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As a mechanism of cell death, ferroptosis has gained popularity since 2012. The
process is distinguished by iron toxicity and phospholipid accumulation, in
contrast to autophagy, apoptosis, and other cell death mechanisms. It is
implicated in the advancement of multiple diseases across the body.
Researchers currently know that osteosarcoma, osteoporosis, and other
orthopedic disorders are caused by NRF2, GPX4, and other ferroptosis star
proteins. The effective relief of osteoarthritis symptoms from deterioration has
been confirmed by clinical treatment with multiple ferroptosis inhibitors. At the
same time, it should be reminded that the mechanisms involved in ferroptosis
that regulate orthopedic diseases are not currently understood. In this
manuscript, we present the discovery process of ferroptosis, the mechanisms
involved in ferroptosis, and the role of ferroptosis in a variety of orthopedic
diseases. We expect that this manuscript can provide a new perspective on
clinical diagnosis and treatment of related diseases.
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1 Introduction

Cell death is a crucial mechanism by which organisms maintain homeostasis and
equilibrium in their systems. Currently, the predominant focus of research is on
programmed cell death (PCD). The content includes autophagy, apoptosis, and various
other cell death mechanisms (Fuchs and Steller, 2015; Bertheloot et al., 2021). PCD is
controlled by multiple factors, including genetics, signaling pathways, and the cellular
environment (Jacobson et al., 1997). These factors influence the development and outcome
of systemic immunity, biochemistry, and disease (Su et al., 2015; Tower, 2015). Ferroptosis
is distinct from more conventional forms of cell death since it relies on lipid peroxidation
and intracellular iron buildup as its primary triggers (Chen F. et al., 2024). The extensive
inquiry into PCD has been prompted by these two characteristics. There are noticeable
necrotic alterations and morphological differences between ferroptosis and other forms of
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cell death (Lei et al., 2022). Additionally, the most notable physical
features are alterations to the mitochondrial architecture, including
a decreased body size, increased density, reduced or absent cristae,
and damaged outer membranes (Dixon et al., 2012; Stockwell
et al., 2017).

Currently, the majority of studies on ferroptosis mortality
mostly investigate its association with cancer, neurological
disorders and blood-related conditions (Yan et al., 2021). They
are closely associated with lipid metabolism, reactive oxygen species
(ROS) and hypoxia, and iron metabolism, all of which involve
metabolic pathways related to ferroptosis (Deng et al., 2024; Qiu
et al., 2020). Musculoskeletal disorders (MSKs) are the leading cause
of long-term disability globally. In some cases, these diseases may
progress to the point of causing dysfunction or even death.
Presently, numerous studies have been published regarding the
impact of ferroptosis on the development and outcome of
orthopedic diseases. Therefore, it is essential to consolidate the
understanding of the causes and clinical management strategies
for iron deficiency in the field of orthopedic diseases.

The notion of ferroptosis was first proposed in 2012 by Dixon
et al. (Dixon et al., 2012). In the 1950s, researchers discovered
specific changes in the morphology of cystine-deficient cells (Eagle,
1955a; Eagle, 1955b). It was also revealed that the addition of
cysteine did not alter the morphological changes of cells triggered
by cystine deficiency, which may be mainly due to the difference in
intracellular absorption mechanisms between cystine and cysteine
(Eagle, 1959; Eagle et al., 1961). Cystine deficiency leads to reduced
glutathione and cell death (Bannai et al., 1977). In the liver necrosis
model, which is now thought to be caused by ferroptosis, the
addition of glutathione and cysteine protects tissues from injury
(Mitchell et al., 1973). These studies link cystine, cysteine, and
glutathione. By introducing α-tocopherol, an antioxidant, it can
be accomplished to reverse cell death caused by cystine deprivation,
even without an increase in glutathione levels (Bannai et al., 1977).
The findings of this investigation provide further proof that the
formation of ROS is a causative component in cell death
(Hirschhorn and Stockwell, 2019).

Subsequent investigations have shown that the prevention of
such forms of cell death may be achieved by introducing iron
chelators and lipophilic antioxidants (Ratan et al., 1994; Ratan
et al., 1996; Wang et al., 2004). Glutathione peroxidase 4 (GPX4),
discovered in 1982, showed its capacity to suppress iron-catalyzed
lipid peroxidation in microsomes. The foremost function of GPX4 is
to safeguard phosphatidylcholine-containing liposomes and
biofilms against destruction caused by peroxidation (Ursini et al.,
1985; Ursini et al., 1982). It is regarded as a crucial enzyme inhibitor
that regulates ferroptosis cell death (Arai et al., 1999; Hurst et al.,
2001). This protective effect is assumed to be due to GPX4’s ability to
shield cells from oxidative stress-induced cell turnover (Yagi et al.,
1996). The notion of non-apoptotic types of cell death was first
introduced by much research on non-apoptotic caspase-
independent cell death, characterized by necrosis-like
morphology (Borner and Monney, 1999; Fiers et al., 1999;
Loscalzo, 2008).

Stoxwell’s laboratory conducted a screening of deadly chemicals
that specifically targeted cells harboring oncogenic mutations HRAS
as big and small T oncoproteins. Due to its evident capacity to
eliminate RAS and small T-transformed cells, it was designated as

“erastin” (Dolma et al., 2003; Yang and Stockwell, 2008).
Nevertheless, no discernible indicators of programmed cell death
were seen after the administration of erastin to the tumor cells. Iron
chelators and lipophilic antioxidants were successful in preventing
the fatal effects of erastin. This finding indicates that erastin has the
ability to trigger a kind of cell death that is not associated with
apoptosis (Dolma et al., 2003; Yagoda et al., 2007). Another study
also discovered that RAS synthetic lethal 3 (RSL3) induces a non-
apoptotic form of cell death that is reliant on iron. Subsequent
experiments by Dixon and Stockwell confirmed that erastin acts by
inhibiting cystine/glutamate reverse transporter (SystemXc-), which
reduces the cysteine-dependent synthesis of reduced glutathione
(GSH). This is the first explanation of the mechanism of ferroptosis
induction. According to these findings, the term ferroptosis was
coined in 2012 to describe this iron-dependent, non-apoptotic form
of cell death induced by erastin and RSL3 (Dixon et al., 2012; Dixon
et al., 2014) (Figure 1).

This review provides an overview of the molecular mechanisms
underlying ferroptosis, the connection between ferroptosis and
other forms of cell death, the development of ferroptosis in
orthopedic diseases, and protocols to target ferroptosis for the
treatment of orthopedic diseases. This review aims to enhance
the ability of clinicians to provide more accurate guidance in
clinical diagnosis and treatment options.

2 Ferroptosis mechanism

Ferroptosis differs from other modes of cell death mainly
because of its iron concentration dependence as well as lipid
peroxidation. In this process, iron metabolism disorders,
antioxidant system imbalance as well as mitochondrial
dysfunction are involved in the progression of cellular
ferroptosis. We will address in this section the mechanisms by
which ferroptosis occurs, including the mode of iron metabolism
in organisms, the effect of iron on lipid peroxidation, and the role of
the antioxidant system during ferroptosis. And we will introduce
how ferroptosis occurs in cells from the perspective of lipid
metabolism, energy metabolism, and amino acid transport. We
also introduce the perspectives of inflammation, hypoxia and
epigenetics to further describe the mechanism of
ferroptosis (Figure 2).

2.1 Iron metabolism

2.1.1 Systemic iron metabolism
The human body has approximately 3–5 g of iron, which is

primarily found in red blood cells and hemoglobin (Wang and
Pantopoulos, 2011). The tight management of iron absorption from
the meal in the duodenum is a vital mechanism for maintaining
homeostasis (Hentze et al., 2010). Mammals experience iron loss by
detachment or bleeding from mucosal and skin cells (Chen et al.,
2023). Therefore, the regulation of iron levels at the systemic level
involves maintaining a balance between iron supply, utilization, and
loss (Hentze et al., 2010; Muckenthaler et al., 2017).

Systemic iron metabolism involves the co-participation and co-
regulation of multiple pathways. Iron is transported through the
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blood stream to juvenile erythrocytes and most tissues using
transferrin (Tf) (Weichhart, 2024). The reticuloendothelial system
can also participate in iron metabolism in vivo as an iron reservoir
(Comità et al., 2024). Among them, cytochrome b in the duodenum
has a strong regulatory effect on iron (Lane et al., 2015). Ferric
reductase is coupled to divalent metal transporter 1 (DMT1) or
divalent cation transporter (DCT1) to transport Fe2+ across the
apical membrane oxygenase promotes inorganic iron release from
heme in macrophages and enterocytes (Cain and Smith, 2021).
Hepcidin binds to ferroportin (FPN), thereby controlling iron
transport into the plasma (Wang and Babitt, 2019).

2.1.2 Cellular iron metabolism
Cells possess a comprehensive mechanism for regulating the

absorption and metabolism of iron, in comparison to systemic iron
metabolism. The plasma membrane exerts strict regulation over the
transportation of iron between cells. Cells adhere to transferrin
receptor 1 (TfR1) and obtain iron from Tf (Anderson and Vulpe,
2009). Each Tf molecule is able to bind two Fe3+ (Chua et al., 2007).
The Tf-TfR1 complex is internalized and acidified in endosomes via
receptor-mediated endocytosis, facilitating Fe3+ release (Dautry-
Varsat et al., 1983; Bali et al., 1991). Fe3+ is then reduced to Fe2+

via six-transmembrane epithelial antigen of the prostate 3
(STEAP3). Fe2+ enters the cytoplasm via DMT1 or transient
receptor potential protein (TRPML1) (Fleming et al., 1998;
Ohgami et al., 2006). The Tf-TfR1 complex then breaks down
and enters the next cycle. Non-transferrin bound iron (NTBI)

can similarly contribute significantly to cellular iron uptake.
When the ability of plasma Tf to bind iron is overloaded, NTBI
can rapidly enter the cell to replace the function of Tf (Craven et al.,
1987; Wright et al., 1986). The labile iron pool (LIP) refers to a
collection of iron that has a low molecular weight and is weakly
bound to chelating agents. Iron that is taken up through Ff-
dependent or independent pathways enters the labile LIP
(Kruszewski, 2003). Furthermore, in situations where cellular
iron levels are insufficient, iron regulatory protein 1 and iron
regulatory protein 2 attach to stem-loop structures known as iron
response elements (IREs) in messenger RNAs that encode various
proteins involved in iron metabolism (Meneghini, 1997; West and
Oates, 2008; Nemeth et al., 2004).

2.1.3 Iron overload
Iron overload is a condition that occurs due to various factors.

Iron overload is typically categorized as either primary or secondary
(Cherukuri et al., 2005). The main component of secondary iron
load is the iron that builds up because of transfusions used to treat
disorders of the red blood cell system (Larrick and Hyman, 1984). β-
thalassemia can involve both increased absorption of iron and an
excess of iron from transfusions (Anderson, 2007). Primary iron
overload is characterized by the increased absorption of excessive
iron due to the enhanced reabsorption function of the small
intestine. Diseases related typically exhibit low levels of hepcidin
in the bloodstream in relation to the amount of iron in the body
(Uchida et al., 1983; Hentze et al., 2004).

FIGURE 1
Timeline for development of ferroptosis. Each time point has critical findings on the mechanism of ferroptosis. These findings have led to the
refinement of ferroptosis theories as distinct from other modes of ferroptosis. ACSL4: Acyl-CoA synthetase long-chain family member 4; ATM: ataxia
telangiectasia mutated; BH4: tetrahydrobiopterin; CD8+: a human leukocyte differentiation antigen; CoQ10: Ubiquinone-10; CST1: Cystatin SN; FSP1:
ferroptosis suppressor protein 1; GCH1: Guanosine triphosphate cyclohydrolase-1; GPX4: Glutathione Peroxidase 4; HPCAL1: hippocalcin like 1;
LPCAT3: Lysophosphatidylcholine acyltransferase 3; NCOA4: Nuclear Receptor Coactivator 4; NrF2: Nuclear factor erythroid 2-related factor 2; OTUD5:
OTUDeubiquitinase 5; PL-PUFA2S: phospholipids with two polyunsaturated fatty acyl tails; PUFA: polyunsaturated fatty acid; RSL3: RAS synthetic lethal 3;
System Xc-: A Cystine/Glutamate Reverse Transport System; TMEM164: Transmembrane Protein 164.

Frontiers in Pharmacology frontiersin.org03

Huo et al. 10.3389/fphar.2024.1509172

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1509172


2.1.4 Iron toxicity
When the binding capacity of plasma Tf is excessive, the free

iron concentration in plasma increases, NTBI increases rapidly
(Bernstein, 1987; Trenor et al., 2000). The result of this process
is the gradual accumulation of iron in these organs, which leads to
toxicity (Dickinson and Connor, 1994; Beutler et al., 2000; Asada-
Senju et al., 2002). The formation of highly ROS is initiated by labile
cellular iron (Craven et al., 1987). ROS are injurious, nevertheless
cells possess multiple defense mechanisms to minimize ROS
accumulation (Finch, 1994). When the body’s defense
mechanisms reach max capacity, they can result in cell
destruction. Lipid peroxidation is caused by ROS attacking cell
and organelle membranes (Craven et al., 1987).

2.2 Lipid peroxidation

2.2.1 Mechanisms of lipid peroxidation
Ferroptosis characterized by elevated levels of lipid peroxidation

and a lack of ability to remove lipid peroxides (Dixon et al., 2012;
Stockwell, 2022; Yang et al., 2016). Because phospholipids (PL) in

mammalian cell membranes contain large amounts of PUFAs, PLs
are the major sites of lipid peroxidation (Li et al., 2024a). Lipid
peroxidation is categorized into three distinct stages: initiation,
propagation, and termination (Yan et al., 2021). The initiation
process removes hydrogen atoms from allylic carbons in PUFAs
by ROS, RNS, and RLS, forming lipid radicals. Hydroxyl and
hydroperoxyl radicals are generated through the Fenton reaction
involving ferrous iron and hydrogen peroxide. Lipid peroxidation
can be initiated by reactive nitrogen species (RNS) like peroxynitrite,
reacting with nitric oxide and superoxide. Lipid radicals undergo
oxygen-to-peroxyl reactions, producing lipid peroxides that can be
converted by GPX4 or broken down into reactive lipid species (RLS),
such as 4-HNE and MDA, perpetuating lipid peroxidation and
triggering cellular signaling.

2.2.2 Phospholipid peroxidation
Phospholipid peroxidation, reliant on iron, leads to membrane

degradation and cell death (Liang et al., 2022). PL’s two fatty acyl
chains (sn-1 and sn-2) contribute to its chemical diversity, with sn-1
having SFA or MUFA, and sn-2 having SFA, MUFA, or PUFA
(Harayama and Riezman, 2018). PUFA-PLs are the substrate for PL

FIGURE 2
Mechanistic map of ferroptosis occurring in cells. A variety of key molecules, pathways and related reactions are involved in ferroptosis when cells
undergo ferroptosis, of which abnormal iron metabolism and lipid peroxidation are key factors in the development of ferroptosis. ·OH: hydroxyl radical;
ALOX: Arachidonate Lipoxygenase; CoQ10H2: reduced form of coenzyme Q10; DMT1: divalent metal transporter 1; FPN: ferroportin; GSH: Glutathione,
Reduced; GSR: Glutathione-Disulfide Reductase; GSSG: Glutathione, Oxidized; HO-1: Heme oxygenase-1; LIP: labile iron pool; LPCAT3:
Lysophosphatidylcholine Acyltransferase 3; NADP+: Nicotinamide adenine dinucleoside phosphate; NADPH: nicotinamide adenine dinucleotide
phosphate; PLOO·: Phospholipid hydrogen peroxide radical; PUFA-CoA: polyunsaturated fatty acid- Ubiquinone; PUFA-PL: phospholipids containing
polyunsaturated fatty acids; PUFA-PL-OOH: PUFA phospholipid hydroperoxides; ROS: reactive oxygen species; SLC3A2: Solute Carrier Family 3 Member
2; SLC7A11: Solute Carrier Family 7Member 11; STEAP3: Six-Transmembrane Epithelial AntigenOf Prostate 3; TCA: tricarboxylic acid cycle; TF: transferrin;
TFR1: transferrin receptor 1.
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peroxides. They can be converted to PLOOH enzymatically or non-
enzymatically. Normally, GPX4 reduces PLOOH to phosphatidyl
alcohols, terminating the Fenton reaction (Ursini et al., 1982; Seiler
et al., 2008).

PUFA-PLs are more prone to ferroptosis due to their
susceptibility as substrates for PL peroxidation (Doll et al., 2017;
Kagan et al., 2017). PL may undergo peroxidation through non-
enzymatic reactions, facilitated by metals like iron. Intracellular iron
can become labile and react with H2O2, initiating the Fenton
reaction which converts Fe2+ and Fe3+ ions and H2O2 into
reactive radicals and lipid peroxidation.

If neutralization is slow, PLOOH can engage in an iron-
catalyzed Fenton reaction, forming lipid radicals, which can
spread oxidation to nearby PUFA-PL molecules (Chen et al.,
2020; Geng et al., 2018; Gao et al., 2016; Hou et al., 2016). Iron-
dependent enzymatic reactions, like those catalyzed by
lipoxygenases (LOXs), which possess non-heme iron, play a
crucial role in the peroxidation of phospholipid membranes,
influencing ferroptosis regulation (Liang et al., 2022; Kuhn
et al., 2015).

15-LOX facilitates conversion of PE and plays a role in
peroxidizing membrane phospholipids (Erba et al., 2024). This
conversion is very selective and specific, resulting in the catalysis
of arachidonoyl (AA) and adrenoyl (AdA) groups (Stoyanovsky
et al., 2019). GPX4 is crucial to lipid peroxidation. GPX4 converts
poisonous PLOOH to harmless PLOH (Ursini et al., 1982).
Phospholipids/neutral lipid hydroperoxides are reduced to their
hydroxyl derivatives by GPX4 (Björnstedt et al., 1995; Imai, 2004;
Imai and Nakagawa, 2003). nhibiting GPX4 activity promotes PL
peroxidation, PLOOH buildup, and ferroptosis (Friedmann Angeli
et al., 2014; Yang et al., 2014).

2.2.3 The role of ROS in lipid peroxidation
As indicated, ROS have significance to several cell death

processes. ROS greatly impact lipid peroxidation, which is the
hallmark of ferroptosis. DNA, protein and lipid can react with
ROS (Halliwell and J, 2022). Lipid peroxidation occurs when oxygen
free radicals attack PUFAs, resulting in the generation of lipid free
radicals. These radicals then proceed to target neighboring PUFAs
and membrane proteins, ultimately leading to membrane lipid
peroxidation (Yang et al., 2016; Liang et al., 2022; Que et al.,
2018). ROS generated via the Finton reaction catalyzed by iron
(Lei et al., 2019; Toyokuni et al., 2017). ROS-PUFA reactions cause
lipid peroxidation. Oxidative stress triggered by ROS in lipids leads
to cell damage (Rochette et al., 2022).

2.3 System Xc
−/GSH/GPX4

SystemXc-is a transporter that is located on the cell membrane.
The transportation and exchange of cystine can be facilitated by
System Xc-, which also allows for the transport of glutamate
(Fantone et al., 2024). Cystine enters cells and is reduced to
cysteine, which combines with glutamate and glycine to form
GSH. System Xc-controls GSH production through disulfide
bonds between solute carrier family 7 member 11 (SLC7A11)
and solute carrier family 3 member 2 (SLC3A2) (Liu et al.,
2020a; Jiang and Sun, 2024). SLC7A11 facilitates cystine to

glutamate transfer in a 1:1 ratio (Fantone et al., 2024). Cysteine
is subsequently reduced to cysteine by thioredoxin reductase 1
(TrxR1) (Conrad and Sato, 2012; Mandal et al., 2010).
SLC3A2 plays a crucial role in regulating the transport function
of SLC7A11 and ensuring its stability (Nakamura et al., 1999).

Glutamate, cysteine, and glycine form GSH, with glutamate-
cysteine synthase and glutathione synthase as catalysts for its
production (Bansal and Simon, 2018; Forman et al., 2009).
Within the cell, most of the space is occupied by reduced
glutathione (Diaz-Vivancos et al., 2015). Glutathione disulfide
(GSSG) is the most common oxidized form of glutathione. Both
reduced and oxidized forms of glutathione are capable of
undergoing interconversion (Niu et al., 2021). The progression of
ferroptosis is contingent upon the levels of GSH((Guo et al., 2021)).
GSH is an antioxidant that neutralizes ROS, inhibits lipid peroxides,
and maintains cellular redox equilibrium by adjusting NADP/
NADPH and GSH/GSSG ratios (Diaz-Vivancos et al., 2015;
Sahoo et al., 2022; Zhong et al., 2022). GSH acts as a cofactor for
GPX4, preventing lipid peroxidation and ferroptosis by converting
LOOH into LOH (Jia et al., 2020).

Cysteine in GPX’s protein superfamily redox residues catalyzes
redox processes (Flohé et al., 2022; Xie et al., 2023). GPX4 can
prevent lipid oxidation and biofilm destruction by using GSH’s
reducing equivalent (Ursini et al., 1982; Nishida et al., 2022).
GPX4 reduces intracellular peroxides, especially phospholipid
hydroperoxides (Ursini et al., 1982; Thomas et al., 1990).
GPX4 is most typically expressed in the cytosol, followed by
mitochondrial and nuclear classes. Apoptosis resistance is mostly
due to mitochondrial GPX4 (Liang et al., 2009). GPX4 is one of the
main regulators performing ferroptosis. Gpx4 safeguards
mitochondria from peroxide damage (Liu et al., 2024). GPX4 loss
or malfunction causes intracellular peroxide buildup and ferroptosis
(Xie et al., 2023). GSH functions as a crucial cofactor for GPX4,
inhibiting lipid peroxidation and ferroptosis through the reduction
of LOOH to LOH (Li FJ. et al., 2022).

2.4 Glucose metabolism and ferroptosis

Glucose serves as a primary energy source, transformed into
pyruvate through glycolysis, then entering the tricarboxylic acid
(TCA) cycle and oxidative phosphorylation (OXPHOS) (Liu J. et al.,
2021; Nie et al., 2020). During anoxia, the enzyme lactate
dehydrogenase catalyzes the conversion of pyruvate into lactate
(Sonveaux et al., 2008). Glucose 6-phosphate can also produce
NADPH and biosynthetic precursors through the pentose
phosphate pathway (PPP) (Lee et al., 2017; Martinez-Outschoorn
et al., 2017). NADPH plays a crucial role in the transformation of
oxidized glutathione into reduced glutathione (Dong et al., 2015; Liu
et al., 2019). Mitochondria play a crucial role in energy metabolism
and are responsible for generating ROS (Ashton et al., 2018; Zong
et al., 2016). The occurrence of ferroptosis is closely linked to energy
metabolism.

2.4.1 Glucose-dependent energy metabolism
Energy metabolism involves electron transfer for glucose-

dependent systems, with electrons transferred to oxygen,
generating ROS (Chen and Zweier, 2014; Corbet et al., 2016;
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Förstermann et al., 2017). Blocking TCA cycle in tumor cells
disrupts electron transfer, reducing ROS levels and preventing
ferroptosis (Gao et al., 2015; Gao et al., 2019a). Ferroptosis is
linked to TCA cycle intermediates and enzymes. Glutamine
relates to iron-induced apoptosis, while glutamine synthase
2 facilitates iron-mediated programmed cell death (Suzuki et al.,
2022). α-Ketoglutarate, a TCA cycle intermediate, induces iron-
dependent cell death like glutamine. Citrate synthase and acyl-CoA
synthesis family member 2 control the production of fatty acids and
impact the process of lipid peroxidation (Gao et al., 2019a). Pyruvate
dehydrogenase kinase 4 prevents cell death caused by iron by
inhibiting pyruvate dehydrogenase, while malic enzyme
1 deficiency in synovial sarcoma tumors makes cells vulnerable
to ferroptosis (Song et al., 2021). Deficiency of malic enzyme 1 in
tumor models of synovial sarcoma renders cells vulnerable to
ferroptosis (Brashears et al., 2022). Fumarate hydratase
inactivation causes cell death in hereditary leiomyomatosis and
renal cell cancer, linked to GPX4 inactivation (Kerins et al.,
2018). Mutations occur in isocitrate dehydrogenases (IDH1 and
IDH2) in cancer cells (Gbyli et al., 2022; Varn et al., 2022). Based on
this premise, cancer cells are susceptible to erastin-induced
ferroptosis (Kim H. et al., 2020). IDH1 can additionally suppress
GPX4 expression and facilitate GSH depletion, thereby triggering
ferroptosis (Wang et al., 2019).

2.4.2 Ferroptosis in PPP
PPP is an energy metabolism branch that produces NADPH,

essential for fatty acid synthesis and preventing ferroptosis by
converting GSSG to GSH. Ferroptosis inducers decrease NADPH
activity (Shimada et al., 2016). NADPH facilitates cystine uptake
through SLC7A11, converting it to cysteine for GSH generation (Shu
et al., 2020; Liu X. et al., 2021). Thioredoxin (Trx) helps trigger
ferroptosis by being a redox pathway. Blocking Trx’s activity triggers
ferroptosis. NADPH helps convert oxidized Trx to its reduced form
(Sun et al., 2001). NADPH can also enzymatically convert coenzyme
Q10 (CoQ10) into CoQ10-H2, resulting in inhibiting lipid
peroxidation (Bersuker et al., 2019; Doll et al., 2019). Ferroptosis
triggers PPP-NADPH production, boosting GSH, Trx, and CoQ10-
H2 antioxidant effects.

2.5 Inflammation and ferroptosis

Iron deficiency is linked to inflammation, triggering production
of inflammatory molecules that stimulate lipid peroxidation (Chen
X. et al., 2021; Chen Y. et al., 2022; Sun et al., 2020). Ferroptosis is
linked to inflammatory signaling pathways. Triggering ferroptosis
with erastin or RSL3 activates the JAK-STAT pathway through IFN-
γ in tumor cells (Barrat et al., 2019; Kong et al., 2021). The JAK2-
STAT3 signaling pathway positively correlates with hepcidin
expression, influencing systemic iron metabolism through
regulation (Yang L. et al., 2020; Ren et al., 2021; Kowdley
et al., 2021).

The NF-κB pathway is associated with the activation of
inflammation and the innate immune response (Hoesel and
Schmid, 2013). Ferroptosis is mediated by the NF-κB signaling
pathway, which is activated by ferroptosis inducer RSL3,
regulating System Xc

− transmission and interacting with heme

oxygenase 1 to metabolize heme and ferrous iron (Pulkkinen
et al., 2011; Ryter, 2021). NF-κB signaling promotes ferritin
heavy chain 1(FTH1) expression in response to TNF-α (Kou
et al., 2013). Ferritin light chain expression (FTL) increases in
lipopolysaccharide (LPS)-stimulated macrophages, limiting NF-κB
signaling and reducing TNF-α, IL-1β, and inflammation (Zarjou
et al., 2019).

Inflammasomes have a strong correlation with lipid
peroxidation. NLRP3 inflammasomes upregulated in response to
GPX4 inhibition, linked to lipid peroxidation (Xie et al., 2022).
Inhibition of NLRP3 reverses oxidative stress in a lipid peroxidation
model (Orecchioni et al., 2022). Suppressing NLRP3 led to increased
GPX4, elevated GSH levels, and reduced phospholipid peroxides
(Meihe et al., 2021). The cGAS-STING pathway interacts with
ferroptosis, inducing oxidative stress and STING translocation.
STING inhibition decreases ferroptosis sensitivity (Li C. et al.,
2021). Ferroptosis from high iron diet and GPX4 deficiency can
cause pancreatic cancer in mouse models, affecting cGAS-STING
signaling (Dai et al., 2020).

The MAPK pathway triggers ferroptosis through inflammatory
activation, inducing pro-inflammatory cytokines, suppressing
GPX4 and System Xc

−, and leading to neuroinflammation and
cell death (Zhu et al., 2021). Excessive iron activates ERK1/2 and
p38, causing oxidative stress and peroxide formation through the
MAPK pathway (Salama and Kabel, 2020; Ikeda et al., 2019).
Application of antioxidants resulted in the inhibition of the
MAPK pathway and a reduction in peroxide concentration (Fu
et al., 2018; Cavdar et al., 2020).

2.6 Hypoxia and ferroptosis

Hypoxia is a physiological reaction that occurs due to various
internal or external conditions (Tano and Gollasch, 2014; Chen
G. et al., 2022; McClelland and Scott, 2019). Within the hypoxic
environment, some distinct signaling pathways are triggered,
mostly through the mediation of hypoxia-inducible factor
(HIF) (Schito and Semenza, 2016; Kaelin and Ratcliffe, 2008).
Oxidative stress increases under hypoxia and ROS accumulation
is the main cause of ferroptosis (Honda et al., 2019). The HIFs
family has three isoforms: HIF-1, HIF-2, and HIF-3. HIF-1 forms
in extreme oxygen deprivation, while HIF-2 forms in moderate
oxygen deprivation (Koh and Powis, 2012; Cowman and
Koh, 2022).

The HIFs family has three isoforms: HIF-1, HIF-2, and HIF-
3. HIF-1 forms in extreme oxygen deprivation, while HIF-2 forms
in moderate oxygen deprivation (Zheng X. et al., 2023). The
inhibiting impact of this substance affects both normal cells and
malignant cells (Kumar and Choi, 2015; Pan et al., 2021). HIF-1α
prevents ferroptosis by stabilizing SLC7A11 and activating
hypoxia response elements that control glutathione
metabolism (Hu et al., 2022; Lin Z. et al., 2022). HIF-2α acts
as a positive regulator of ferroptosis (Johansson et al., 2017;
Singhal et al., 2021). HIF-2α triggers ferroptosis by activating
genes like ACSL4 Cigarette smoke exposure boosts HIF-2α,
leading to myotube apoptosis (Zhang L. et al., 2022). Further
investigation is needed to investigate the diametrically opposite
effects of HIF-1α and HIF-2α.
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2.7 Antioxidation mechanism

2.7.1 Vitamin E (α-tocopherol)
α-tocopherol is a free radical-trapping antioxidant that blocks

peroxidation propagation and inhibits phospholipid peroxide
accumulation (Burton and Ingold, 1981; Traber and Atkinson,
2007; Ingold and Pratt, 2014). By competitively binding PUFAs
and scavenging hydroxyl radicals, α-tocopherol has been
demonstrated to block the action of LOX, hence preventing
ferroptosis (Feng and Stockwell, 2018; Angeli et al., 2017). In
vitro studies have shown thatα-tocopherol can protect
GPX4 knockout mice from ferroptosis (Kagan et al., 2017;
Friedmann Angeli et al., 2014). α-tocopherol can synergize with
GPX4 to inhibit lipid peroxidation (Carlson et al., 2016; Wortmann
et al., 2013).

2.7.2 NRF2
NRF2 is a transcription factor that controls cellular antioxidant

reactions and the effects of oxidative stress (Kajarabille and Latunde-
Dada, 2019). Reducing the expression of NRF2 enhances
vulnerability to ferroptosis (Xie et al., 2016). NRF2 additionally
governs SLC7A11 (Rosell et al., 2023). NRF2 regulates iron/
ferroheme metabolism at the metabolic level and governs the
activity of FTL and FTH1, which are crucial proteins involved in
iron metabolism (Agyeman et al., 2012; Harada et al., 2011; Kerins
and Ooi, 2018). NRF2 is also involved in regulating NADPH, GSH
and GPX4 synthesis (Jiang et al., 2024; Luchkova et al., 2024).

2.8 Epigenetic

Epigenetics is a dynamic process that includes DNA
methylation, histone modification, and non-coding RNA
(ncRNA) regulation, which allows gene expression to change
without changing the DNA sequence (Wang N. et al., 2023;
Cavalli and Heard, 2019). In addition to being impacted by
traditional signaling pathways, ferroptosis-related genes are also
controlled by epigenetic processes.

2.8.1 Histone modifications
Gene expression is determined by the structure of the

chromosome. Through acetylation, methylation, and
ubiquitination, histone modification controls the structure of
DNA (Yang M. et al., 2020). It is regulated by the
bromodomain-containing protein (BRD) family, histone
acetyltransferases (HATs), and histone deacetylases (HDACs)
(Sabari et al., 2017). BRD4 suppression or inhibitors led to
ferroptosis in tumor cells, suppressing GPX4 and System Xc

−

expression (Sui et al., 2019). Histone acetylation stimulates
transcription, while deacetylation inhibits transcription (Barneda-
Zahonero and Parra, 2012). NRF2 recruits P300/CBP-associated
factor (PCAF), which regulates ferroptosis through H3K9ac levels,
controlling SLC7A11 expression (Chung et al., 2019). HDACs
inhibit epithelial-mesenchymal transition (EMT) markers’
expression in cancer cells, resulting in ferroptosis initiation (Liu
L. et al., 2021; Lee J. et al., 2020). Histone methylation regulates
transcription by modifying H3 and H4 histone N-terminal lysine/
arginine residues (Yi et al., 2017a; Yi et al., 2017b). Histone

methyltransferases are enzymes that add methyl groups to
specific sites on histone proteins, including H3K4 and H3K9 (Li
et al., 2019). He elevated expression of GPX4 in cancerous cells could
be attributed to the augmented abundance of H3K4me3 in its
promoter region (Ma M. et al., 2022). Increasing
H3K4me3 abundance upregulates Acyl-CoA Synthetase,
suppressing ferroptosis (Zhang et al., 2020). The expression of
SLC7A11 is tied to histone 2A ubiquitination and histone 2B
ubiquitination (Ling et al., 2022; Horniblow et al., 2022).

2.8.2 DNA methylation
DNA methylation plays a crucial role in the ferroptosis process

as it regulates the synthesis of PUFAs and levels of ROS (Jiang et al.,
2017; Lee JY. et al., 2020). DNA methylation represses gene activity
related to lipid peroxidation, preventing ferroptosis, and inactivates
GPX4 promoter causing cellular ferroptosis (Zhang J. et al., 2022;
Ling et al., 2022). Methylation is controlled by ferroptosis, which
occurs in iron-rich environments and affects NRF2(213).

2.8.3 Noncoding RNAs
MiRNAs regulate epigenetic inheritance by binding to 3′UTRs

and interfering with mRNA translation (Zhang and Liu, 2021).
Research has shown that miRNAs target proteins that regulate iron
metabolism, leading to ferroptosis (Li X. et al., 2021; Wei et al.,
2021). In addition, miRNAs can also inhibit System Xc

− and
GPX4 expression to promote ferroptosis (Fan et al., 2021; Xu
et al., 2020; Deng et al., 2021; Yadav et al., 2021; Ding et al.,
2020). Researchers focus on Circular RNAs (circRNAs), which
counteract miRNA inhibition on GPX4 expression through
endogenous competition (Xu et al., 2020; Chen W. et al., 2021).
CircRNA can also act as a sponge for miRNA, resulting in the
upregulation of SLC7A11 expression (Wu et al., 2021). Long non-
coding RNAs (lncRNAs) can directly interact with the p53 gene and
trigger ferroptosis via the p53-GPX4 axis (Chen C. et al., 2021).
Additionally, lncRNAs can indirectly facilitate ferroptosis by
promoting apoptosis (Wang Z. et al., 2021).

Multiple mechanisms are involved in the epigenetic regulation
of ferroptosis, as stated in conclusion. In addition, there are
inextricable connections between its systems, which are
consistent areas that require additional research.

3 Ferroptosis and other cell
death pathways

3.1 Ferroptosis and autophagy

Lysosomes are attached to autolysosomes during autophagy in
order to facilitate cellular turnover and metabolism. The breakdown
of internal metabolic activities during autophagy results in the
creation of autophagosomes (Luo and Tao, 2020; Zhou et al.,
2020). There is growing evidence that ferroptosis requires
autophagy’s involvement (Mizushima and Levine, 2020). T
Ferroptosis-inducing medications can cause GPX4 degradation by
autophagy, which is subsequently mediated by the enzyme acid
sphingomyelinase, which is essential for the metabolism of
sphingolipids (Thayyullathil et al., 2021). Autophagy causes the
amount of free iron in the bodies of mice with subarachnoid
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hemorrhage to increase, which leads to ferroptosis of free iron in
their bodies grow, which ultimately results in ferroptosis (Patil et al.,
2021). A few results that are comparable to one another demonstrate
that autophagy increases ferritin degradation (Hou et al., 2016; Liu
et al., 2020b; Tian et al., 2020; Ma et al., 2017).

3.2 Ferroptosis and pyroptosis

Pyroptosis is an inflammatory form of cell death that relies on
the involvement of caspases (Chen et al., 2019). It is characterized by
a similar pattern to ferroptosis, involving membrane damage,
accompanied by ROS accumulation and iron dependence (Xu R.
et al., 2021). ROS, via iron-dependent activation, facilitate caspase-
related pathways, leading to the degradation of ferritin and the
initiation of pyroptosis (Zhou et al., 2018).

3.3 Ferroptosis and cuproptosis

Cuproptosis is characterized by an aberrant metabolism of
copper ions. High levels of copper ions can lead to protein
toxicity, which can ultimately result in the death of cells
(Tsvetkov et al., 2022). Mitochondria link ferroptosis with
cuproptosis. Mitochondria play a significant role in the
production of ROS and directly contribute to cell death caused
by iron. Additionally, in the mitochondrial TCA cycle, the process of
glutaminolysis, which leads to a shortage of cysteine, is also
responsible for cell death caused by iron (Gao et al., 2019b).
Observations revealed morphological alterations in mitochondria
affected by cuproptosis, with mitochondrial respiration and acting a
significant part in this process (Tang et al., 2022). Furthermore, GSH
serves as a central point linking iron toxicity with copper toxicity. A
study has proven that the drugs sorafenib and erastin, which are
ferroptosis inducers, increase cell death in primary hepatocellular
carcinoma cells when combined with a copper ionophore (WangW.
et al., 2023). This effect is achieved by decreasing the synthesis of
GSH. GSH also forms a complex with copper to decrease the buildup
of copper within cells (Liu and Chen, 2024).

3.4 Ferroptosis and apoptosis

Apoptosis in programmed cell death is one of the most
intensively studied. Initiation of apoptosis activates caspase (Yuan
and Ofengeim, 2024). Caspases can cause cells to form apoptotic
typical morphology, such as nuclear lysis and rounding of the cell
shape (Rajagopalan et al., 2024). Ferroptosis was discovered as a
novel programmed cell death independent of apoptosis because it
caused cell death without caspase activation and could not be
reversed by caspase inhibitors (Wu P. et al., 2023). But recent
studies have found an inextricable link between iron death and
apoptosis. For example, p53 apoptosis stimulating protein inhibitor
(iASPP) inhibits p53-induced apoptosis, while iASPP also plays an
anti-ROS role, thereby promoting Nrf2 accumulation and nuclear
metastasis (Li et al., 2020). And Nrf2 is a protective mechanism
against iron death. Perez et al. found that iron death is mutually
exclusive with apoptosis (Perez et al., 2020). In addition, erastin

induced p53 to promote apoptosis in A549 lung cancer cells (Huang
et al., 2018). Erastin can also induce oxidative stress and cause
caspase-9-dependent cell death (Huo et al., 2016).

4 Ferroptosis and orthopedic disease

The relationship between ferroptosis and disease is a hot
research direction in recent years. The development of skeletal
system disorders has also been widely documented to be strongly
associated with iron death. In addition, multiple regulatory
mechanisms of ferroptosis also play a critical role in the
progression of skeletal system diseases. Therefore, we will discuss
how ferroptosis affects the occurrence and outcome of bone diseases
in this section, and try to enrich clinical treatment strategies through
the exploration of the mechanism of iron death in seven bone
diseases (Figure 3).

4.1 Iron metabolism in bone and cartilage

Chondrocytes are the only cells that constitute articular cartilage
and act to be responsible for the metabolism of the extracellular
matrix (ECM) (Pettenuzzo et al., 2023). Studies have demonstrated
that chondrocytes, which are affected by inflammation, tend to
accumulate ROS and havemodified expression of ferroptosis-related
proteins in models of OA. More precisely, the expression of
GPX4 and SLC7A11 in chondrocytes was reduced when
inflammation was triggered by IL-1β and by creating a simulated
iron overload environment. Utilizing ferroptosis inhibitors resulted
in a decrease in ROS levels and a reduction in cytotoxicity (Yao et al.,
2021). Another study revealed that inflammatory stimuli can disturb
the iron equilibrium in chondrocytes. The expression of TfR1 was
upregulated while the expression of FPN was downregulated in
chondrocytes after treatment with IL-1β and TNF-α. An excess
amount of iron in cartilage leads to the destruction of cartilage,
resulting in oxidative stress and damage to the mitochondria (Jing
et al., 2021).

4.2 OA

From the aforementioned investigations, it is evident that there
is a strong correlation between the occurrence of OA, characterized
mostly by cartilage destruction, and iron depletion. Oa is a closely
related disease to age and a disease that is easily disabling in chronic
diseases. Inflammation, cartilage degeneration, and synovial
hyperplasia can be seen in OA. Abnormal iron metabolism can
directly contribute to OA by causing inflammation, in addition to
the indirect damage to cartilage that is commonly associated with
the condition (Burton et al., 2020). Elevated ferritin levels are one of
the risk factors for OA. Imaging analysis showed a positive
correlation between ferritin levels and the severity of arthritis
(Cai et al., 2021; Kennish et al., 2014). One element affecting
older patients’ morbidity is gender. Research has shown that OA
affects older women on more occasions than older males, and that
this difference is related to postmenopausal estrogen levels (Ko and
Kim, 2020). Nonetheless, ferritin levels are negatively connected
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with estrogen levels, and iron levels in the serum of postmenopausal
women are 200%–300% higher than those of non-menopausal
women, according to current research. Because of this
distinction, postmenopausal women experience a much higher
prevalence than do men (Park et al., 2012; Zhang et al., 2001; Ke
et al., 2021). There is a substantial correlation between blood
problems and OA, according to a Mendelian randomization
study (Xu J. et al., 2022). Hemophiliac individuals have an
increase in red blood cells in the joint space because of
continuous methemoglobin release and prolonged bleeding,
which causes iron accumulation and ferroptosis (van Vulpen
et al., 2018; Bhat et al., 2015). Patients with hemochromatosis

who have OA have also been observed to accumulate iron in the
joint space; dysmorphic cartilage has been restored after excess iron
has been removed (Richette et al., 2010; Heiland et al., 2010).

The mechanism of OA resulting from ferroptosis involves
inhibition of antioxidant pathways. In OA, inhibition of
GPX4 and SLC3A2 expression has been shown (Liu H. et al.,
2022; Miao et al., 2022). ECM degrades when GPX4 expression
is suppressed (Miao et al., 2022). Type II collagen (collagen II) was
also expressed in ECM by ferroptosis inhibitors, and this process was
reversed after ferroptosis inhibitor treatment (Yao et al., 2021).
Activation of Nrf2 can also prevent ferroptosis (Xu C. et al., 2022). In
addition, HIF-2α stimulates lipid peroxidation and suppresses

FIGURE 3
Schematic representation of the mechanisms by which ferroptosis regulates seven skeletal diseases. ATF3: Activating Transcription Factor 3;
CircBLNK: circular RNA; DEPDC5: DEP Domain Containing 5; DFO: Deferoxamine; ECM: Extracellular matrix; ERS: Endoplasmic Reticulum Stress;
GRP78: Glucose regulatory protein 78; GSK-3β: Glycogen Synthase Kinase 3 Beta; Hif-2α: Hypoxia Inducible Factor 2 Subunit Alpha; HMOX1: Heme
Oxygenase 1; IL-1β: Interleukin 1 Beta; MAPK: Mitogen-Activated Protein Kinase; MSU: monosodium urate; NLRP3: NLR Family Pyrin Domain
Containing 3; NOX: nitrogen oxides; NP: Nucleus pulposus; OB: Osteoblast; OC: osteoclast; RANKL: Receptor Activator of Nuclear Factor-κB Ligand;
Runx2: RUNX Family Transcription Factor 3; Sirt3: Sirtuin 3; TNF-α: Tumor Necrosis Factor Alpha; UA: urine acid; UPR: unfolded protein response; USP11:
Ubiquitin Specific Peptidase 11; XO: xanthine oxidase; ZEB1: Zinc Finger E-Box Binding Homeobox 1.
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GPX4 and SLC7A11 to facilitate chondrocyte ferroptosis (Zhou
et al., 2021). Piezo1, a mechanosensitive ion channel, is also involved
in iron metabolism in OA by inhibiting the GSH-GPX4 axis (Wang
S. et al., 2022; Ma et al., 2021). Overall, ferroptosis in OA involves
multiple aspects. Among them, inflammation and antioxidant
inhibition are the main causes of OA.

4.3 AS

AS is a rheumatic bone disease caused by inflammation. The
location of AS is centered on the sacroiliac joint and affects the
surrounding joints (Thomas and Brown, 2010; Rostom et al., 2010).
The main symptom of AS is inflammatory spinal pain, accompanied
by bone erosion and ligamentous osteophytes (Tam et al., 2010).
Although ferroptosis caused by lipid peroxidation is rarely reported
in AS, it is not difficult to find from the study of specific serum
proteomics and metabolome student markers in AS patients that the
main reasons affecting ferroptosis in AS are iron levels and oxidative
stress response. Studies have reported that serum TfR1 levels are low
in AS patients, while platelet iron content remains high (Fischer
et al., 2012; Feltelius et al., 1986). Decreased antioxidant capacity is
one of the characteristics of AS. A study on serum oxidation and
antioxidation in AS patients highlighted decreased antioxidant
capacity and increased oxidative stress index in AS patients
(Karakoc et al., 2007). AS patients with metabolic syndrome are
more susceptible to oxidative stress (Pishgahi et al., 2020). GPX,
which is closely associated with ferroptosis, was found to have
decreased expression in mouse models of AS (Feng et al., 2020;
Dong, 2018).

4.4 GA

GA is characterized by hyperuricemia and urate deposition
(Zhang Y. et al., 2022). Abnormal iron metabolism and
antioxidant imbalance are one of the pathogeneses of GA. A
Mendelian randomization study revealed a relationship between
ferritin and risk of gout. This study is the first to demonstrate a
positive association between serum ferritin and the risk and
frequency of gout (Fatima et al., 2018). In a study on the
association between markers of iron status and the risk of
hyperuricemia in Chinese adults, the researchers found a positive
correlation between serum ferritin, transferrin and hyperuricemia
(Li et al., 2018). The same results were found in another US National
Health and Nutrition Examination Survey (Ghio et al., 2005).
Maintaining close to iron deficiency levels has also been
demonstrated as a protective factor in GA (Facchini, 2003).
Xanthine oxidase (XO) is the only source of urate. XO enhances
its activity when combined with iron (Jomova et al., 2024; Maiti
et al., 2022). A direct relationship between iron and uric acid is
therefore concluded.

4.5 RA

The autoimmune illness RA is typified by progressive bone
damage and synovial hyperplasia. Teratogenicity in RA is caused by

pannus development, chronic inflammation, and bone loss. Recent
research has demonstrated that characteristics unique to ferroptosis
can also be seen in RA, and these discoveries have established a
connection between RA and ferroptosis. Treatment for RA may be
improved by having a better understanding of the general process of
ferroptosis in RA.

Abnormal iron metabolism is the first element leading to
ferroptosis in RA. A Mendelian randomization study of genetic
data from a large genome-wide association study of
257,953 individuals suggests that individuals with genes
associated with higher iron levels may have a lower risk of RA
(Wu, 2024). Another Mendelian randomization trial yielded similar
results, showing a negative correlation between iron intake and RA
(Wang et al., 2024a). According to a clinical investigation, RA
patients had considerably lower serum iron levels and higher
serum TFR values (Stefanova et al., 2018). Peripheral blood iron
levels are lower in patients with severe RA (Wu et al., 2022).

Another important factor in the progression of RA is ROS,
which has been shown to rise approximately fivefold in the
mitochondria from whole blood and monocytes of RA patients.
The main manifestations of ROS include increased oxidative stress
and decreased antioxidant levels (Ferreira et al., 2021). Oxidative
stress occurs when there is an imbalance between ROS production
and the body‘s antioxidant defenses. In RA, elevated ROS levels were
observed in synovial fluid, blood, and affected joint tissues. These
ROS contribute to joint inflammation and injury by promoting
activation of pro-inflammatory signaling pathways, inducing
cytokine production, and enhancing proliferation of fibroblast-
like synoviocytes (FLS). The resulting inflammatory and oxidative
damage leads to degeneration of cartilage and bone, which are
hallmark features of RA (Mueller et al., 2021). The immune
system plays a crucial role in RA, where T cells, B cells, and
macrophages contribute to a chronic inflammatory state.
Oxidative stress can affect the function and survival of these
immune cells. For example, ROS can modulate T cell activation
and differentiation, skewing immune responses toward more
inflammatory features (Hassan et al., 2011). High levels of
inflammation trigger lipid peroxidation, and excess ROS also
generate pannus at home, and such circulatory effects accelerate
the progression of RA (Phull et al., 2018; Zhou et al., 2012). During
RA, macrophages release a significant number of inflammatory
factors. TNF-α has the most intricate role among them all. One
the one hand, as previously mentioned, TNF-α can increase
inflammation by inducing ROS generation through NADPH
oxidase (Latchoumycandane et al., 2012). TNF-α has been
observed to stimulate GSH production and cystine absorption,
however. Long-term TNF exposure can prevent NADPH Oxidase
(NOX) from producing ROS, shielding FLS from ferroptosis (Wu
et al., 2022).

The endoplasmic reticulum (ER) is the major organelle
responsible for protein synthesis and lipid metabolism in
eukaryotic cells. ER stress (ERS) refers to a series of pathological
conditions such as overload of folding mechanisms and disruption
of redox balance that occur during protein synthesis in the ER
(Tabas and Ron, 2011). The unfolded protein response (UPR) is a
compensatory response initiated in the ERS state (Walter and Ron,
2011). Evidence suggests that in the setting of RA, inflammation
provokes ERS and proteins are synthesized via UPR (Park et al.,
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2014). ERS shares signaling pathways with ferroptosis, which makes
the role of ERS have to be considered when studying ferroptosis in
RA (Li C. et al., 2023). Glucose-regulated protein 78 (GRP78)
promotes aberrant protein breakdown under UPR in the ERS
state (Grootjans et al., 2016). GRP78-specific antibodies were
identified in 63% of RA patients (Bläss et al., 2001). ERS and
increased GRP78 expression can be brought on by ferroptosis
inducers. P53 functions as a tumor suppressor gene in ferroptosis
and ERS. It has been discovered that p53, which induces cell cycle
arrest to promote chondrocyte death, is substantially expressed in
RA patients (Ghosh et al., 2012; Takatori et al., 2014; Hong
et al., 2017).

4.6 OP

The skeleton of the human body is always in a state of dynamic
balance. Osteoblasts (OBs) and osteoclasts (OCs) are key players in
this balance and occupy approximately 90% of the skeletal
composition (Cui et al., 2022). Different cells are used to
differentiate OBs from OCs. Bone marrow-derived mesenchymal
stem cells (BMSCs) are the source of OBs, which is a component of
bone production. Originating from the monocyte/macrophage
lineage of hematopoietic cells, OCs is the main factor for bone
resorption and is abundant in mitochondria and lysosomes (Boyce,
2013; Kim JM. et al., 2020; Sommerfeldt and Rubin, 2001). An
imbalance between the production and resorption of bone results in
OP, a metabolic bone disease that increases the risk of fractures.
Ferroptosis is implicated in the pathophysiology of OP, according to
numerous studies (Yang et al., 2022).

BMSCs serve as precursors for the generation of OBs (Lin et al.,
2019). Runt-related transcription factor 2 (Runx2) regulates BMSCs
to promote differentiation into OBs under normal physiological
conditions. Other transcription factors that regulate differentiation
into OBs include alkaline phosphatase (ALP) and osteocalcin
(OCN) (Komori, 2022). The accumulation of body iron leads to
an increase in ferritin expression in BMSCs, which inhibits
transcription factors crucial for osteoblast development (Balogh
et al., 2016). Similar ones have now been observed in a series of
experiments: ferroptosis downregulates the OBs phenotype and
promotes OBs death (Xu P. et al., 2022; Ma et al., 2020);
inhibition of PI3K-Akt-mTOR prevented ferroptosis in BMSCs
and upregulated Runx2 and ALP expression (Lan et al., 2022a);
and several closely related pathways, including GPX4 and Nrf2, can
regulate ferroptosis in OBs (Messer et al., 2009). The OBs ferroptosis
process is also influenced by other gene expressions. In an in vitro
investigation, iron mortality was noted in OBs treated with ferric
ammonium citrate, and the genes TfR1 and DMT1, which are in
charge of cellular iron uptake, were discovered to be overexpressed
(Luo et al., 2022). In MC3T3-E1 cells, excess iron ions also increased
the expression of the apoptosis gene and NOX4 (Tian et al., 2016).

OCs differentiate under the influence of activating the receptor
activator of the nuclear factor-κB (RANK)-RANK ligand (RANKL)
pathway. RANK-RANKL is a specific representation of OCs and
reflects OCs number and activity. Research indicates that increased
RANKL expression during iron overload conditions stimulates the
development of OCs and ultimately results in OP (Yang J. et al.,
2020; Ma J. et al., 2022). RANKL-induced differentiation of OCs

involves ferroptosis, and the mechanism by which RANKL-induced
ferroptosis in OCs is mediated is ferritin autophagy. For OCs to
survive, intracellular iron levels are consequently essential. In
addition, this study discovered that HIF-1α can effectively
prevent osteopenia-related osteopenia by blocking ferritin
autophagy (Ni et al., 2021).

Hematological diseases are also one of the causes of OP involved
in ferroptosis. For example, people with hemochromatosis are more
likely to have osteopenia, and some of them even develop OP, which
is closely related to iron accumulation (Baschant et al., 2022).
Osteoporotic fractures are more common in thalassemia patients
when their bodies’ ability to excrete iron is compromised by
prolonged, frequent blood transfusions and iron buildup. Studies
of a similar nature have verified a positive correlation between the
frequency of blood transfusions and the risk of fracture (Ekbote
et al., 2021; Dede et al., 2016).

There are two types of OPs: primary and secondary. Primary OP
mostly refers to senile OP and postmenopausal osteoporosis
(PMOP), while secondary OP is primarily Diabetic osteoporosis
(DOP) and glucocorticoid osteoporosis (GIOP). Abnormal glucose
and lipid metabolism may be the pathogenesis of ferroptosis in OBs
in DOP (Chen et al., 2023). The researchers discovered that reduced
GPX4 expression in DOP bone tissue in mice led to cellular
ferroptosis. It was also verified that turning on the Nrf2/Heme
Oxygenase-1 (HO-1) pathway may undo this outcome (Ma et al.,
2020). Osteocyte mortality in DOP was successfully prevented by
focusing on ferroptosis or HO-1, which broke the vicious cycle
between HO-1 activation and lipid peroxidation (Yang et al., 2022).
Mitochondrial ferritin (FtMt) is generally considered a tool for
mitochondria to regulate free iron content. In the DOP model,
high expression of FtMt reduced iron-induced lipid peroxidation,
whereas its expression is known to instead cause mitophagy in OBs
(Wang et al., 2022b). Increased serum ferritin and decreased
GPX4 expression were also observed in the mouse DOP model.
Therefore, high glucose environment not only inhibits osteoblast
expression, exacerbates trabecular degeneration, osteopenia, but also
activates ferroptosis-related gene expression and inhibits the
antioxidant system (Lin Y. et al., 2022).

The pathogenesis of PMOP is closely related to estrogen.
Iron plays an important role in PMOP. In a study of
728 postmenopausal women, iron was found to be an
important risk factor for the onset of PMOP (Okyay et al.,
2013). Postmenopausal bone loss might be addressed by
taking dietary iron supplements within reasonable bounds
(Wylenzek et al., 2024). HIF-1α specific inhibitors have also
been found to prevent bone loss in ovariectomy (OVX).
Continuous steroid hormone administration impairs osteoblast
differentiation activity and lowers antioxidant system capacity,
which results in GIOP (Yang et al., 2021a). Patients receiving
long-term steroid therapy are more likely to have trabecular bone
destruction and osteoporotic fractures. Decreased expression
activity of GPX4 and the System Xc

− was found in the high-
dose dexamethasone-induced GIOP model (Lu et al., 2019).

Based on these findings, we conclude that there is a close
relationship between OP pathogenesis and iron metabolism, and
the mechanism also involves lipid peroxidation and oxidative stress.
Modulation of osteoblast and osteoclast ferroptosis is a potential
treatment option for OP.
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4.7 OS

Osteosarcoma (OS) is a malignant bone tumor arising from
mesenchymal cells and is mostly primary (Yu and Yao, 2024). OS
can lead to persistent joint pain, limited mobility, and even
susceptibility to lung metastases (Zhang et al., 2018).
Epidemiological adjustment reveals that the incidence of OS is
closely related to age and ethnicity. Primary OS is more common
in men and occurs in the long bones of the lower extremities, with
large variations in incidence across ethnic groups (Mirabello et al.,
2009). In addition, the age of onset tends to be more in adolescents,
which may be the result of rapid skeletal growth during adolescence,
and OS is therefore more likely to occur at the ends of long bones in
adolescents (Mirabello et al., 2011).

Studies have shown that ferroptosis can inhibit OS progression
and reduce OS chemoresistance. The status of the System Xc

−-GSH-
GPX4 axis is critical in OS progression. By inhibiting the
demethylation of H3K9me3 at the SLC7A11 promoter region in
the System Xc

−, the ability of the System Xc
− to prevent ferroptosis

can be reduced (Chen M. et al., 2021). Osteosarcoma cells are
resistant to ferroptosis because of a decrease in P53, one of the
tumor suppressor genes. P53 binding to SLC7A11 is inhibited and is
the main cause (Wang and Pan, 2023). Zinc finger structure E-box-
binding homeobox 1 (ZEB1) is involved in lipid metabolism in vivo.
Overexpressed ZEB1 leads to ROS accumulation (Liu et al., 2023). In
transcriptomic experiments, mitochondria from the knockdown
ZEB1 group showed ferroptosis-like changes and were involved
in the ferroptosis process in OS (Jiacong et al., 2023).

NcRNAs are also involved in the process of ferroptosis. It was
shown that genes inhibiting ferroptosis were repressed following
miR-206 overexpression in OS cell lines, whereas genes promoting
ferroptosis were increased than expression (Li L. et al., 2023). MiR-
188-3p targets GPX4 and its expression is reduced in OS tissues,
which contributes directly to ferroptosis in OS (Li Z. et al., 2023).
LncRNAs can modulate OS resistance and resist OS metastasis
(Argenziano et al., 2021). Despite the fact that circRNAs
development and cognition are still in their infancy, there is
evidence linking circRNAs to tumor metastasis and progression
(Zhang et al., 2019). It has been shown that circBLNK and GPX4 are
significantly upregulated in OS tissues, promote OS progression, and
avoid OS cell ferroptosis (Li Z. et al., 2023).

4.8 IVDD

As a degenerative disease, IVDD is the main cause of cervical
and low back pain, and about 80% of low back pain is related to
IVDD (Li et al., 2024b). Nucleus pulposus (NP) and annulus
fibrosus (AF) are the main components of the intervertebral disc
and are the main responsible for intervertebral disc function (Le
Maitre et al., 2015). Although IVDD is an age-related degenerative
disease, current studies suggest that ferroptosis plays an important
role in it.

Ferroptosis is involved in IVDD throughmultiple pathways. The
first is to affect normal physiological function by interfering with
iron metabolism. Patients’ disc tissue showed reduced expression of
FTH (Yang et al., 2021b). Additionally, there was an iron-dose
dependent degeneration of cartilage endplates (Wang W. et al.,

2022). When FPN is dysfunctional in IVDD, intracellular iron is
excessive, which aggravates ferroptosis-induced IVDD (Lu et al.,
2021). Some small molecule compounds, such as amino acids,
enzymes, and transcription factors, which target the regulation of
lipid metabolism and anti-oxidation are also involved in the process
of ferroptosis in IVDD. Homocysteine (Hcy), derived from
methionine and cysteine, is an important substance in cellular
physiology (Mudd et al., 1985). Hcy can cause many
musculoskeletal diseases through cellular ferroptosis (Koh et al.,
2006; Fayfman et al., 2009). Epidemiological investigation,
hyperhomocysteinemia is an important risk factor for IVDD.
Inhibition of GPX4 methylation prevented Hcy-guided oxidative
stress and ferroptosis (Fan et al., 2023). Activating transcription
factor 3 (ATF3) is a member of the ATF/CREB family of
transcription factors responsible for regulating signaling pathways
and cellular metabolism (Rohini et al., 2018). It has now been
demonstrated that ATF3 is a positive regulator of ferroptosis
(Wang et al., 2020). In tumor cells, ATF3 can inhibit System Xc

−

expression, and inhibit GPX4 and induce ferroptosis (Wang Y. et al.,
2021). Results of a bioinformatics experiment revealed that
ATF3 gene differences were located in the fourth place in the
hub ferroptosis gene ranking in the spinal cord injury model
(Gupta et al., 2023). And clinical observations have also found
that ATF3 is highly expressed in IVDD, and the mechanism is
through the inhibition of SLC7A11 and SOD2 (Li Y. et al., 2022).

Angiogenesis of vascularized granulation tissue is a major
feature of IVDD, and much neovascularization is also responsible
for keyboard tissue degeneration. Angiogenic vascularized
granulation tissue is a major feature of IVDD, and many new
vessels are found in NP and are also responsible for disc tissue
degeneration (Xiao et al., 2020). As such, hemoglobin numbers were
significantly higher in NP than in other surrounding tissues. When
IVDD occurs, the iron content in NP is too high, which is the main
cause of aggravated ferroptosis (Shan et al., 2021). Notably, HO-1
has a dual regulatory role in ferroptosis. As an antioxidant, it can
inhibit ferroptosis, but at the same time, it is characterized by iron
concentration dependence, which activates ferroptosis at high iron
content (Fang et al., 2019; Adedoyin et al., 2018). A simultaneous
increase in HO-1 and iron accumulation was found in the rat IVDD
model (Zhang et al., 2021), and clinical studies have also confirmed
increased HO-1 expression in NP(358). Such results are strongly
associated with neovascularization. As one of the regulatory heme
transcription factors, BTB Domain And CNC Homolog 1 (BACH1)
expression is closely associated with IVDD. In vivo experiments
confirmed that knockdown of BACH1 could increase GPX4 and
SLC7A11 expression in IVDD, thereby inhibiting ferroptosis (Yao
et al., 2023). Sirtuin 3 (Sirt3) is a critical regulator of ROS. High
expression of ubiquitin-specific protease 11 (USP11) alleviates
ferroptosis caused by oxidative stress. Sirt3 has been found to
increase oxidative stress and induce ferroptosis to promote
IVDD, while USP11 can bind to Sirt3 and stabilize Sirt3 to slow
IVDD progression (Zhu et al., 2023a).

Epigenetics also regulates ferroptosis in IVDD. MiR-10A-5p
mediated overexpression of IL-6R in disc cartilage is responsible for
ferroptosis in IVDD (Bin et al., 2021). Circ0072464 downregulation
and miR-431 upregulation were observed in IVDD, and this result
triggered high NRF2 expression, thereby promoting NP
proliferation to alleviate IVDD and improve prognosis (Yu et al.,
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2022). MiR-672-3p promotes ferroptosis during spinal cord injury
by downregulating ferroptosis suppressor protein 1 (FSP1) (Wang F.
et al., 2022). As a competitive RNA for miR-5627-5p,
lncGm36569 induced upregulation of FSP1 to alleviate ferroptosis.

5 Targeted therapies in bone diseases
affected by ferroptosis

According to the characteristics of ferroptosis and its
mechanism of action in bone diseases, it is necessary to find
suitable and efficient treatment options for bone diseases caused
by ferroptosis. According to the previous discussion, it is known that
antioxidant disorders and iron metabolism disorders are the
underlying mechanisms of ferroptosis, so therapeutic regimens
targeting these two aspects are worthy of in-depth study.
Currently relevant treatment options have been reported several
times, but an overview of their overall is lacking. Therefore, we try to
summarize the current treatment ideas through the content of this
part, hoping to help the experimental and clinical application.

5.1 Treatment strategies for OA

Cartilage damage is a cardinal feature of OA. As mentioned above,
cartilage damage is caused by nothing more than abnormal ROS
production and iron metabolism. Regulation of iron metabolism can
affect chondrocyte survival. Iron chelators are drugs that are effective
against diseases caused by iron accumulation. Iron load is a marker of
ferroptosis, so rational use of iron chelators is an effective treatment to
cope with ferroptosis. For clinical application, three iron
chelators—Deferoxamine (DFO), deferasirox (DFX), and deferiprone
(DFP)—have been approved (Mobarra et al., 2016). DFO is an iron
chelator approved by the US Food and Drug Administration. DFO was
shown to prevent IL-1β-induced upregulation of matrix
metallopeptidase 13 (MMP13), and this result also indirectly
confirmed that iron is involved in chondrocyte apoptosis in OA
(Jing et al., 2020). DFO can also reverse MMP13 activation triggered
by erastin, an ferroptosis inducer, and reduce protection against
chondrocyte injury by promoting NRF2 pathway activation (Guo
et al., 2022). In addition, after DFO treatment, cartilage under
hypoxia showed higher ultimate tensile strength and pyridinoline (a
collagen protein of mature articular cartilage), although the aim of this
finding was to evaluate themechanical properties of new cartilage, it can
also be seen from the results that regulating iron content has far-
reaching significance for cartilage tissue (Otarola et al., 2022). In a
mouse model, it was found that by intra-articular injection of
ferrostatin-1 (an ferroptosis inhibitor), the NRF2 system is activated,
attenuating IL-1β-induced ROS accumulation and relieving
chondrocyte breakdown, which is a new way to treat OA (250).
Another animal experiment also demonstrated that mitochondrial
morphology was restored in chondrocytes undergoing ferroptosis
after joint injection of ferrostatin-1 and astaxanthin, and collagen II
was upregulated due to attenuation of IL-1β (Wang et al., 2022e).
Hypoxic environment impacts the body in a complex state, as
mentioned above. Several recent studies have focused on the key
role of HIF in OA progression (Gonzalez et al., 2018). D-mannose,
an isomer of glucose, has been reported to inhibit LPS-induced IL-1β

production, which is considered an effective treatment for OA (Torretta
et al., 2020). Recent studies have confirmed that D-mannose can inhibit
HIF-1α-mediated ferroptosis in chondrocytes (Zhou et al., 2012). HIF-
2α is also a non-negligible factor in OA progression. Relevant studies
have confirmed that HIF-2α can lead to cartilage destruction by
affecting the expression of genes responsible for metabolism in
chondrocytes (Saito et al., 2010; Yang et al., 2010; Yang et al., 2015).
D-mannose can inhibit HIF-2α to reduce the sensitivity of chondrocytes
to ferroptosis (Zhou et al., 2021). Moreover, D-mannose inhibited OA
degeneration brought on by IL-1β in rat chondrocytes by triggering
autophagy via the AMPK pathway (Lin Z. et al., 2021). Some medicinal
ingredients from traditional Chinese medicine are also widely used to
treat OA. Icariin, the main component of herb Epimedium, has been
demonstrated to reduce the expression of IL-1β, MMP, andGRP78, and
its mechanism of action is to activate the System Xc

−/GPX4 pathway to
inhibit ferroptosis (Luo and Zhang, 2021; Pan et al., 2017). Stigmasterol,
the main component of Achyranthes bidentata, also acts on IL-1β to
reduce its chondrocyte damage and regulates ferroptosis through sterol
regulatory elements combined with transcription factor 2 (Mo et al.,
2021). Intra-articular injection of Cardamonin, one of the extracts of
ginger, also inhibited IL-1β-mediated cartilage explanation and
regulated ferroptosis through the p53 pathway (Gong et al., 2023).

5.2 Treatment strategies for AS

There are few reports on the treatment of AS in ferroptosis, but a
number of studies have dominated the prediction of ferroptosis
genes closely related to AS. With these predicted genes as primary
target points, therapeutic strategies for AS can be identified. Li et al.
constructed a protein network of ferroptosis and AS and collected
gene expression profiles of AS patients through the GEO database,
and concluded that DNA Damage Inducible Transcript 3 and Heat
Shock Protein Family B (Small) Member 1 are target genes for
inducing ferroptosis in AS cells after enrichment analysis (Li Q.
et al., 2022). Another analysis identified Small Ubiquitin Like
Modifier 2 and NADH:Ubiquinone Oxidoreductase Subunit S4 as
hub genes for ferroptosis in AS cells by constructing differential gene
and protein networks (Rong et al., 2022). Dong et al. screened
Chloride Intracellular Channel 4 and Tripartite Motif Containing 21
(TRIM21) as key genes in ferroptosis-regulated AS by using a disease
prediction model for differential genes involved in cell death, with
TRIM21 expression elevated in male patients (Dong et al., 2024). It
has been established that acrylamide raises the risk of AS. Several
cancers are caused by aflatoxin, which is produced when food is
heated. Additionally, it can raise the risk of AS by causing
autophagy-dependent ferroptosis. It is therefore advised to limit
the sources of acrylamide in meals (Wang H. et al., 2023).

5.3 Treatment strategies for GA

Inflammation and ROS are key factors in the pathogenesis of GA
and the mechanism of ferroptosis. Targeting ROS-NLRP3 for GA is
the primary strategy. Multiple ROS-NLRP3 blockers have been
demonstrated to treat GA (Zhang et al., 2024). Multiple natural
medicines have proven effective in treating GA. Carvacrol blocked
ROS-NLRP3-mediated inflammation, decreased oxidative stress,
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and decreased uric acid levels in GA patients (Riaz et al., 2022). The
natural flavonoid compound rutin was demonstrated to inhibit ROS
production and inhibit ROS-NLRP3 inflammatory activation
thereby improving joint swelling in a quail GA model (Wu H.
et al., 2023). The non-coding RNA lncRNA ZNF883 is one of the
key genes identified as ferroptosis leading to GA (Shao et al.,
2024). Targeting lncRNA Zinc Finger Protein 883 to treat GA is
therefore a drug worth investigating. Targeted modulation of XO
is another way. DEP Domain Containing 5 (DEPDC5) subunit
deficiency can lead to increased XO and ROS accumulation, which
leads to ferroptosis (Li S. et al., 2024). Targeting DEPDC5
pharmaceuticals may be one way to treat GA. Drugs observed
from models in which non-ferroptosis leads to GA also decrease XO
levels, suggesting that these are potential agents for the treatment of GA.
Artemisia argyi essential oil could decrease XO and upregulate GPX4 in
the hepatic ferroptosis model induced by bisphenol A (Cui et al., 2023).
Empagliflozin, a selective inhibitor of sodium-glucose cotransporter 2,
alleviated doxorubicin-induced myocardial ferroptosis and decreased
XO expression (Quagliariello et al., 2021). The results of transcriptomic
and metabolomic analysis showed that exposure to PM2. Five
environment reduced antioxidant capacity, increased XO expression,
and ultimately led to ferroptosis in mice. Avoiding PM2. Five is
therefore also one of the ways to prevent GA resulting from
ferroptosis (Shi et al., 2022).

5.4 Treatment strategies for RA

Inhibition of synovial hyperplasia to restore synovial
homeostasis is an effective treatment for RA (Sandhu and
Thelma, 2022). Antioxidant dysregulation due to FLS is a risk
factor for RA. Promoting ferroptosis in FLS has therefore
emerged as a way to treat RA. Imidazolone erastin (IKE) and the
TNF antagonist etanercept induced ferroptosis in FLS and reduced
RA symptoms (Wu et al., 2022). Glycine can promote FLS
ferroptosis through S-adenosylmethionine mediated methylation
of the GPX4 promoter (Ling et al., 2022). Asiatic acid can die
from its FLS iron by increasing Fe2+ (Sun et al., 2024). Quercetin is a
natural flavonoid, and cells treated by quercetin not only showed
inhibition of FLS proinflammatory ability, but also showed that
caspase-8 levels, a marker of ferroptosis, could be reduced (Zheng Q.
et al., 2023). In addition to natural medicines, drugs targeting FLS
modulation have now been developed and proven effective.
Cathepsin B is a protease involved in joint injury and is highly
expressed in articular cartilage in RA. Its inhibitor CA-074Me
inhibited FLS proliferation and promoted FLS ferroptosis (Luo
et al., 2024). Sulfasalazine, as a treatment for AS, has been shown
to promote ferroptosis in FLS in RA (Zhao et al., 2024). Several
differential gene analyses yielded genes involved in regulating
ferroptosis in FLS. Several differential gene analyses yielded genes
involved in regulating ferroptosis in FLS. Wang et al. analyzed eight
ferroptosis genes associated with RA, of which TIMP
Metallopeptidase Inhibitor 1 was significantly expressed in FLS
(Wang et al., 2024b). Jing et al. identified SLC2A3 as highly
expressed in FLS by bioinformatics methods and machine
learning algorithms and experimentally verified that FLS treated
with RSL3 exhibited SLC2A3 downregulation and underwent
ferroptosis (Xiang et al., 2023). Therefore, it is well documented

to treat differential genes. Nuclear Receptor Coactivator 4 (NCOA4)
mediates LPS-induced ferroptosis in FLS and targeting NCOA4may
be an effective strategy for the treatment of RA (Wang Y.
et al., 2024).

In addition to targeting FLS, ways to interfere with ferroptosis
for RA have also been mostly reported. An injectable gel composed
of folic acid-functionalized polydopamine and leonurine (Leon)
inhibits joint inflammation caused by macrophages and protects
cartilage from ferroptosis (Lv et al., 2024). It is a novel way to treat
RA by carrying Fe3O4 and sulfasalazine by using macrophages as
carriers (Ruan et al., 2024). In this experiment, macrophage carriers
could be transported to sites of RA inflammation guided by
inflammatory factors and under near-infrared light irradiation,
Fe3O4 converted light energy to heat energy. This synergistic
effect, instead, predisposes inflammatory cells and proliferating
synovium to ferroptosis, thereby achieving the effect of treating RA.

5.5 Treatment strategies for OP

BMSCs are an important source of OBs and OCs differentiation
is influenced by RANKL. When OP develops, OBs differentiation is
inhibited, and OCs differentiation is enhanced. Targeting BMSCs
and RANKL is therefore a way to treat OP. Ferroptosis has been
mostly reported to affect BMSCs and RANKL, and OP based on
ferroptosis is a hot area of current research.

As a naturally occurring phenolic chemical, Picein enhances
BMSCs’ capacity for osteogenic differentiation while reducing
oxidative stress caused by erastin via the Nrf2/HO-1/
GPX4 pathway (Huang et al., 2024a). Overexpression of
Crystallin Alpha B (CRYAB) increased OCN and
Runx2 expression and increased ALP activity in BMSCs. Further
experiments verified that CRYAB could interact with FTH1, inhibit
ferroptosis of BMSCs, and promote osteogenic differentiation (Tian
et al., 2024). BMSCs induced by high glucose and high fat
environments exhibited bone degradation and ferroptosis, but
this was reversed by poliumoside. When poliumoside was used in
the T2DOP mouse model, increased bone mineral density and
GPX4 expression were observed in the distal femur of mice,
which also confirmed its effectiveness with cellular experiments
(Xu et al., 2024). Based on a DNA tetrahedral nanoparticle involved
in curcumin, tFNA-Cur, could inhibit ferroptosis in BMSCs and
promote osteogenic differentiation in diabetic environment through
Nrf2/GPX4 pathway (Li et al., 2024d). Ebselen is a selenium-
containing organic drug molecule that can act as a mimetic of
GPX. The experiment verified that Ebselen improved the ferroptosis
and osteogenic differentiation inhibition status of BMSCs induced
by LPS (Huang Z. et al., 2023). Engeletin, as an endogenous
antioxidant, can promote osteogenic differentiation of BMSCs
and upregulate osteogenesis-related proteins, which has achieved
the effect of counteracting ferroptosis (Huang L. et al., 2023).
Tocopherol as an antioxidant can reduce oxidative stress in
BMSCs, promote osteogenesis-related protein expression, and
inhibit ferroptosis in BMSCs (Lan et al., 2022b). Vitamin K2 has
been used clinically to prevent OP. In cell experiments, vitamin
K2 reversed ferroptosis and upregulated osteogenic marker
expression in BMSCs under high glucose conditions (Jin
et al., 2023).
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In addition, novel medical devices have been developed to target
the inhibition of osteogenic differentiation caused by ferroptosis.
Targeted regulation of BMSCs metabolic status is a critical point to
promote osteoblast differentiation. Therapeutic protocols targeting
BMSCs metabolism were therefore designed and experimentally
confirmed. Yang designed a titanium implant coated with caffeic
acid and DFO. Titanium implants were implanted into the femoral
epiphysis of OVX rats, and it was observed that titanium implants
promoted new bone formation after 1 month. Its mechanism of
action is to reduce the lipid peroxidation level of BMSCs by
activating the KEAP1/NRF2/HMOX1 pathway and to activate
and promote the SLC7A11/GSH/GPX4 axis to inhibit BMSCs
ferroptosis (Yang Y. et al., 2024). Bone cement is commonly used
to treat OP fractures. However, its cytotoxic properties make it likely
to have an impact on osteogenic differentiation. A composite PDT-
TCP-SE based on polylactide-based copolymer (PDT), β-tricalcium
phosphate (β-TCP), and selenium nanoparticles (SeNPs) was
developed to replace the application of traditional bone cements.
It was found that PDT-TCP-SE could protect BMSCs from erastin-
induced ferroptosis through Sirt1/Nrf2/GPX4 antioxidant pathway
and had the effect of regulating new osteogenesis at OP fracture site
(Huang et al., 2024b).

Saikosaponin A, a component of the natural medicine
Bupleurum falcatum, can inhibit RANKL-induced OCs
production and inhibit the Nrf2/SCL7A11/GPX4 axis to promote
ferroptosis in OCs (Li TQ. et al., 2024). Zoledronic acid is a
bisphosphonate that blocks ferrostatin-1 ‘s ability to induce
osteoclast death. Moreover, the expression of ferroptosis-related
expression in OCs treated with zoledronic acid was significantly
increased, and these results indicated that zoledronic acid could
puncture osteoclast ferroptosis (Qu et al., 2021). Further studies with
zoledronic acid have found that it is through inhibition of the
RANKL signaling pathway that OCs production is inhibited and
bone loss is relieved (Wang B. et al., 2022). Artemisinin has been
shown to downregulate RANKL-induced differentiation of OCs and
has been used in place of treating bone loss caused by OCs. Because
of the high iron content in OCs, the mechanism of action of
artemisinin was identified as possibly associated with ferroptosis
(Zhang, 2020).

Osteocyte metabolism affects OP caused by ferroptosis is rarely
reported, however, as the most abundant cells in bone, regulating
osteocyte metabolism is undoubtedly a worthwhile attempt.
Activation of Activating Transcription Factor 2 (ATF2) has been
found to induce ferroptosis in osteocytes, a phenomenon that is
inextricably linked to age-related bone loss. AFT2 expression was
suppressed and OP progression was slowed by administration of JY-
2, a novel Forkhead BoxO1 inhibitor (Yin et al., 2024). Eldecalcitol is
an orally active vitamin D analogue (Sanford and McCormack,
2011). Eldecalcitol showed protection against bone in OVX mice
induced by D-galactose. Further cell experiments confirmed that
Eldecalcitol alleviated D-galactose-triggered ferroptosis, inhibited
lipid peroxide accumulation, and enhanced GPX4 expression in
MLO-Y4 cells (Fu et al., 2024).

In conclusion, ferroptosis can accelerate OP progression by
affecting the osteogenic differentiation of BMSCs, target
inhibition of ferroptosis in BMSCs, or promote ferroptosis in
OCs induced by RANKL, which is a strategy worth applying for
the treatment of OP.

5.6 Treatment strategies for OS

The treatment regimen of OS is consistent with conventional
cancer treatment, that is, surgery, radiotherapy, chemotherapy and
other modalities. However, due to its high incidence of lung
metastasis, drug resistance and other characteristics, resulting in
OS treatment effect is unsatisfactory. Induction of ferroptosis in
tumor cells is currently the focus of treatment options, which also
brings new perspectives for the treatment of OS. Multiple agents
giving mechanisms of ferroptosis have been demonstrated to inhibit
OS progression. EF24, an analog of curcumin, induced
osteosarcoma cell death, the outcome of which was reversed by
ferrostatin-1. In-depth studies have confirmed that it can increase
MDA levels, ROS levels and increase intracellular iron content.
HMOX1 expression was upregulated in a dose-dependent manner
and promoted ferroptosis in osteosarcoma (Lin H. et al., 2021). The
combination of ursolic acid and cisplatin induced intracellular
overload of Fe3+, resulting in ferroptosis in osteosarcoma cells
(Tang et al., 2021). Tipazamine can inhibit the expression of
GPX4 and SLC7A11 under hypoxia and thus induce ferroptosis
(Shi et al., 2021). Sulfasalazine and miR-1287-5p mimics could
inhibit GPX4 to promote ferroptosis in osteosarcoma cells (Xu Z.
et al., 2021; Liu J. et al., 2022). Bavachin, as a flavonoid compound,
can promote ferroptosis in osteosarcoma cells by up-regulating p53,
and down-regulating SLC7A11 and GPX4 (Luo et al., 2021). Several
novel nanomedicines also exert a role in promoting ferroptosis in OS
cells (Fu et al., 2021; Wang Y. et al., 2022). Ferroptosis is also
involved in reducing drug resistance in osteosarcoma. miR-1287-5p
rendered osteosarcoma cells more sensitive to cisplatin (Xu Z. et al.,
2021). The same result was found in osteosarcoma cells after
inhibition of Lysine Demethylase 4A expression (Chen M. et al.,
2021). Combination of erastin, RSL3 and STAT3 inhibitors also
increased sensitivity to cisplatin (Liu and Wang, 2019).

5.7 Treatment strategies for IVDD

NP cell reduction or death is the main cause of IVDD. Several
studies have now been directed at inhibiting NP ferroptosis to
maintain its normal physiological state. Shu et al. determined
that Tinoridine could rescue RSL3-induced ferroptosis in NP
cells by increasing Nrf2 expression by screening nonsteroidal
anti-inflammatory drugs (Yang S. et al., 2024). Fisetin is involved
in the regulation of the Nrf2/HO-1 pathway, thereby inhibiting NP
ferroptosis (Li C. et al., 2024). Hesperidin can enhance
Nrf2 expression and inhibit NF-κB, thereby alleviating ferroptosis
resulting from oxidative stress in NP (Zhu et al., 2023b). HIF-1α
promotes translation of SLC7A11 and reduces NP ferroptosis under
hypoxia by inducing expression of the m6A reading protein
YTHDF1 (Lu et al., 2024). DNA methyltransferase inhibitors
prevented puncture-induced IVDD and protected NP from
ferroptosis (Chen J. et al., 2024). In vivo experiments confirmed
that targeting the miR-874-3p/ATF3 axis could modulate NP
ferroptosis and is an effective way to treat IVDD (Wang X. et al.,
2024). Circ-STC2 is a critical circRNAs involved in IVDD (Chang
et al., 2021). In cell experiments against Circ-STC2, Circ-STC2 was
found to be highly expressed in IVDD tissues. Knockdown of Circ-
STC2 promoted NP cell viability and prevented from suffering
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ferroptosis (Xiong et al., 2023). A hydrogel containing SLC7A11-
modRNA inhibited ferroptosis in NP cells by local injection, and the
rate of SLC7A11-modRNA release positively correlated with IVDD
severity (Gao et al., 2024).

6 Conclusion

Ferroptosis, a programmed cell death that is significantly
different from other modes of cell death, is currently the focus of
research in the field of disease mechanisms. The mechanism of
ferroptosis mainly involves lipid peroxidation, iron accumulation
and antioxidant system, which makes it independent of the mode of
cell death. Because of this, diseases associated with ferroptosis can be
found in various tissues and organs of the human body. The
occurrence of bone disease is closely related to the physiological
status of bone. Abnormal physiological metabolism of cells in bone
tissue can cause various types of bone diseases. Ferroptosis can be
involved in any ring of metabolism in cells. Multiple core regulators
involved in ferroptosis, such as GSH, GPX4, System Xc

−, Nrf2, and
ROS, have also been demonstrated to be involved in the
development of skeletal diseases.

However, it is undeniable that although iron death has been
increasingly studied in the field of orthopedics, it still faces non-
negligible challenges and limitations in clinical application. Iron
death may have different effects on osteoblasts and osteoclasts,
either protecting bone health or exacerbating bone loss under
certain conditions. This dual effect makes it difficult to precisely
regulate the degree and balance of ferroptosis in treatment. Current
studies on iron death mostly focus on tumor cells and other non-
skeletal tissues, and there is still a lack of in-depth studies targeting
skeletal-related cells such as osteoblasts, osteoclasts, and
chondrocytes. Susceptibility to ferroptosis and mechanisms may
differ between cell types. Accumulation of iron in skeletal cells may
lead to cellular dysfunction or even induce apoptosis, which is not
conducive to bone health. In addition, regulation of iron metabolism
by exogenous means may lead to altered systemic iron load and
trigger adverse effects in other organs and tissues, such as iron
accumulation in the liver and heart. In addition, the response to
ferroptosis regulation may vary widely between individual patients,
and different bone disease types (e.g., osteoarthritis versus
osteoporosis) and disease duration stages respond differently to
iron death interventions. Therefore, how to develop a precise
ferroptosis regulation program according to the individual
condition of patients is a major challenge for future application.

In this paper, we try to summarize the current research progress
of ferroptosis in detail by elaborating the development process of
ferroptosis, the intrinsic mechanism, and the relationship with other

cell death modes. The mechanism of ferroptosis in many bone
diseases is also listed. Finally, the current research on the treatment
of bone diseases by affecting ferroptosis is summarized. Because
ferroptosis involves a wide range of fields and complex mechanisms,
research on the effects of ferroptosis on bone disease remains to be
continued. We hope to provide efficient and safe treatment
modalities and preventive strategies for clinical as well as
scientific research through this paper and further research in
the future.
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