCP1, also known as
thermogenin, is encoded by the SLC25A7 gene and is abundantly
expressed (Schumann et al., 2020) in brown adipose tissue. Studies
have shown that brown adipose tissue helps slow the progression of
obesity and metabolic syndrome (Chouchani et al., 2016). Loss of
brown adipose tissue can lead to obesity, and its activation can
reduce fat accumulation. UCP1 is a key protein in brown adipose
tissue thermogenesis, so activation of UCP1 can effectively improve
obesity and diabetes (Kozak and Anunciado-Koza, 2008; Feldmann
et al., 2009; Ikeda et al., 2017). UCP1 can also be used to combat
NAFLD and succinate receptor 1-dependent hepatic inflammation
(Mills et al., 2021). Although studies have suggested that UCP2 and
UCP3 polymorphisms may be associated with obesity, diabetes, or
related phenotypes (D’Adamo et al., 2004; Jia et al., 2009; Dalgaard,
2011), their effects on these phenotypes appear to be modest, and the
heterogeneity between studies is large (Halsall et al., 2001). To date,
the effects of UCP2 and UCP3 on metabolism-related regulation
remain elusive and require further evaluation, whereas the function
of UCP1 and its connection to metabolic diseases has been well
established.

SLC25A1 acts as a specific transporter of citrate. Tan et al. (2020)
reported that SLC25A1-specific inhibitor CTPI-2 can reduce
macrophage infiltration, prevent steatohepatitis, ameliorate
symptoms of inflammatory steatohepatitis, and ameliorate obesity
associated with a high-fat diet. Inhibition of SLC25A1 reduces
peroxisome proliferator-activated receptor γ (PPARγ) signaling,
thereby further reducing gluconeogenic gene expression,
normalizing hyperglycemia and glucose intolerance, and leading
to inhibition of lipid anabolic processes. Additionally, another study
demonstrated that defects in SLC25A1 result in combined D,L-2-
hydroxyglutaric aciduria (Nota et al., 2013).

The SLC25A13 gene encodes a mitochondrial calcium-binding SLC
protein in hepatocytes called citrin, also known as AGC2 or CTLN2,
which is mainly expressed in the liver and can promote the Ca2+-
dependent exchange of cytoplasmic glutamate with mitochondrial
aspartate. Citrin has three functions: (1) it transports aspartate to
the cytosol to participate in the synthesis of protein, nucleic acid
and urea; (2) it transports aspartate to the cytosol to transport the
NADH generated by glycolysis in the cytosol to the mitochondria and
then participates in the metabolism of energy, amino acids,
carbohydrates and lipids; and (3) it promotes lactose
gluconeogenesis in the formation and utilization of NADH. Studies
have shown that patients who develop citrin deficiency or adult-onset
type II citrullinemia due to SLC25A13 gene mutation are prone to
steatosis, NASH and even hepatocellular carcinoma (Takagi et al., 2006;
Tsai et al., 2006; Komatsu et al., 2008); therefore, the role of
SLC25A13 in metabolic diseases may be worthy of further study.

SLC25A20 is also known as carnitine/acylcarnitine translocase
(CACT), which can transport acylcarnitine to the mitochondrial
matrix to participate in β-oxidation (Indiveri et al., 2011). Clinically,
patients with SLC25A20 deficiency are prone to severe metabolic
disorders, which are mainly attributed to disorders in fatty acid
oxidation metabolism. However, whether metabolic diseases can be
improved by regulating CACT needs further research.
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The APC1 protein encoded by the SLC25A24 gene is widely
distributed in vivo and promotes the exchange of adenine
nucleotides, including ATP-Mg, ATP, ADP, and AMP, as well as
the mitochondrial matrix and intercytoplasmic phosphates. This
transporter can regulate the adenine nucleotide concentration in the
mitochondrial matrix, which in turn affects the mitochondrial
adenine nucleotide-dependent enzyme that regulates
gluconeogenesis, urea synthesis, mitochondrial DNA replication,
transcription, and protein synthesis (Palmieri and Monné, 2016).
Slc25a24 knockout mice are resistant to high-fat diet-induced
obesity, as indicated by reduced liver weight and triglyceride
deposition in the liver, and a prospective observational study of
the population revealed that SLC25A24 is also a new candidate gene
for susceptibility to obesity in humans (Urano et al., 2015). Thus,
inhibiting APC1 may improve obesity and NAFLD, but further
studies are needed for confirmation.

Bresciani et al. (2022) reported that SLC25A47 is a liver-specific
transporter required for maintaining mitochondrial homeostasis in
hepatocytes. Mice in which Slc25a47 was specifically knocked out
exhibited a wide range of metabolic changes, from gluconeogenesis
and altered liver lipid metabolism to reduced glycogen storage and
impaired mitochondrial respiration, leading to increased liver
inflammation and fibrosis.

In addition, two other SLC25 family members also appear to be
associated with metabolic diseases. Slc25a25 knockout mice exhibit
reduced metabolic efficiency, specifically manifested by resistance to
diet-induced obesity and impaired exercise performance
(Anunciado-Koza et al., 2011). A population study suggested that
the SLC25A40 variant may be associated with hypertriglyceridemia,
as whole-gene testing confirmed the link between triglyceride levels
and rare, highly conserved coding variants of SLC25A40 (Rosenthal
et al., 2013).

3.7 Inorganic salt ions transport
dysregulation

Metal salt ions, including sodium, potassium, calcium, zinc, and
magnesium, as well as inorganic salts like phosphates, sulfates,
thiosulfates, and sulfites, are integral to numerous physiological
processes. These ions are critical in maintaining acid-base balance by
acting as buffers in the blood and tissues, ensuring that the pH levels
remain within a narrow, optimal range. Beyond their role in acid-
base homeostasis, they are essential for electrolyte balance, with
sodium and potassium playing pivotal roles in maintaining the
osmotic balance across cell membranes. Furthermore, zinc and
magnesium are indispensable for nerve conduction and muscle
function, with magnesium assisting in neuromuscular
transmission and muscle contraction, and zinc supporting
synaptic function and neurotransmitter release.

3.7.1 SLC13 and dysregulation of inorganic
oxides transport

Some proteins in the SLC13 family are major transporters of
inorganic oxides ions. As the fourth most abundant anion in human
plasma, insufficient sulfate supply suppresses detoxification,
increases susceptibility to exogenous substances, and alters the
metabolism and activity of multiple endogenous compounds (e.g.,

hormones, neurotransmitters, and proteoglycans) (Markovich,
2001). Since the inorganic anion sulfate (SO42-) cannot passively
cross the cell membrane, all cells rely on plasma membrane sulfate
carriers or transport proteins to mediate sulfate influx and efflux.
Most of the sulfate is absorbed in the gastrointestinal tract into the
body circulation, and the renal proximal tubule is the main site of
active sulfate reabsorption. In the renal proximal tubular cells, there
are at least two different sulfate transport systems: (1) the Na+-
sulfate cotransporter (NAS1, encoded by SLC13A1) localized in the
renal brush border membrane (Markovich and Aronson, 2007), and
(2) the sulfate anion transporter (SAT1, encoded by SLC26A1), a
sulfate-anion exchanger localized in the basolateral membrane in
renal proximal tubular cells (Regeer and Markovich, 2004).

SLC13A1, also known as the apical membrane Na+-sulfate
cotransporter (NAS1), which is mainly expressed in the kidney’s
proximal tubule and intestine, mediates sulfate absorption in the
proximal tubule of the kidney and in the small intestinal epithelium,
thus maintaining the homeostatic balance of sulfate (Markovich,
2014). The literature shows that two single-nucleotide variants of
SLC13A1, rs28364172 and rs138275989, are closely associated with
low serum sulfate levels, known as hyposulfatemia (Tise et al., 2016).
Dawson et al. reported that the liver gene expression profile of a
Slc13a1 gene knockout mouse model of hyposulfatemia showed
alterations in lipid and cholesterol metabolism, which were
specifically manifested as increased levels of liver lipids, serum
cholesterol, and low-density lipoprotein and decreased liver
glycogen content (Dawson et al., 2006), indicating that
SLC13A1 may be related to the development of fatty liver.
According to rodent model data, activation of SLC13A1 may be
beneficial for metabolism and may become a potential therapeutic
target. Because SLC13A1 is involved in multiple physiological
processes and the regulatory network is very complex, further
studies are needed to identify therapeutic targets through the
regulation of this transporter.

3.7.2 SLC30 and dysregulation of zinc transport
As a trace element in the human body, zinc is involved in the

growth and development of the body and as a catalyst for
enzymes involved in the metabolism of lipids, proteins, and
carbohydrates. Zinc ion homeostasis is strictly regulated by the
transport process. It is mainly engaged by two types of
transporter subfamilies: ZIP (Zrt-and Irt-like protein family)
encoded by SLC39 and ZnT (Zinc transporter ZnT family)
encoded by SLC30. ZnT transports zinc ions from the
cytoplasm to outside cells or organelles. In contrast, ZIP is
responsible for transporting zinc ions from outside cells or
inside organelles to the cytoplasm (Huang and
Tepaamorndech, 2013). The two large subfamilies of proteins
coordinate with each other to maintain the homeostatic balance
of zinc ions in the body. Zinc is involved in the synthesis, storage,
and release of insulin, which suggests the critical role of this
microelement in the progression of T2D and metabolic syndrome
(Miao et al., 2013; Ahn et al., 2014). Huang et al. (2017) found
that long-term zinc supplementation induced hypertrophy of
visceral adipose tissue.

The SLC30 family consists of 10 members. When the
intracellular zinc level is too high, the SLC30 family transports
zinc ions out of the cytoplasm or into the organelles, thereby

Frontiers in Pharmacology frontiersin.org13

Du et al. 10.3389/fphar.2024.1510080

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1510080


reducing the intracellular zinc level (Palmiter and Huang, 2004).
SLC30 family proteins are closely linked to diabetes, Alzheimer’s
disease, or Parkinson’s disease (Hara et al., 2017). In terms of
metabolic diseases, the most prominent member of the
SLC30 family is SLC30A8 (ZnT8), which is located mainly in the
insulin-secreting vesicle membrane of β cells in the pancreas and
provides the zinc for insulin synthesis (Chimienti et al., 2004).
Numerous studies have shown that ZnT8 is closely related to
type 1 diabetes mellitus (T1D) and T2D (Daniels et al., 2020;
Soltanian et al., 2020; Xu et al., 2021). Abnormalities in
ZnT8 can easily lead to islet β-cell dysfunction, but the specific
molecular mechanism by which ZnT8 functions as an autoantigen of
T1D and a susceptibility gene for T2D requires further investigation,
as it eventually leads to diabetes. In addition, it has been found that
the overexpression of SLC30A8 in islet α cells leads to the inhibition
of glucagon secretion, which may have potential benefits for treating
T2D (Solomou et al., 2016).

ZnT7, encoded by the SLC30A7 gene, is located at the
plasma and organelle membranes in most tissues throughout
the body. It has been found that male Slc30a7 knockout mice fed
a high-fat diet developed symptoms of metabolic disorders,
including insulin resistance, abnormal glucose tolerance, and
hyperglycemia (Huang et al., 2012). The ZnT3 protein, encoded
by the SLC30A3 gene, is located mainly in the brain, and to date,
the SLC30A3 polymorphism has not been linked to human
metabolic diseases but has been linked to schizophrenia and
Alzheimer’s disease (Rovelet-Lecrux et al., 2012; Perez-Becerril
et al., 2014). However, Smidt et al. studied the role of ZnT3 in
metabolism through cell and mouse models and reported that
the expression level of SLC30A3 in islet β cells was higher with
increasing glucose concentration. Silencing Slc30a3 reduced the
expression and secretion of insulin in islet β cells (Smidt
et al., 2009).

3.7.3 SLC39 and dysregulation of zinc transport
There are 14 members of the SLC39 family, known as the zinc-

regulated transporters and iron-regulated transporter-like proteins
(ZIPs). Unlike SLC30 family proteins, when the cytoplasmic zinc
concentration is insufficient, the SLC39 family transports zinc ions
into the cytoplasm, thereby increasing the cytoplasmic zinc
concentration (Palmiter and Huang, 2004). Most ZIPs are
localized to the plasma membrane and mediate zinc uptake into
the cytoplasm. Some specific ZIPs are localized in cellular
compartments and mediate the release of zinc from these
compartments, such as ZIP4 (encoded by SLC39A4) expressed on
the apical membrane of intestinal epithelial cells and ZIP5 (encoded
by SLC39A5) localized to the basolateral membrane of intestinal
epithelial cells and acinar cells. In contrast, ZIP7 and
ZIP13 are localized to endoplasmic reticulum or Golgi bodies
(Nagamatsu et al., 2022).

Previous studies have shown that the pathological features
caused by the altered function of the SLC39 transporter mainly
include abnormal development of embryos and immune cells
(Jeong and Eide, 2013). However, with in-depth research in recent
years, it has been found that some members of the SLC39 family
may also be involved in metabolic diseases. For example, recent
studies have shown that ZIP5 may be involved in regulating the
glucose sensing and insulin secretion of islet β cells by silencing

the expression of GLUT2, which is mediated by SIRT1 and PGC-
1α. A deficiency in SLC39A5 weakens glucose sensitivity and
reduces insulin secretion, indicating that SLC39A5 has
potential as a therapeutic target for diabetes-related metabolic
diseases (Wang et al., 2019).

Similarly, the role of ZIP13 (SLC39A13) in adipocyte
browning has received much attention in recent years.
ZIP13 has been identified as an important regulator of beige
adipocyte differentiation and negatively regulates C/EBP-β
protein levels (Fukada et al., 2008). ZIP13 loss-of-function
mutations can lead to Ehlers-Danlos syndrome in affected
individuals (Bin et al., 2014).

ZIP14 (SLC39A14) also appears to be closely associated with
metabolic diseases. By constructing an Slc39a14 knockout mouse
model, it was found that a high-fat diet induced remission of
insulin resistance. Further glucose homeostasis experiments
showed that zinc deficiency impaired gluconeogenesis in the
liver cells of Slc39a14 knockout mice (Aydemir et al., 2016).
Troche et al. found that ZIP14 is involved in not only the
synthesis of adipokines in adipose tissue but also the
development of adipocytes and the transport of zinc ions
during fat deposition (Troche et al., 2016). ZIP14 is highly
expressed in human pancreatic β cells (Lawson et al., 2018).
The increase in ZIP14-mediated uptake of non-transferrin-
bound iron into pancreatic β cells may lead to cell damage and
trigger diabetes (Coffey and Knutson, 2017). Although current
studies shed light on ZIP14’s function, its precise regulation in
different metabolic organs requires further investigation.
Continued exploration of ZIP14 may offer new insights and
therapeutic strategies for metabolic diseases.

The subcellular localization of SLC family transporters located
in epithelial cells, as mentioned in the text, is shown in Figure 2.

4 Current status and prospect of SLC
clinical application

4.1 SLC inhibitors in clinical applications

Among the more than 450 SLC protein family members
discovered thus far, approximately half of the SLC protein gene
mutations are associated with disease; however, currently, there are
only approximately 20 drugs targeting SLC transporters, such as the
SGLT2 inhibitors canagliflozin, dapagliflozin, ertugliflozin,
ipragliflozin, tofogliflozin, luseogliflozin and empagliflozin
(Tentolouris et al., 2019); the first marketed dual SGLT1 and
SGLT2 inhibitor sotagliflozin (Rendell, 2018); henagliflozin, as a
potent SGLT2 inhibitor, has been approved for the treatment of T2D
in China and is also being studied for the treatment of NAFLD.
High-quality evidence suggests that SGLT2 inhibitors may increase
the risk of diabetic ketoacidosis in patients with T2D. The
SLC9A3 inhibitor tenapanor for the treatment of
hyperphosphatemia in patients with constipated IBS and dialysis
chronic kidney disease or end-stage renal disease (Markham, 2019).
NTCP-inhibitor myrcludex B (also known as Bulevirtide) has been
approved in Europe for the treatment of chronic hepatitis D (Kang
and Syed, 2020). Lesinurad, an SLC22A12 inhibitor approved by the
FDA for the treatment of gout (Deeks, 2017). It was later withdrawn
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from the market in 2019 due to acute kidney injury. Another
SLC22A12 inhibitor dotinurad has been approved in some Asian
countries for the treatment of hyperuricemia and gout. Thiazide
diuretics, such as chlorothiazide, indamine, and other drugs, act on
the renal tubule sodium-chloride cotransporter (SLC12A3), inhibit
the reabsorption of Na+ and Cl− and play a role in sodium diuresis,
and are widely used in the treatment of hypertension. Elobixibat is
an ASBT inhibitor developed by Albireo, and is approved in Japan
for the treatment of chronic constipation and IBS.

In addition to the approved drugs mentioned above, many drugs
targeting SLC family proteins have entered the clinical trial stage.
Triheptanoin has entered a phase II trial for the treatment of
GLUT1 deficiency syndrome, which is caused by a heterozygous
mutation in the SLC2A1 gene (Striano et al., 2022). It works by
providing an alternative energy source to glucose, helping to
compensate for impaired glucose transport into the brain and
improving neurological function. However, a phase III crossover
study on the use of triheptanoin to treat paroxysmal movement
disorders in GLUT1 deficiency syndrome showed that triheptanoin
had no significant therapeutic effect (De Giorgis et al., 2024).
Clinical data analysis from Italy indicates that triheptanoin
treatment significantly reduces the frequency of metabolic
decompensation episodes requiring hospitalization in patients
with long-chain fatty acid oxidation disorders (LC-FAOD) (Porta
et al., 2024). Mutations in the SLC25A20 gene lead to CACT
deficiency, which is a cause of LC-FAOD. A SLC22A12 inhibitor
verinurad are in phase II clinical trials for the treatment of
hyperuricemia and chronic kidney disease. The SGLT1 inhibitor
mizagliflozin has entered phase II clinical trials for the treatment of
chronic constipation (Fukudo et al., 2018). NTCP-inhibitor
myrcludex B is a potential drug for phase III clinical trials for
treatment of hepatitis B virus (Cheng et al., 2021). Clodronate, an
SLC25A4, SLC25A5, and SLC25A6 inhibitor, is commonly used in
the treatment of osteoporosis (Lehenkari et al., 2002). Clodronate
has recently been identified as an effective inhibitor of vesicle
nucleotide transporter (VNUT/SLC17A9), and is a potential drug
for the relief of chronic neuropathic pain (Moriyama and Nomura,
2018). Interestingly, glutamine, the transport substrate of VNUT

(SLC17A9), plays a regulatory role in insulin secretion, and
therefore, clodronate has been demonstrated to have therapeutic
effects on T2D and NASH in mice models (Hasuzawa et al., 2021).

4.2 Other SLC-related clinical applications

In addition to transporter inhibitors directly targeting SLC
proteins for the treatment of metabolic diseases, researchers and
clinicians have found that SLC transporters can also be used as
probes for disease diagnosis and to indirectly enhance drug
selectivity or efficacy through SLC transporters. The use of
glucose transporters (such as SLC2A1) in 18F-deoxyglucose
positron emission tomography is a commonly used imaging
technique in medical imaging, suitable for the diagnosis of
various cancers (Massardo et al., 2007). Radiolabeled markers
such as 18F-FDOPA (Rozenblum et al., 2020) and 18F-AMT
(Krasikova et al., 2020) accumulate inside tumor cells via the
l-type amino acid transporter 1 (SLC7A5; LAT1) and are used
for brain function imaging and tumor metabolism research.
11C-metformin, primarily transported by the basolateral
organic cation transporter 1 (SLC22A1; OCT1) in the liver,
the basolateral organic cation transporter 2 (SLC22A2; OCT2)
and the apical multidrug and toxin extruders (SLC47A1/2;
MATE1/2) in the kidneys, is considered a potential PET probe
to accurately quantify kidney function (Gormsen et al., 2016).
Through the transport of 18F-fluoroglutamine via SLC1A5
(ASCT2), PET imaging is used to diagnose various solid
tumors (Hassanein et al., 2016). Similarly, SLC15A1/2
(PEPT1/2) mediates the transport of 11C-glycylsarcosine for
PET imaging to diagnose tumors (Mitsuoka et al., 2008), while
SLC10A1 (NTCP) facilitates the transport of 18F-fluorocholic
acid analogs to evaluate hepatic bile transport function (De
Lombaerde et al., 2019). These applications leverage the
specificity of SLC family members and their substrates to
deliver radioactive tracers to target tissues and organs for
imaging. This approach has gradually gained widespread use
in clinical oncology diagnosis and organ function assessment.

FIGURE 2
The influx and efflux transport of substances across apical and basolateral membranes by different types of transporters. This figure was created
using BioRender.
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Tumor cells have an increased demand for amino acids and
glucose due to their rapid proliferation rate. Therefore, amino acid
transporters, including SLC1A5, SLC7A5, SLC7A11, and SLC6A14
(Bhutia et al., 2015), MCTs and GLUTs have been found to be highly
expressed in tumor tissues. This phenomenon suggests that there is
great potential for the future development of new tumor-imaging
probes and tumor-specific delivery of appropriately designed
chemotherapeutic agents. For example, the use of BPA-based
boron neutron capture therapy significantly enhances the
efficiency of SLC7A5 (LAT-1)-mediated uptake of
p-boronophenylalanine into cancer cells (Seneviratne et al., 2022).

In addition to developing SLC-targeted synergistic anti-tumor
therapies based on the unique metabolic demands of tumors, certain
drugs themselves directly interact with members of the SLC protein
family. The antiviral drug valacyclovir and the antibacterial drug
cefadroxil are substrates for the peptide transporters PEPT1
(SLC15A1) and PEPT2 (SLC15A2) (Ganapathy et al., 1998; Yang
and Smith, 2013; Fernandez-Prado et al., 2024). The hepatitis D drug
bulevirtide inhibits NTCP transport activity, thereby exerting
antiviral effects (Liu et al., 2024). OCT1 (SLC22A1) is the
transporter for metformin, responsible for transporting
metformin into hepatocytes to exert its glucose-lowering effects
(Mofo Mato et al., 2018). These direct connections between drugs
and SLC transporters suggest that researchers can leverage the
tissue-specific distribution of SLC transporters to design drugs
targeting these transporters, thereby enhancing efficacy and
selectivity while reducing toxicity. Additionally, drug structures
can be optimized, prodrugs can be developed, or nano-delivery
systems can be utilized to increase the affinity of drugs for SLC
transporters, improving drug delivery efficacy.

4.3 Challenges and advances in SLC
protein research

Currently, the vast majority of SLC protein family members in
clinical trials have not been successfully explored. There are still
some technical challenges in the study of SLC proteins. Three-
dimensional structural analysis of SLC proteins is one of the most
effective ways to explore their function and transport mechanisms.
Benefiting from advancements in cryo-electron microscopy
technologies for determining the structures of membrane
proteins (Schlessinger et al., 2023), the number of experimentally
determined SLC protein structures has surged in recent years.
Although approximately 92% of known drug target structures
have been deposited in protein databases; most SLC proteins
have not been crystallized due to sample preparation and
crystallization challenges. This limits computer-aided drug
discovery. Additionally, SLC proteins localized in intracellular
compartments may not be ideal targets for drug therapies using
current drug delivery approaches. Beyond the significant challenges
in elucidating the structures of SLC proteins, many orphan
transporters lack identified substrates, numerous well-
characterized SLC transporters have no known chemical
modulators, and a variety of disease-associated mutations in
SLCs remain uncharacterized (Lin et al., 2015b).

The development of gene editing technology and the
construction of animal models provide powerful means for the

treatment of metabolic diseases, and the full use of these
technologies can effectively confirm the feasibility of potential
therapeutic targets. In recent years, researchers have used the
CRISPR/Cas9 system, adeno-associated viruses and other efficient
gene editing tools to construct a large number of SLC knockout/
knockdown or SLC-overexpressing animal models for screening
disease risk sites and drug targets, which has greatly promoted the
use of SLC transporters as therapeutic targets for metabolic diseases.
At the same time, gene editing technology also provides hope for the
treatment of genetic metabolic diseases caused by SLC family
protein-encoding gene mutations. The gene editor delivered by
the adeno-associated virus carrier can accurately replace the
mutant base pairs of cells and achieve the therapeutic purpose of
transforming the mutant cells into normal cells.

However, previous studies have focused on single proteins,
ignoring the similarities and correlations between SLC
transporter members. Therefore, future studies need to build
animal models of two or more SLC gene cointerventions to
reveal the interactions between SLC transporters, especially those
SLC transporters that share the same transport substrate.

5 Conclusion

The global prevalence of metabolic diseases, such as obesity,
diabetes, and NAFLD, is rapidly increasing, posing significant
challenges to public health. SLC transporters, the second largest
family of membrane proteins in the human genome, are crucial for
maintaining energy metabolism, homeostasis, and cellular
functions. This review highlights the roles of various SLC families
in metabolic diseases, their tissue distribution, and their potential as
therapeutic targets. While fewer than 20 SLC-targeted drugs have
been successfully marketed, advances in artificial intelligence and
gene editing technologies are enabling deeper insights into the
structure and function of SLC proteins. Targeting SLC
transporters for the treatment of metabolic diseases holds great
promise for future therapeutic development.
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Glossary
T2D Type 2 diabetes mellitus

NAFLD Nonalcoholic fatty liver disease

HGNC The Genome Organization Gene Nomenclature Committee

SGLT Sodium-dependent glucose transporter

GLUT Glucose transporter

FATPs Fatty acid transport proteins

NASH Nonalcoholic steatohepatitis

SNPs single nucleotide polymorphisms

ASBT Sodium-dependent bile acid transporter

FXR Farnesol X receptor

NTCP Na+ -taurocholate co-transport polypeptide

Tgr5 G protein-coupled bile acid receptor

BAs Bile acids

BSEP Bile salt export pump

SOAT Sodium ion-dependent organic anion transporter

NPT Na+ dependent phosphate transporter

VGLUT vesicular glutamate transporters

VNUT vesicular nucleotide transporter

OAT organic anion transporter

OCT organic cation transporter

OCTN organic cation/carnitine transporter

SO42- Inorganic anion sulfate

NAS1 The Na+ -sulfate cotransporter

SAT1 Sulfate anion transporter

NAS Sodium sulfate cotransporters

NADC Sodium-dependent dicarboxylate transporters

MCT Monocarboxylate transporter protein

ZIP Zrt-and Irt-like protein family

ZnT Zinc transporter ZnT family

T1D Type 1 diabetes mellitus

TCA Tricarboxylic acid cycle

UCP Uncoupling protein

SDCT High-affinity sodium-dependent dicarboxylate co-transporter

PPARγ Peroxisome proliferator-activated receptor γ

CACT Carnitine/acylcarnitine translocase

LC-FAOD long-chain fatty acid oxidation disorders

IBS Irritable bowel syndrome

PBC Primary biliary cholangitis

NTIS Non-thyroidal illness syndrome

TNZD Transient neonatal zinc deficiency
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