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Background: Vascular calcification (VC) commonly occurs in diabetes and is
associated with cardiovascular disease incidence andmortality. Currently, there is
no drug treatment for VC. The Danlian-Tongmai formula (DLTM) is a traditional
Chinese medicine (TCM) prescription used for diabetic VC (DVC), but its
mechanisms of action remain unclear. This study aims to elucidate the effects
of DLTM on DVC and explore the underlying mechanisms of action.

Methods: Ultra-high-performance liquid chromatography-mass spectrometry
(UHPLC-MS) was used to identify the metabolites of DLTM. A DVC rat model was
established using streptozotocin (STZ) combined with vitamin D3 (VitD3). The
effects of DLTM on DVC were evaluated through alizarin red staining, calcium
deposition, and changes in osteogenic and contractile markers. The specific
molecular mechanism of DLTM in treating diabetic VC was comprehensively
analyzed by transcriptomics, molecular docking and in vivo experimental
verification.

Results: We identified 108 major metabolites of DLTM. In vivo, high-dose DLTM
significantly alleviated VC in diabetic rats. Transcriptomic analysis showed that
DLTM treatment markedly altered the transcriptomic profile of rat aortas, which
was associated with regulating the CCN3/NOTCH signaling pathway, promoting
vascular smooth muscle contraction, and inhibiting the inflammatory responses.
Molecular docking and molecular dynamics simulation demonstrated strong
binding interactions between DLTM metabolites and key molecules within the
CCN3/NOTCH pathway, including NOTCH1, DLL1, DLL4, hes1, and hey1. In vivo
experiments confirmed that DLTM could upregulate CCN3, inhibit the activation
of NOTCH signaling ligands DLL1 and downstream transcription factors hes1 and
hey1, and reduce the release of inflammatory cytokines IL6, IL1β, and TNFα.
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Conclusion:DLTM alleviates DVC by regulating the CCN3/NOTCH signaling axis to
inhibit inflammatory responses. Our research provides experimental basis for
clinical treatment and drug transformation of diabetic VC.
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1 Introduction

Vascular calcification (VC) is a pathological vascular disorder
characterized by the ectopic deposition of calcium phosphate in the
form of hydroxyapatite within the vascular wall. It is highly
prevalent in diabetic patients and is the pathological basis for
macrovascular complications in diabetes (Lee et al., 2020; Yao
et al., 2021). The increase in VC at different sites can lead to the
rupture of vulnerable plaques, vascular stiffness, and loss of elastic
buffering, resulting in unstable hemodynamic consequences
(Vengrenyuk et al., 2006). Diabetic patients with severe VC have
a tenfold higher risk of cardiovascular events compared with those
without VC (Wong and Sattar, 2023). In addition, the progression
and severity of VC are highly correlated with adverse cardiovascular
events such as acute coronary syndromes and sudden cardiac death,
making VC a well-recognized independent predictor of all-cause
mortality and lifetime cardiovascular disease risk in diabetic patients
(Lei et al., 2021; Ferket et al., 2022).

Previously considered a passive, degenerative vascular
condition, VC is now recognized as an active, multi-gene
regulated biological process, similar to osteogenic differentiation
in skeletal mineralization, primarily driven by vascular smooth
muscle cells (VSMCs) (Quaglino et al., 2020). Systemic metabolic
disorders caused by type 2 diabetes mellitus (T2DM), including
chronic hyperglycemia, dyslipidemia, and insulin resistance, are key
factors promoting the development of VC (Yahagi et al., 2017).
Endothelial dysfunction is the initiating factor in diabetic VC (DVC)
(Jiang et al., 2022). Hyperglycemia stimulates the progression of VC
from the endothelial cells gradually to the entire vascular media and
adventitia, accompanied by continuous deposition of calcium and
phosphate ions, exacerbation of local vascular oxidative stress and
inflammatory responses, and imbalance in the expression of factors
associated with bone homeostasis. These processes promote the
differentiation of VSMCs from a contractile phenotype to an
osteogenic phenotype, thereby inducing the ectopic growth of
hydroxyapatite within the vasculature and ultimately leading to
VC. VC is a common vascular pathology in diabetic patients,
with an increasingly younger age of onset. However, the exact
pathogenic mechanisms remain unclear, and effective preventive
and therapeutic drugs are lacking. Actively exploring strategies for
the prevention and treatment of VC is crucial for improving
symptoms in diabetic patients and reducing the risk of
cardiovascular mortality.

Traditional Chinese medicine (TCM) has demonstrated
excellent efficacy and significant potential in preventing and
treating diabetes and its complications owing to its multi-
metabolite, multi-target, and multi-pathway characteristics (Tian
et al., 2019). Some clinical studies found that certain TCM formulas,
which enhance qi and promote blood circulation, can reduce VC by
alleviating glucolipotoxicity, inhibiting VSMC apoptosis, and

preventing osteogenic transformation (Yang et al., 2023).
Additionally, specific TCM monomers, such as resveratrol and
astragaloside IV, have been found to effectively inhibit VSMC
proliferation, migration, autophagy, and phenotypic
transformation in vitro (Song et al., 2019; Huang et al., 2022).
These findings suggest that TCM and its natural metabolites can
serve as potential therapeutic drugs for DVC. According to TCM
theory, the pathogenesis of DVC can be attributed to blood stasis
obstructing the meridians, toxic stasis accumulation, and deficiency
of Qi. The treatment approach involves promoting blood circulation
to remove stasis, detoxifying, and replenishing Qi while unblocking
the meridians. Based on this understanding, Xiyuan Hospital of the
China Academy of Chinese Medical Sciences developed the
Danlian-Tongmai formula (DLTM), a specialized prescription for
VC. It consists of five botanical drugs, namely Salvia miltiorrhiza
Bunge., Coptis chinensis Franch., Polygonum cuspidatum Siebold &
Zucc., Prunus mume (Siebold) Siebold & Zucc., and Rhodiola
crenulata (Hook.f. & Thomson) H. Ohba, and has been granted
a patent for its invention (Patent number: 202311796613.6). Among
them, Salvia miltiorrhiza Bunge. has the effects of promoting blood
circulation, removing blood stasis and dredging veins, and is widely
used in the clinical treatment of diabetic vascular complications
(MEIm et al., 2019). Its active metabolite, Tanshinone II, can inhibit
the activation of inflammatory signals such as NF-κB, thereby
preventing the osteogenic transformation of VSMCs,
demonstrating pharmacological effects in the prevention of VC
(Zhong et al., 2022). Coptis chinensis Franch. is a common
traditional Chinese medicine with significant heat-removing and
detoxifying activities, It has pharmacological effects such as lowering
blood sugar, anti-bacterial, antioxidant, and anti-inflammatory
properties (Wang et al., 2019). Clinically, it is often used to treat
diabetic atherosclerosis, diabetic nephropathy, and other diabetic
vascular complications (Jin et al., 2020; Zhang and Zheng, 2024). It
has been reported that the active metabolite of Coptis chinensis,
berberine, can improve high glucose-induced VSMC calcification
and VC by inhibiting endoplasmic reticulum stress and apoptosis-
related pathways (Li et al., 2022). Polygonum cuspidatum Siebold &
Zucc. is a medicinal plant with a long history, known for its heat-
clearing, detoxifying, blood-activating, and stasis-dissolving effects.
Numerous studies have confirmed that extracts of Polygonum
cuspidatum Siebold & Zucc. and its active metabolites can
effectively alleviate vascular complications such as mesangial cell
dysfunction and retinopathy caused by diabetes (Sohn et al., 2014;
Sohn et al., 2016), and can inhibit the osteogenic transformation of
VSMCs induced by high glucose and vascular sclerosis caused by a
high-fat and high-glucose diet (Mattison et al., 2014; Zhang et al.,
2016). Prunus mume (Siebold) Siebold & Zucc. is rich in organic
acids and flavonoids, is commonly used in traditional Chinese
medicine for the treatment of diabetes (Li et al., 2013; Tu et al.,
2013). Studies have shown that Prunus mume (Siebold) Siebold &
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Zucc. extract participates in regulating osteogenic differentiation of
cells and can reduce vascular remodeling through its anti-
inflammatory properties (Kono et al., 2011; Okuno et al., 2023).
Rhodiola crenulata (Hook.f. & Thomson) H. Ohba. has the effects of
tonifying qi, nourishing blood, and relieving asthma, and it is widely
used in the treatment of cancer, diabetes, oxidative damage, and
neuroprotection (Bassa et al., 2016; Déciga-Campos et al., 2016; Xu
et al., 2018). Its main metabolite, salidroside, significantly inhibits
high glucose-induced VSMC migration and osteogenic phenotypic
transformation, restoring the contractile phenotype of
VSMCs(Zhang et al., 2020). Despite the pharmacological
evidence and significant clinical efficacy, the efficacy and
mechanism of DLTM in treating diabetic VC are still unclear
due to its complex metabolites. This study aims to clarify the
therapeutic effects of DLTM on DVC using a rat model induced
by streptozotocin (STZ) combined with vitamin D3 (VitD3).
Additionally, high-throughput transcriptomics, molecular
docking, and in vivo experiments were conducted to
systematically explore the pharmacological mechanisms of
DLTM. This research aims to provide experimental evidence for
a deeper understanding of the pathogenesis of DVC and support the
clinical translation of DLTM.

2 Materials and methods

2.1 Animal model

Six-week-old male Sprague Dawley (SD) rats were purchased
from SiPeiFu (Beijing) Biotechnology Co., Ltd. (SCXK (Beijing)
2019–0010). The rats were housed in cages at a temperature of
22°C ± 2°C and humidity of 55% ± 5%, with a 12/12-h light/dark
cycle in an SPF animal facility (containing sterilized water and feed).
The animal experiment was approved by the Animal Ethics
Committee of Xiyuan Hospital of China Academy of Chinese
Medical Sciences (approval number: 2024XLC014-2) and adhered
to the Guide for the Care and Use of Laboratory Animals from the
National Institute of Health (NIH Publication No. 85–23,
revised 1996).

We employed an STZ combined with VitD3 overload to induce
the DVC model. STZ is a β-cell toxin and is the most commonly
used method to induce diabetes in rodent models (Furman, 2021),
and it is widely applied in the study of diabetic vascular
complications (Stabley and Towler, 2017). STZ not only destroys
pancreatic β-cells but also accelerates vascular injury and
biomineralization reactions through DNA alkylation (Bennett
and Pegg, 1981). This results in aggravated vascular endothelial
cells dysfunction (Mao et al., 2024), along with increased mineral
deposition and stiffness (Heath et al., 2014), which is more closely
mimic the clinical conditions observed in patients with diabetic
vascular complications. After 1 week of acclimatization,
intraperitoneal injections of STZ (Sigma-Aldrich, United States)
at a dose of 30 mg/kg were administered to the rats for three
consecutive days. One week later, fasting blood glucose levels
were measured. Rats with blood glucose levels ≥11.1 mmol/L and
pronounced symptoms of “polyuria, polydipsia, and weight loss”
were considered to have successfully developed diabetes to accelerate
VC development and mitigate the effects of aging on VC formation,

a previously reported method (Yang et al., 2023) was adopted and
improved by using VitD3 (Sigma-Aldrich, United States) overload to
induce DVC. Specifically, diabetic rats received intraperitoneal
injections of high-dose VitD3 (5.5 × 105 IU/kg) for four
consecutive days. 14 days after the first injection is considered as
the end of calcification modeling period, and its modeling success
rate has been proved to be over 80% (Lu et al., 2024). Another group
of SD rats were used as a normal control group (CON group) and
received equivalent volumes of vehicle (pure water) instead of the
STZ and VitD3 injections. All groups of rats were granted free access
to food and water throughout the study period.

2.2 Preparation and quality control of DLTM

The DLTM comprises of Salvia miltiorrhiza Bunge. (20 g),
Coptis chinensis Franch. (10 g), Polygonum cuspidatum Siebold &
Zucc. (10 g), Prunus mume (Siebold) Siebold & Zucc. (10 g), and
Rhodiola crenulata (Hook.f. & Thomson) H. Ohba. (10 g), and
mixed at a ratio of 2:1:1:1:1. In brief, 600 g of Salvia miltiorrhiza
Bunge., 300 g of Coptis chinensis Franch., 300 g of Polygonum
cuspidatum Siebold & Zucc., 300 g of Rhodiola crenulata (Hook.f.
& Thomson) H. Ohba., and 300 g of Prunus mume (Siebold) Siebold
& Zucc. were weighed. These botanical drugs were provided by
Institute of Traditional Chinese Medicine, Chinese Academy of
Traditional Chinese Medicine. The botanical drugs decocted
twice with eight and six times the amount of pure water,
respectively, for 1 h each time. The decoctions were subsequently
filtered, combined, and left to stand overnight, after which the
supernatant was collected. The supernatant was passed through a
6L SP825 macroporous resin column at a flow rate of 4.2 L/h,
washed with 4 bed volumes (BV) of water, dried, and eluted with
3 BV of 65% ethanol. The ethanol was then recovered, and the
solution was concentrated into a thick paste. This process was
repeated, and the pastes were combined, vacuum-dried at 80°C,
ground into a fine powder, and mixed with dextrin to a final weight
of 153.2 g. Each gram of dry extract contained 23.5 g of crude drug.

2.3 Drug administration

After model induction, the DVC rats were randomly divided
into a model (DVC group), low-dose DLTM (DLTM-L group),
medium-dose DLTM (DLTM-M group), high-dose DLTM (DLTM-
H group), or positive control Dapagliflozin (DAPA group) group
(n = 12 for each group). The groups received different doses of
DLTM and Dapagliflozin (AstraZeneca Pharmaceuticals,
United States) by gavage for 4 weeks. The dosage of DLTM is
determined with reference to the clinically equivalent dose, and the
dose gradients are set at 1, 2, and 4 times the equivalent dose based
on previous studies (Liu et al., 2024). Specifically, The human
equivalent oral dose of DLTM dry extract (0.04 g/kg/day for a
60 kg person) was converted to the rat equivalent dose based on
body surface area (BSA) normalization (Reagan-Shaw et al., 2008),
resulting in doses of 0.24 g/kg dry extract for the DLTM-L group,
0.48 g/kg dry extract for the DLTM-M group, and 0.96 g/kg dry
extract for the DLTM-H group. Alternatively, the DAPA group
received oral Dapagliflozin at 5 mg/kg/day based on a previous study
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(Zhang et al., 2021), while the DVC and CON groups received
equivalent volumes of the vehicle by gavage. The survival status,
body weight, and fasting blood glucose of the rats were recorded
weekly. After the drug intervention period, the rats were fasted for
12 h, anesthetized with an intraperitoneal injection of sodium
pentobarbital (30 mg/kg), and blood and aortic samples were
collected for further analysis.

2.4 Ultra-high-performance liquid
chromatography-mass spectrometry
(UHPLC-MS)

UHPLC-MS was conducted using a Vanquish UHPLC system
(Thermo Fisher Scientific, United States) coupled with a Q Exactive
HF-X mass spectrometer (Thermo Fisher Scientific, United States).
The chromatographic column used was a HYPERSIL GOLD C18
(100 × 2.1mm, 1.9 μm, Thermo Fisher Scientific, United States). The
flow rate was set to 0.3 mL min−1, the column temperature to 40°C,
and the injection volume to 5 μL. The mobile phases consisted of
0.1% formic acid in water (solvent A) and 0.1% formic acid in
acetonitrile (solvent B). The gradient elution program was as
follows: 0–3.0 min, 5% B; 3.0–8.0 min, 5%–14% B; 8.0–16.0 min,
14%–40% B; 16.0–21.0 min, 40%–45% B; 21.0–26.0 min, 45%–65%
B; 26.0–29.0 min, 65%–100% B; 29.0–34.0 min, 100% B;
34.0–35.0 min, 100%–5% B; and 35.0–40.0 min, 5% B.

Metabolite analysis was performed using an electrospray
ionization (ESI) source with the following parameters: sheath gas
flow rate, 40 arb; auxiliary gas flow rate, 10 arb; ion transfer tube
temperature, 320°C; auxiliary gas heater temperature, 350°C; S-Lens
RF level, 60 V; full MS resolution, 120,000; MS/MS resolution,
60,000; and scan range, 100–1,500 m/z. The spray voltage was
3.8 kV for positive ion mode and 3.0 kV for negative ion mode.

2.5 Alizarin red S staining

As previously described (Lu et al., 2024), alizarin red staining
was employed to assess arterial calcification. For whole aorta
staining, the aorta was fixed in 95% ethanol for 24 h and stained
overnight with 1% alizarin red solution (Beyotime, C0140). The
arterial tissue was then rinsed with 2% potassium hydroxide and
photographed using an inverted microscope.

For aortic ring staining, freshly isolated aortic arches were fixed
in 4% paraformaldehyde, embedded in paraffin, sectioned at a
thickness of 5 μm, and deparaffinized. The aortic sections were
subsequently stained with 1% alizarin red solution for 5 min and
photographed using an inverted microscope. Quantitative analysis
of positively stained areas was performed using Image J software.

2.6 Alkaline phosphatase (ALP) activity and
calcium content detection

Aortic tissues were homogenized and centrifuged to separate the
supernatant. ALP activity in the supernatant was then measured
using an ALP assay kit (Beyotime, P0321S). Calcium content was
determined using a commercial calcium assay kit (Beyotime,

S1063S) according to the manufacturer’s instructions. Briefly, the
supernatant was mixed with methylthymol blue (MTB), an alkaline
solution, and a protein clearing reagent, and incubated at room
temperature for 5 min. The absorbance was measured at 610 nm
using a microplate reader, and the relative calcium content was
normalized to the protein content.

2.7 Serum biochemical analysis

Fasting blood glucose levels were measured weekly using a
portable glucometer (ROCHE, Germany) after STZ injections.
Serum calcium and phosphorus levels were measured using a
Mindray BS-420 automatic biochemical analyzer (Mindray, China).

2.8 Enzyme-linked immunosorbent assay

Serum levels of IL-6, IL-1β, and TNF-α were measured using
enzyme-linked immunosorbent assay (ELISA) kits (MEIMIAN,
China) with catalog numbers MM-0190R2, MM-0047R2, and
MM-70625R2, respectively. The assay procedures adhered to the
manufacturer’s instructions.

2.9 Transcriptome RNA sequencing

Total RNA was extracted from the rat aorta using Trizol reagent
(CapitalBio Technology, Beijing) following the manufacturer’s
protocol. RNA integrity was assessed using an Agilent
2,100 Bioanalyzer (Agilent Technologies, United States). Libraries
were prepared using the TruSeq Stranded Total RNA and Ribo-Zero
Gold kits (Illumina) and sequenced on an Illumina NovaSeq
6,000 platform (Illumina, United States). Raw data in fastq
format were filtered using fastp software, and clean reads were
mapped to the rat genome (Rnor_6.0 Ensembl 104) using Hisat2.
Gene and transcript expression levels were quantified using
featureCounts and StringTie. Differential expression analysis was
performed using the limma R package, with thresholds set at p <
0.05 and |log2 (Fold Change)| ≥ 1.2 for significant differentially
expressed genes (DEGs). DEG enrichment analysis was conducted
using DAVID 6.8 and further analyzed using R packages.

2.10 Quantitative real-time polymerase
chain reaction (qPCR)

Total RNA was extracted from the aorta using Trizol reagent
(Invitrogen, United States) according to the manufacturer’s
instructions, the concentration of which was measured using a
NanoDrop spectrophotometer (Thermo Fisher Scientific,
United States). RNA was reverse-transcribed into complementary
DNA (cDNA) using the M-MLV Reverse Transcriptase kit
(Promega, United States). PCR amplification was performed on
the obtained cDNA using the QuantiTect Multiplex RT-PCR Kit
(Qiagen, Germany). Real-time qPCR was conducted using SYBR
Green Master Mix (Takara, Japan) on a 7500 FAST Real-Time PCR
System (Applied Biosystems, United States). With β-actin as the
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internal control, relative mRNA expression levels were standardized
and analyzed using the 2−ΔΔCT method. Primer sequences specific to
target genes are listed in Table 1.

2.11 Western blot analysis

Aortic tissues were lysed in RIPA buffer containing protease and
phosphatase inhibitors. Protein concentration subsequently was
determined using a BCA protein assay kit (Solarbio, China).
Next, proteins were separated by 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
onto polyvinylidene fluoride (PVDF) membranes (Millipore,
United States). These membranes were blocked with 5% non-fat
milk for 1 h at room temperature and incubated with primary
antibodies overnight at 4°C. The next day, the membranes were
further incubated with HRP-conjugated secondary antibodies for
1 h at room temperature. Bands were visualized using an imaging
system (Amersham Imager 600) and quantified with ImageJ
software. The primary antibodies used in Western blot are listed
in Supplementary Table S1.

2.12 Molecular docking and molecular
dynamics simulation

The acquired DLTM metabolites were screened based on
Lipinski’s rule of five followed by using SwissADME (http://www.
swissadme.ch/) to identify those with high gastrointestinal (GI)
absorption and at least three out of five Lipinski, Ghose, Veber,
Egan, and Muegge criteria (Lipinski et al., 2001). A total of
59 metabolites were identified for molecular docking. The protein
3D structures of these metabolites were obtained from the PDB
database (http://www.pdb.org/) and saved as PDB files. The only
exception was DLL3, whose structure was not available in the PDB
dataset and was therefore predicted using the AlphaFold Protein
Structure Database. Subsequently, PyMOL 2.4.1 was employed to
remove water and ligands from proteins, AutoDock Vina 1.1.2 for
hydrogen addition and charge calculation, and ChemOffice 22 for
minimizing the energy of small molecule metabolites. Molecular
docking was performed using AutoDock Vina 1.1.2. The binding

affinity between targets and metabolites was evaluated using the
docking score.

The protein-ligand complexes with the lowest binding energy
was subjected to a 100 ns molecular dynamics simulation using
Gromacs 2023 (Abraham et al., 2015). The topology of the protein
was constructed using the CHARMM36 (Jo et al., 2008) force field
parameters, while the topology of the ligand was generated based on
the GAFF2 force field parameters. The protein-ligand complex was
placed within a cubic box, the TIP3P water model was then used to
fill the box with water molecules (Harrach and Drossel, 2014).
Electrostatic interactions were handled using the Particle Mesh
Ewald (PME) method and the Verlet algorithm. Subsequently,
the system underwent 100,000 steps of isothermal-isobaric
ensemble equilibration and isothermal-isochoric ensemble
equilibration, with a coupling constant of 0.1 picoseconds, lasting
for a duration of 100 picoseconds. Both van derWaals and Coulomb
interactions were calculated using a cutoff distance of 1.0 nm.
Finally, the system was subjected to molecular dynamics
simulation under constant temperature (300 K) and constant
pressure (1 bar) using Gromacs 2023, totaling 5,000,000 steps
with a step size of 2 femtoseconds, resulting in a total simulation
time of 100 nanoseconds. Using GROMACS internal tools to
evaluate root-mean-square deviation (RMSD), radius of gyration
(Rg), solvent accessible surface area (SASA), root-mean-square
fluctuation (RMSF) and hydrogen bond formation (HBond). We
used MM/PBSA to calculate the binding free energies of
all complexes.

2.13 Statistical analysis

Statistical analysis and data visualization were conducted using
IBM SPSS Statistics (V26.0), GraphPad Prism (V9.5.0), and ImageJ
software. Normally distributed continuous variables are presented as
mean ± SEM, while non-normally distributed variables are
presented as median and interquartile range. For normally
distributed data, one-way ANOVA or t-tests were used to
determine statistical significance of differences among groups.
For non-normally distributed data, the Kruskal–Wallis or Mann-
Whitney U test was instead utilized. A p-value <0.05 was considered
statistically significant.

TABLE 1 Primers for qPCR.

Primer Sequence (5′to 3′) Sizes of PCR products

Ccn3-F TGGTTCCAGAGGGAGACAAC 114 bp

Ccn3-R CACAGCCAATTTGCCCATCT

Sfrp4-F GAGGAGCTGGTAGACGTGAA 177 bp

Sfrp4-R TGGCCAGCTGTGGTTATACA

Tpm2-F AGAAGCTGAAGGAGGCTGAG 105 bp

Tpm2-R CCTTGGCACTAGCCAAAGTC

β-actin-F GGCTGATTCCCCTCCATCG 154 bp

β-actin-R CCAGTTGGTAACAATGCCATGT

Note: F (Forward); R (Reverse).
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FIGURE 1
The chromatographic fingerprint of DLTM. (A) Ion flow diagram of DLTM in negative ion mode. (B) Ion flow diagram of DLTM in positive ion mode.
Molecular weight and formula of these metabolites are listed in Supplementary Table S2.

Frontiers in Pharmacology frontiersin.org06

Wang et al. 10.3389/fphar.2024.1510030

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1510030


FIGURE 2
Ameliorative effect of DLTMon vascular calcification in DVC rat. (A) Schematic diagramof the experimental design for the ratmodel; (B) Bodyweight
of rats after receiving VitD3+STZ or vehicle injection and oral administration of different doses of DLTM, Dapagliflozin, or vehicle for 4 weeks (n = 7–11);
(C) Fasting blood glucose levels of rats after receiving VitD3+STZ or vehicle injection and oral administration of different doses of DLTM, Dapagliflozin, or
vehicle for 4 weeks (n = 7–11); (D) Serum calcium levels in each group of rats (n = 5); (E) Serum phosphorus levels in each group of rats (n = 5); (F)
Representative images of whole aorta alizarin red staining in each group of rats (n = 3); (G) Vascular ALP levels of each group of rats (n = 5); (H). Vascular
calcium content of each group of rats (n = 5); (I) Representative images of alizarin red-stained aortic arch sections in each group of rats (n = 3,4 × 20×); (J)
Quantitative analysis of the alizarin red positive staining area in aortic sections from I (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001.
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3 Results

3.1 UHPLC-MS analysis of DLTM

UPLC-MS/MS was employed to establish the quality control of
DLTM and to quantify its key metabolites. A total of 108 metabolites
were identified (Figure 1), derived from the five botanical drugs,
namely Salvia miltiorrhiza Bunge., Coptis chinensis Franch.,
Polygonum cuspidatum Siebold & Zucc., Prunus mume (Siebold)
Siebold & Zucc., and Rhodiola crenulata (Hook.f. & Thomson) H.
Ohba. Specifically, 28 metabolites were identified from Salvia
miltiorrhiza Bunge., 28 from Coptis chinensis Franch., 21 from
Polygonum cuspidatum Siebold & Zucc., 25 from Prunus mume
(Siebold) Siebold & Zucc., and 27 from Rhodiola crenulata (Hook.f.
& Thomson) H. Ohba. Notably, some metabolites were present in
multiple botanical drugs. For instance, ferulic acid was found in all
five botanical drugs. Detailed information on all identified
metabolites in DLTM is provided in Supplementary Table S2.

3.2 DLTM significantly improves VC in VitD3-
Induced DVC rats

To elucidate the effect of DLTM on DVC, a DVC rat model was
established using STZ combined with VitD3, with Dapagliflozin as a
positive control. Previous studies have confirmed the efficacy of
SGLT2 inhibitors in treating DVC (Chen et al., 2023; Li X. et al.,
2024). For example, Dapagliflozin has been shown to significantly

alleviate arterial calcification by suppressing endoplasmic reticulum
stress and the osteogenic transdifferentiation of VSMCs (Li L. et al.,
2024; Wu et al., 2024). In this study, after 4 weeks of DLTM or
Dapagliflozin administration, the overall condition and vascular
damage of the rats were assessed (Figure 2A). As shown, the DVC
group exhibited typical diabetic symptoms such as emaciation and
elevated blood glucose compared to the CON group (Figures 2B, C;
Supplementary Figure S1; Supplementary Table S3, P < 0.05). VitD3

injection significantly increased serum calcium levels in rats
(Figure 2D; Supplementary Table S3, P < 0.05) but exhibited no
effect on serum phosphorus levels (Figure 2E; Supplementary Table
S3, P > 0.05). Compared to the DVC group, different doses of DLTM
effectively reduced serum calcium levels in rats (Figure 2D, P < 0.05,
P < 0.01), but there was no significant improvement in body weight,
FBG and serum phosphorus levels (Figures 2B, C, E, P > 0.05). In
contrast, Dapagliflozin effectively lowered blood glucose levels in
rats (Figure 2C, P < 0.05) but had no significant effect on body
weight and calcium-phosphorus metabolism (Figures 2B, D, E, P >
0.05). Regarding vascular injury, Gross and aortic alizarin red
staining revealed extensive calcium deposition in the aortas of
DVC rats (Figures 2F, I, J, P < 0.05), consistent with significant
increases observed in vascular calcium content and ALP levels
(Figures 2G, H, P < 0.001). Alizarin red staining showed a dose-
dependent reduction in aortic calcium deposition in DVC rats
treated with DLTM, with high-dose DLTM significantly
outperformed low and medium doses of DLTM in improving
aortic calcification in rats, reducing vascular calcium content and
ALP activity, and exhibited effects comparable to those of

FIGURE 3
DLTM alleviated osteogenic differentiation of VSMC in vivo. (A) Representative Western blot images of RUNX2, BMP2, αSMA, and SM22α expression
in the aortae of rats from each group; (B) Quantitative analysis of RUNX2 expression in (A, C) Quantitative analysis of BMP2 expression in (A, D)
Quantitative analysis of αSMA expression in (A, E) Quantitative analysis of SM22α expression in (A). *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 4
Transcriptome sequencing reveals the mechanism of DLTM against diabetic VC. (A) Volcano plot of transcriptome sequencing showing DEGs
between the DVC group and CON group, with thresholds of P < 0.05 and |log2 (Fold Change) | ≥ 1.2; (B) Volcano plot of transcriptome sequencing
showing DEGs between the DLTM group and DVC group, with thresholds of P < 0.05 and |log2 (Fold Change) | ≥ 1.2; (C) Venn diagram showing DEGs
betweenDVC andCONgroups, DLTM andDVC groups, with enrichment analysis and PPI analysis of overlapping DEGs to identify core DEGs; (D)GO
enrichment analysis results of overlapping DEGs; (E) KEGG enrichment analysis results of overlapping DEGs; (F) GSEA analysis results of transcripts; (G).
Heatmap of Top10 core DEGs, (H) The mRNA expression levels of calcium-related hubDEGs among the CON, DVC, and DLTM groups (n=3). N: CON
group, M: DVC group, D: DLTM group. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 5
Metabolites of DLTM exhibited good binding affinities to molecules in CCN3/NOTCH signaling pathway. (A) Heatmap of binding energies between
potentially effective metabolites of DLTM and molecules in CCN3 and NOTCH signaling pathways (see Supplementary Table S6 for details); (B–G)
Molecular docking images showing the DLTM metabolites with the highest binding energies to CCN3 and various NOTCH signaling molecules, (B)
CCN3- Worenine (−8.9 kcal/mol); (C) NOTCH1- Tormentic acid (−8.2 kcal/mol); (D) hey1- Tormentic acid (−7.2 kcal/mol); (E) hes1 (−8.6 kcal/mol)-
Worenine; (F) DLL1-Tormentic acid-(−7.9 kcal/mol); (G) DLL4-Worenine (−7.7 kcal/mol).
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Dapagliflozin (Figures 2F–J, P < 0.05). These results collectively
indicate that high-dose DLTM and Dapagliflozin effectively inhibit
VitD3-induced VC in diabetic rats, with DLTM offering vascular
protection independent of glucose lowering.

3.3 DLTM effectively alleviates the
osteogenic differentiation of VSMCs

VSMCs are the primary sites of VC. Their transformation from a
contractile to an osteogenic phenotype is a hallmark of DVC,
characterized by upregulation of osteogenic proteins such as
RUNX2 and downregulation of contractile proteins such α-SMA
(Lee et al., 2020). In this study, the extent of VSMC
transdifferentiation in the rat aorta was assessed. The results
showed that, compared to the CON group, STZ combined with
VitD3 injection significantly increased the expressions of BMP2 and
RUNX2 in the rat aorta while decreasing the expressions of
contractile proteins α-SMA and SM22α (Figures 3A–E, P <
0.001, P < 0.05). In contrast, oral administration of high-dose
DLTM or Dapagliflozin effectively reversed the upregulation of
osteogenic markers RUNX2 and BMP2, while increasing α-SMA

and SM22α levels in the aorta of DVC rats (Figures 3A–E, P < 0.001,
P < 0.01, P < 0.05). In contrast, the effects of medium-dose and low-
dose DLTM on these osteogenic and contraction markers were
limited, with some markers showing no significant improvement
(Figures 3A–E, P > 0.05). In summary, these findings suggest that
DLTM can mitigate the osteogenic transformation of VSMCs in
vivo, thereby preventing further progression of VC.

3.4 DLTM exerts Anti-VC effects by
modulating inflammation and vascular
smooth muscle contraction

To explore the specific molecular mechanisms of DLTM against
VC, transcriptome sequencing analysis was conducted to identify
differentially expressed transcripts. Considering that high-dose
DLTM exhibited an optimal therapeutic effect comparable to the
positive drug Dapagliflozin, transcriptome sequencing was
performed on aorta samples from the DLTM-H group. Post
DLTM treatment, significant changes occurred in the
transcriptome profile of rat aorta, revealing a total of 813 DEGs.
Among them, 494 DEGs were identified between the DVC and CON

FIGURE 6
DLTM inhibits the release of inflammatory factors by regulating CCN3/NOTCH signal axis. (A) Representative Western blot images of CCN3, DLL1,
DLL4, NOTCH1, hey1, hes1 expression in the aortas of rats from the CON, DVC, and DLTM groups; (B) Quantitative analysis of CCN3, DLL1, DLL4,
NOTCH1, hey1, hes1 expression (n = 3); (C) Serum TNFα levels in rats from the CON, DVC, and DLTM groups (n = 5); (D) Serum IL1β levels in rats from the
CON, DVC, and DLTM groups (n = 5); (E) Serum IL6 levels in rats from the CON, DVC, and DLTM groups (n = 5). *P < 0.05, **P < 0.01, ***P < 0.001.
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groups, including 137 upregulated and 357 downregulated genes
(Figure 4A). Alternatively, a total of 319 DEGs were found between
the DLTM and DVC groups, featuring 175 upregulated and
144 downregulated genes (Figure 4B). Notably, 56 DEGs
overlapped between the two groups (Figure 4C). Further

enrichment analysis of the overlapping DEGs unveiled that
DLTM-affected DEGs were predominantly enriched in negative
regulation of inflammatory response, regulation of inflammatory
response, and bone morphogenesis (Figure 4D). Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment

FIGURE 7
The mechanism diagram of DLTM against diabetic VC.
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analysis highlighted close associations with pathways such as
glycolipid metabolism (Figure 4E). To prevent the enrichment
results from being biased by considerable upregulation or
downregulation of genes and potentially missing out on DEGs of
significant biological importance, gene set enrichment analysis
(GSEA) was performed on the entire transcriptome (Figure 4F).
The results revealed a significant upregulation of genes related to
vascular smooth muscle contraction in the DLTM group, consistent
with phenotypic observations. This finding suggests that DLTMmay
promote vascular smooth muscle contraction by upregulating
VSMC contractile proteins and restoring the contractile
phenotype. Notably, significant enrichment of the NOTCH
signaling pathway, a calcium-related pathway, was observed
among different groups, which was notably downregulated
following DLTM treatment. NOTCH signaling is a highly
conserved pathway crucial for immune cell differentiation and
homeostasis (Gallenstein et al., 2023). Previous research indicates
that activation of the NOTCH signaling pathway can stimulate pro-
inflammatory macrophages, thereby initiating subsequent
inflammatory responses and facilitating the osteogenic
differentiation and calcification of VSMCs (Kang et al., 2024).
Furthermore, among the calcium-related hub differentially
expressed genes (hubDEGs), CCN3 garnered attention
(Figure 4G), with PCR results confirming it as the most
significantly affected calcium-related hubDEG by DLTM
(Figure 4H). CCN3/NOV (nephroblastoma overexpressed), part
of the cellular communication network (CCN) protein family,
serves as an essential regulator in bone remodeling, with high
expression observed in endothelial cells, smooth muscle cells,
fibroblasts, and chondrocytes (Ouellet and Siegel, 2012; Peng
et al., 2021). Previous research has demonstrated that CCN3 can
play an important regulatory role across various cell types by
modulating the NOTCH signaling pathway, including inhibiting
cellular osteogenic differentiation (Minamizato et al., 2007; Ouellet
and Siegel, 2012; Luan et al., 2023). Combining these findings with
the results of Gene Ontology (GO) enrichment analysis, it is
speculated that DLTM may suppress the progression of DVC by
regulating the CCN3/NOTCH signaling axis to modulate
inflammation.

3.5 Molecular docking indicates superior
binding affinity between the metabolites of
DLTM and CCN3/NOTCH signaling pathway

The above results suggested that the mechanism by which DLTM
treated DVC was related to the regulation of the CCN3/NOTCH
signaling pathway. However, the interactions between the
metabolites of DLTM and the molecules of the CCN3/NOTCH
signaling pathway remained unclear. Therefore, molecular docking
was performed using AutoDock to investigate the interactions
between the potentially effective metabolites of DLTM and CCN3 as
well as the classic NOTCH signaling molecules. The metabolites of
DLTM were screened using Lipinski’s rule of five and SwissADME,
resulting in potentially effective 59 metabolites for molecular docking
(Supplementary Tables S4, S5). It is generally believed that when the
binding energy is less than zero, the metabolite can spontaneously bind
to the protein, with lower binding energy indicating a higher likelihood

of interaction. The results showed that the average binding energy of the
metabolites of DLTM with CCN3 and NOTCH signaling pathway
proteins was −6.06 kcal/mol, with 69.30% of the molecules having
binding energies < −5.25 kcal/mol and 26.93% having binding
energies < −7 kcal/mol. The average binding energies for CCN3,
NOTCH1, DLL4, DLL3, NOTCH3, DLL1, hes1, and hey1 were
consistently below −5.25 kcal/mol (Figure 5A), suggesting superior
binding activity with most DLTM metabolites (detailed in
Supplementary Table S6). The 3D structure results further indicated
that several main metabolites of DLTM, including worenine and
tormentic acid, could well occupy the binding sites of CCN3 and
classic NOTCH signaling molecules such as DLL1, DLL4, NOTCH1,
hes1, and hey1 (Figures 5B–G). Conversely, the NOTCH ligand
JAGGED1 exhibited lower binding energies with most DLTM
metabolites, and NOTCH3 showed lower average binding energy
than NOTCH1. Hence, it is hypothesized that CCN3, DLL1, DLL4,
NOTCH1, and downstream transcription factors hes1 and hey1 may
serve as key targets for DLTM in combating DVC.

To further evaluate the stability of the molecular docking results,
we selected Worenine, the metabolite with the lowest average
binding energy, and performed molecular dynamics simulations
with the top two target proteins CCN3 and hes1, ranked by binding
energy. The RMSD curve of the CCN3-Worenine complex remained
relatively stable throughout the 0–100 ns simulation, fluctuating
around 3.3 Å, and reached equilibrium after 80 ns (Supplementary
Figure S2A). During the simulation, the Rg and SASA of the CCN3-
Worenine complex remained relatively stable, indicating that the
complex maintained a structurally stable and compact form
(Supplementary Figures S2B, C). In contrast, the Rg of the hes1-
Worenine complex exhibited noticeable fluctuations during the first
60 ns, and its SASA showed slight variations between 40 and 60 ns,
suggesting that the binding of Worenine induced minor
conformational changes in the protein, though these changes
were within an acceptable range (Supplementary Figures S2B, C).
Additionally, both the CCN3-Worenine and hes1-Worenine
complexes maintained at least one hydrogen bond throughout
the simulation, indicating stable binding between Worenine and
the two target proteins (Supplementary Figure S2D). RMSF analysis
suggested that the CCN3-Worenine complex exhibited higher
stability, whereas the Hes1-Worenine complex was more flexible
(Supplementary Figures S2E, F). Subsequently, we conducted MM/
PBSA calculations to ascertain the binding energies of the two
complexes and to pinpoint the key amino acids that substantially
contribute to the binding affinity (Supplementary Figure S2G).
These findings confirm the stable interaction of the DLTM
metabolite Worenine with the target proteins CCN3 and hes1,
further validating the molecular docking results. Combining the
results of transcriptome, we speculated that the CCN3/NOTCH
signaling pathway is a key pathway through which DLTM exerts its
anti-DVC effects.

3.6 DLTM inhibits the release of
inflammatory factors by regulating the
CCN3/NOTCH signaling axis

To verify the effect of DLTM on the CCN3/NOTCH signaling
axis in vivo, the expression levels of CCN3 and the NOTCH
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signaling proteins with high binding activity in the aortas of rats
from different groups were examined. The results showed that,
compared to the CON group, the DVC group exhibited substantially
decreased expressions of CCN3 and NOTCH1, while the
expressions of NOTCH signaling ligands DLL1, DLL4, and
downstream transcription factors hey1 and hes1 were
significantly elevated. DLTM intervention effectively upregulated
the expressions of CCN3 and NOTCH1 and inhibited the activation
of DLL1 and downstream transcription factors hey1 and hes1.
Nevertheless, it exerted no significant effect on DLL4 (Figures
6A, B, P < 0.001, P < 0.01, P < 0.05). Furthermore, ELISA was
used to detect the levels of inflammatory factors in serum. The
results showed that, compared to the CON group, the DVC group
had significantly increased serum levels of TNFα, IL1β, and IL6.
Meanwhile, DLTM intervention reversed these trends, reducing the
release of the inflammatory factors TNFα, IL1β, and IL6 (Figures
6C–E, P < 0.001). These results collectively indicate that DLTM can
exert anti-inflammatory effects by activating CCN3, inhibiting the
expressions of NOTCH signaling ligand DLL1 and downstream
transcription factors hey1 and hes1, and suppressing the activation
of the NOTCH signaling pathway.

4 Discussion

VC is a prevalent and life-threatening complication in diabetic
patients, adversely affecting clinical outcomes. As an intermediary
condition between diabetes and the subsequent damage to target
organs, the clinical prevention and treatment of VC remains largely
unaddressed. TCM has advantages in preventive treatment of
disease, which is beneficial for improving VC, an early vascular
injury. DLTM, a TCM prescription, has been successfully used to
treat diabetic vascular complications in clinical practice. In this
study, we first identified the main metabolites of DLTM and
confirmed that it can inhibit inflammatory responses by
regulating the CCN3/NOTCH signaling axis, preventing VSMCs
from transitioning from a contractile phenotype to an osteogenic
phenotype, thereby alleviating DVC.

Diabetes-induced imbalances in glucose and calcium-
phosphorus metabolism are key risk factors for pathological VC
(Yahagi et al., 2017; Zhang et al., 2023). Studies show that Patients
with VC exhibit varying degrees of elevated serum calcium and
phosphorus levels, with serum calcium levels significantly positively
correlated with coronary and abdominal aortic calcification (Wang
et al., 2010; Zhu et al., 2024). In this study,we found that DVC rats
exhibited significant disturbances in glucose and calcium-
phosphorus metabolism, with FBG and serum calcium levels
significantly elevated, corresponding to their severe vascular
damage. However, since we established the DVC model by
inducing calcium overload, no significant changes in serum
phosphorus were observed in the short term. Interventions with
different doses of DLTM effectively improved serum calcium levels
but had no significant effect on blood glucose. This suggests that the
therapeutic effect of DLTM on DVC is independent of glycemic
control and is related to calcium balance regulation.

The osteogenic transformation of VSMC is a core pathological
process in DVC, and is closely associated with the activation of
various metabolites in the immune-inflammatory response process

(Yahagi et al., 2017). Inflammatory response is one of the key
mechanisms linking diabetes and VC. This is because metabolic
disorders induced by diabetes, such as hyperglycemia and insulin
resistance, promote the release of various inflammatory mediators,
thereby establishing an inflammatory microenvironment conducive
to the osteogenic transformation of VSMC (Chen et al., 2020; Gora
et al., 2021; Xue et al., 2023). Additionally, clinical and animal
experiments have shown that focal arterial inflammation in the
vascular system precedes atherosclerosis or calcification formation
at the same site (Aikawa et al., 2007; Abdelbaky et al., 2013; Joshi
et al., 2016). Inflammatory factors and related transcription factors
can directly promote VC or indirectly facilitate calcification by
reducing the levels of calcification inhibitors. For instance, TNFα
can activate the NF-κB pathway to upregulate osteogenic genes
Msx2 and ALP, promoting the osteogenic transdifferentiation and
calcification of VSMCs (Lee et al., 2010). Toll-like receptor 2
(TLR2)-mediated NF-κB activation induces VC in atherosclerosis
by activating p38 and ERK1/2 signaling and inhibiting
osteoprotegerin (OPG) expression (Lee et al., 2019). Moreover,
the irreversible formation and accumulation of advanced
glycation end products (AGEs) are crucial mechanisms
exacerbating systemic inflammation and promoting diabetic VC
(Kay et al., 2016). Research indicates that AGE/RAGE can activate
inflammatory-related signaling pathways such as p38-MAPK, TGF-
β, and NF-κB, upregulate osteogenic proteins Msx2 and BMP2,
inhibit the contractile phenotype of VSMCs, and induce osteogenic
transformation and VC in VSMCs (Tanikawa et al., 2009; Sakaguchi
et al., 2011; Ndip et al., 2014). These studies collectively demonstrate
that inflammation is key in triggering and driving DVC, playing a
continuous role throughout its development. Regulating
inflammation-related pathways to protect against DVC holds
significant importance for new drug development and the
repurposing of existing drugs.

In recent years, numerous studies have confirmed that some
antidiabetic drugs can alleviate VC by inhibiting inflammatory
responses (Ghosh et al., 2020). For instance, SGLT2 inhibitors
such as canagliflozin and empagliflozin, which are beneficial for
both heart and kidney health, have been shown to inhibit the
osteogenic transformation of VSMCs and VC by suppressing
NLRP3 inflammasome activation (Chen et al., 2023; Li X. et al.,
2024). Traditional antidiabetic drugs such as metformin have
been found to reduce pro-inflammatory factors TNF-α and IL-1β
levels in clinical and experimental models, lowering clinical
arterial calcification scores and inhibiting VC development
(Mary et al., 2017; Araújo et al., 2017; Lu et al., 2019).
Additionally, metabolites in certain TCMs, such as tanshinone
IIA and 6-gingerol, have been discovered to possess anti-
inflammatory and anti-VC effects (Chen et al., 2020; Zhong
et al., 2022). In this study, we found that DLTM effectively
inhibited the osteogenic differentiation of VSMC and DVC in
vivo. High-throughput transcriptomics and DEGs analysis
suggest that its mechanism may involve promoting vascular
smooth muscle contraction and inhibiting inflammatory
responses, with the NOTCH signaling pathway likely being a
key pathway.

The NOTCH signaling pathway is a critical intercellular
communication route that controls cell fate. In mammals, four
NOTCH receptors (NOTCH1-4) and five ligands (JAGGED1-2,
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DLL1, 3, 4) have been identified. These receptors and ligands
mediate classical signal transduction, including those related to
calcification and inflammation, by triggering a series of cleavage
events and nuclear CSL-dependent transcription. NOTCH signaling
is essential for BMP-induced osteogenic transformation of VSMCs.
The intracellular domain of NOTCH1, N1-ICD, drives the
expression of the osteogenic gene Msx2 by interacting with the
downstream transcription factor Smad1 of BMP2, thereby inducing
VSMC osteogenic transformation and calcification (Shimizu et al.,
2011). Moreover, the activation of NOTCH signaling can exacerbate
atherosclerosis and VC formation in mice by promoting
macrophage activation and inflammatory factor release (Nakano
et al., 2019). Similarly, our study found that NOTCH signaling was
significantly upregulated in DVC. Combined with enrichment
analysis results, it is speculated that NOTCH signaling may
promote VC development by exacerbating inflammatory
responses. CCN3 is one of the non-classical ligands of
NOTCH1 and is involved in the regulation of osteoblast
differentiation (Suresh et al., 2013). Previous studies have shown
that CCN3 can regulate NOTCH1 signaling in myoblasts (Zhang
andWang, 2011), osteoblasts (Minamizato et al., 2007), and VSMCs
(Abe and Yan, 2010) to participate in cellular osteogenic
transformation. In our study, CCN3 was not only identified as a
hub DEG in the anti-DVC effect of DLTM but was also the most
influenced gene by DLTM, exhibiting a negative correlation with
NOTCH signaling expression. Consequently, it is speculated that
DLTM may exert its anti-DVC effects by modulating the CCN3/
NOTCH signaling axis to inhibit inflammatory responses.

Molecular docking and molecular dynamics simulations
suggested that the metabolites of DLTM could effectively bind to
CCN3 and NOTCH signaling molecules, exhibiting stable
interactions and structural compatibility. In vivo experiments
further confirmed that DLTM significantly upregulated
CCN3 expression. Nevertheless, within the NOTCH signaling
pathway, DLTM activated NOTCH1 expression while
simultaneously inhibiting the expressions of the ligand DLL1 and
downstream transcription factors hes1 and hey1. NOTCH signal
transduction requires the binding of ligands to NOTCH receptors to
initiate a series of cleavage events and releasing the soluble
intracellular domain (NICD). The NICD then enters the nucleus
and interacts with CSL to form a multiprotein-DNA complex that
promotes the transcription of NOTCH target genes (Shi et al., 2024).
Although CCN3 can interact with NOTCH1 and participate in
downstream NOTCH signaling, this CCN3-NOTCH1 association
does not depend on Ca2+ and does not affect the interaction between
other ligands and NOTCH1. In addition, CCN3 primarily binds to
the extracellular domain of NOTCH1 (NECD) without triggering
NOTCH1 cleavage or NICD release (Sakamoto et al., 2002), which
may result in a weaker effect compared to the influence of the DLL1-
NOTCH interaction on downstream NOTCH target genes. Thus, it
is speculated that although DLTM activates CCN3 and upregulates
NOTCH1 expression, the activation of CCN3 also inhibits the
expression of the NOTCH ligand DLL1, reducing the binding of
DLL1 to NOTCH1 and thereby inhibiting the activation of
downstream transcription factors hey1 and hes1. Despite the
upregulation of NOTCH1, the overall NOTCH signaling is
inhibited. Previous research has confirmed that CCN3 can
downregulate the NOTCH signaling transcription factor

hey1 and inhibit both early and late osteogenic differentiation of
embryonic fibroblasts by competitively inhibiting the expression of
the NOTCH1 ligand DLL1 (Su et al., 2018). Our findings revealed
that DLTM upregulated CCN3 while inhibiting the activation of the
NOTCH ligand DLL1 and downstream transcription factors
hey1 and hes1. The downregulation of NOTCH signaling further
reduced the release of downstream inflammatory factors TNFα,
IL1β, and IL6, thereby effectively alleviating inflammation and
DVC (Figure 7).

Currently, several TCM formulas have been proven effective in
treating DVC. For example, Shenqi Compound has been
demonstrated to inhibit glucolipid toxicity, alleviate apoptosis
and phenotypic transformation of VSMC, and improve DVC by
regulating inflammatory responses, extracellular matrix remodeling,
and the Hippo-YAP signaling pathway (Yang et al., 2023). Chinese
patent drug Danzhi Jiangtang capsule has also been found to inhibit
the osteogenic transformation of VSMCs in vitro by suppressing the
synthesis of β-catenin protein in the Wnt signaling pathway (Ni
et al., 2023). Our study comprehensively evaluated the therapeutic
effects of DLTM on DVC through gross staining, calcification
markers, and the expression of osteogenic and contractile
proteins, providing new evidence to support the use of TCM in
the prevention and treatment of DVC. Notably, compared to
existing TCM treatments, DLTM exhibits a more unique
therapeutic mechanism, particularly in its regulatory effects on
the CCN3/NOTCH pathway. The role of CCN proteins in
vascular diseases is receiving increasing attention (Attramadal
et al., 2024), which highlights the significant potential of DLTM
in regulating vascular health. However, due to the presence of
multiple metabolites in DLTM, this study only used molecular
docking to predict their potential binding of with the CCN3/
NOTCH pathway, and the lack of metabolite-protein binding
evaluation and gene knockout studies to verify the specific roles
of CCN3 and NOTCH signaling-related molecules in DVC within
this study, further research is needed to explore the active
metabolites and detailed mechanisms of DLTM.

Additionally, while this study used a DVC model induced by
STZ and VitD3 to provide important insights into the treatment of
DVC by DLTM, future research should consider incorporating diet-
induced type 2 diabetes models to comprehensively evaluate the
efficacy of DLTM across DVC. Conducting studies with longer
intervention periods will also help fully assess the effectiveness and
safety of DLTM, providing more evidence for its clinical
development and application.

5 Conclusion

The results of this study suggest that DLTM can effectively
inhibit DVC through the regulation of the CCN3/NOTCH signaling
axis to suppress inflammatory responses.
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Glossary
AGEs Advanced glycation end products

ALP Alkaline phosphatase

BV Bed volumes

CCN Cellular communication network

CSL CBF1/suppressor of hairless/Lag1

DEGs Differentially expressed genes

DLTM Danlian-Tongmai formula

DVC Diabetic vascular calcification

ELISA Enzyme-linked immunosorbent assay

ESI Electrospray ionization

GO Gene Ontology

GI Gastrointestinal

GSEA Gene set enrichment analysis

hubDEGs Hub differentially expressed genes

IL Interleukin

MTB Methylthymol blue

NIH National Institutes of Health

NICD Notch intracellular domain

NECD Notch extracellular domain

PVDF Polyvinylidene fluoride

OPG Osteoprotegerin

qPCR Quantitative real-time polymerase chain reaction

SD Sprague Dawley

STZ Streptozotocin

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

T2DM Type 2 diabetes mellitus

TLR2 Toll-like receptor 2

UHPLC-MS Ultra-high-performance liquid chromatography-mass spectrometry

VC Vascular calcification

VitD3 Vitamin D3

VSMCs Vascular smooth muscle cells

Frontiers in Pharmacology frontiersin.org19

Wang et al. 10.3389/fphar.2024.1510030

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1510030

	Danlian-Tongmai formula improves diabetic vascular calcification by regulating CCN3/NOTCH signal axis to inhibit inflammato ...
	1 Introduction
	2 Materials and methods
	2.1 Animal model
	2.2 Preparation and quality control of DLTM
	2.3 Drug administration
	2.4 Ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS)
	2.5 Alizarin red S staining
	2.6 Alkaline phosphatase (ALP) activity and calcium content detection
	2.7 Serum biochemical analysis
	2.8 Enzyme-linked immunosorbent assay
	2.9 Transcriptome RNA sequencing
	2.10 Quantitative real-time polymerase chain reaction (qPCR)
	2.11 Western blot analysis
	2.12 Molecular docking and molecular dynamics simulation
	2.13 Statistical analysis

	3 Results
	3.1 UHPLC-MS analysis of DLTM
	3.2 DLTM significantly improves VC in VitD3-Induced DVC rats
	3.3 DLTM effectively alleviates the osteogenic differentiation of VSMCs
	3.4 DLTM exerts Anti-VC effects by modulating inflammation and vascular smooth muscle contraction
	3.5 Molecular docking indicates superior binding affinity between the metabolites of DLTM and CCN3/NOTCH signaling pathway
	3.6 DLTM inhibits the release of inflammatory factors by regulating the CCN3/NOTCH signaling axis

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References
	Glossary


