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Background: Dabigatran etexilate (DABE), a prodrug of dabigatran (DAB), is a
direct thrombin inhibitor used to prevent ischemic stroke and thromboembolism
during atrial fibrillation. The effect of genetic polymorphisms on its metabolism,
particularly UGT2B15, has not been extensively explored in humans. This study
aimed to investigate the effects ofUGT2B15, ABCB1, andCES1 polymorphisms on
the pharmacokinetics of DAB and its acylglucuronide metabolites in
healthy subjects.

Methods: A total of 124 healthy males were genotyped for UGT2B15, ABCB1, and
CES1 polymorphisms. After a single 150mg dose of DABE, plasma concentrations
of total and free DAB, as well as dabigatran acylglucuronide (DABG) were
measured using LC-MS/MS. Pharmacokinetic parameters were analyzed using
non-compartmental methods, and statistical comparisons were conducted
between the genotype groups.

Results: UGT2B15 c.253G>T significantly affected free DAB pharmacokinetics,
with a lower Tmax and oral clearance in TT genotype (n = 28, p < 0.05). For DABG,
Cmax was significantly higher in GG genotypes (n = 32, 42.3 ± 16.3 ng/mL)
compared to that in GT (n = 64, 32.4 ± 20.5 ng/mL) and TT (29.7 ± 17.1 ng/
mL) genotypes. Similarly, the AUCall of DABGwas highest in GG genotypes (327 ±
148.3 ng h·mL-1), followed by GT (238.7 ± 166.5 ng h·mL-1) and TT (223.3 ±
165.4 ng h·mL-1) genotypes (p < 0.05). The metabolite-to-parent ratios (m/p
ratios) for Cmax and AUCall were significantly higher in GG and GT genotypes than
that in TT genotype. ABCB1 and CES1 polymorphisms had no significant impact
on the pharmacokinetics of DAB or DABG.

Conclusion: UGT2B15 polymorphisms were associated with difference in DAB
glucuronidation and pharmacokinetics in healthy male participants.
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1 Introduction

Dabigatran etexilate (DABE), is a prodrug of dabigatran (DAB),
a competitive direct thrombin inhibitor widely used in the treatment
and prevention of ischemic stroke, atrial fibrillation, thrombus
formation, and systemic embolism (Schellong, 2015; Feuring and
van Ryn, 2016; Antonijevic et al., 2017; Blair and Keating, 2017).
Routine drug monitoring is typically not required for direct oral
anticoagulants, including DABE, because of their predictable
pharmacokinetics (Härtig et al., 2020). The standard
recommended dosage of DABE is 110 or 150 mg twice daily
(Connolly et al., 2009; López-López et al., 2017), with
adjustments based on individual-factors such as renal function,
body weight, age, concurrent use of P-glycoprotein inhibitors,
and bleeding risk (Gong and Kim, 2013; Ferri et al., 2022).

As an ester prodrug, DABE undergoes two sequential activation
steps to form its active drug, DAB. Initially, DABE is metabolized to
dabigatran ethyl ester (M2) by carboxylesterase 2 (CES2) in the
intestine (Blech et al., 2008; Antonijevic et al., 2017; Laizure et al.,
2022). Subsequently, M2 is converted to DAB by CES1 in the liver.
DAB is further metabolized to dabigatran acylglucuronide (DABG)
by uridine 5-diphospho (UDP)-glucuronosyltransferase (UGT)
enzymes in the liver, with glucuronidation of the carboxylate
moiety being the predominant metabolic pathway in humans
(Ebner et al., 2010). Among the UGTs, UGT2B15 has been
suggested to be the major isoform responsible for DAB
glucuronidation (Ebner et al., 2010; Moj et al., 2019).

Given the complexity of the enzymes and transporters involved in
DABmetabolism, genetic polymorphisms that affect the function and
expression of these enzymes and transporters may contribute to inter-
individual variability in DAB metabolism. Several studies have
evaluated the clinical impact of ABCB1 and CES1 single nucleotide
polymorphisms (SNPs) on DAB metabolism and pharmacokinetics
(Ji et al., 2021); however, the data generally suggest only minor effects
on DAB metabolism (Dimatteo et al., 2016; Ji et al., 2021). The effect
ofUGT2B15 SNPs on DABmetabolism, particularly the its impact on
DABG formation, has not been extensively explored in humans
(Ebner et al., 2010). Given that DABG is a pharmacologically
active metabolite, genetic variations affecting its concentration may
potentially influence the overall anticoagulant efficacy.

This study primarily aimed to investigate the effect of UGT2B15
on the pharmacokinetics of DAB in humans, while also considering
the roles of ABCB1 and CES1 SNPs to provide a more
comprehensive understanding of genetic variability’s impact on
DABG formation.

2 Material and methods

2.1 Subjects

This study enrolled 124 male subjects with a mean (±S.D.) age of
25.9 ± 3.7 years (range: 19–38 years), mean weight of 73.1 ± 8.6 kg
(range: 54.4–91 kg), and mean height of 175 ± 5.2 cm (range:
160–191 cm). All participants were confirmed to be healthy by a
physician through a detailed physical examination, 12-lead
electrocardiography, serum biochemistry, hematology, and
urinalysis. Exclusion criteria included history or evidence of a

hepatic, renal, gastrointestinal, or hematologic abnormality, any
other acute or chronic disease, or an allergy to any drug. All
subjects were non-smokers, not taking any medication, and
provided written informed consent. The study protocol was
approved by the Institutional Review Board (IRB) of Anam
Hospital, Korea University, Korea (IRB No. 2023AN0054).

2.2 Genotyping for ABCB1, CES1,
and UGT2B15

To determine the ABCB1, CES1, and UGT2B15 genotypes, blood
samples were collected from each participant and stored at −20°C until
DNA extraction. Genomic DNA was isolated from the peripheral
leukocytes. All individuals were genotyped for the c.1236C>T
(rs1128503), c.2677C>T(A) (rs2032582), c.3435C>T (rs1045642),
and c.2482-2236G>A (rs4148738) alleles of ABCB1 polymorphisms,
c.1168–33A>C (rs2244613) and c.257 + 885T>C (rs8192935) alleles of
CES1 polymorphisms, and c.253G>T (rs1902023) alleles of UGT2B15
polymorphism through pyrosequencing methods using a PyroMark
(Biotage, Uppsala, Sweden), as described previously (Kim et al., 2013a;
Kim et al., 2013b; Kim et al., 2014; Park et al., 2022).

2.3 Study design

Following an overnight fast, subjects were administered a single
oral dose of 150 mg DABE (Pradaxa; Boehringher Ingelheim,
Germany) with 240 mL of water. Blood samples were collected in
EDTA tubes (Vacutainer; Becton Dickinson, Franklin Lakes, NJ,
United States) immediately before drug administration (baseline)
and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 24, and 48 h post-
administration. Plasma was separated by centrifugation (1977 g, 4°C,
15 min) and the samples were stored at −70°C awaiting analysis.

2.4 Determination of total DAB, free DAB,
andDABG concentrations in plasma samples

Plasma concentrations of DAB were determined using a slightly
modified version of a previously validated LC-MS/MS method. The
concentration difference between total and free DAB, determined
through a deconjugation process, was used to estimate DAB
glucuronide levels. This approach followed the method described
in the previously literature (Blech et al., 2008). A total of 100 μL of
plasma sample was added to a glass tube containing 10 μL of the
internal standard, dabigatran-d4 (350 ng/mL). For total DAB
determination, 20 μL of potassium hydroxide was added (this
step was omitted for free DAB). The mixture was shaken for
15 s, followed by the addition of 400 μL of acetonitrile. The
mixture was then vortexed for 1 min, and the organic phase was
transferred to a clean glass tube and evaporated to dryness under
nitrogen gas flow. The residue was reconstituted with 300 μL of 30%
methanol with 1% formic acid. A 3-μL aliquot of this solution was
injected onto the LC-MS/MS system which was equipped with a
Unison Phenyl column (3 μm, 100 mm × 2.0 mm; Imtakt Corp.,
Kyoto, Japan). The mobile phase consisted of 10 mM ammonium
formate (0.2% formic acid) and methanol in a 60:40 volume ratio at
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TABLE 1Genotype frequencies of ABCB1,CES1, andUGT2B15 genetic polymorphisms in 124 Korean subjects and associated demographic data (Chi-square
and P-values calculated based on Hardy-Weinberg Equilibrium [HWE]).

Gene Genotype n Age
(year)

Height
(cm)

Weight
(kg)

Allele Allelic
frequency

χ2 P-value
(HWE)

ABCB1

c.1236C>T (rs1128503) CC 24 25.3 ± 2.8 173.4 ± 5.8 71.8 ± 10.2 C 0.4274 0.0632 0.7560

CT 58 25.8 ± 4.0 175.9 ± 5.1 74.3 ± 8.4 T 0.5726

TT 42 26.4 ± 3.8 174.5 ± 4.9 72.2 ± 7.9

P-value 0.5115 0.1107 0.3406

c.2677G>T(A)
(rs2032582)

GG 18 25.0 ± 1.7 174.3 ± 1.2 72.9 ± 4.2 G 0.3911 9.283 0.0258*

GA 25 25.3 ± 2.9 174.8 ± 5.7 74.6 ± 9.3 T 0.4234

GT 36 26.1 ± 3.9 174.6 ± 5.5 72.8 ± 8.3 A 0.1855

TA 11 27.0 ± 4.7 175.6 ± 4.9 74.1 ± 8.7

AA 5 25.2 ± 2.5 177.4 ± 3.4 73.2 ± 4.7

TT 29 26.2 ± 4.1 174.6 ± 5.7 72.7 ± 9.5

P-value 0.7710 0.8864 0.9185

c.3435C>T (rs1045642) CC 52 25.1 ± 2.8 175.1 ± 5.0 72.9 ± 8.4 C 0.621 1.9773 0.1597

CT 50 26.7 ± 4.4 175.3 ± 5.8 73.7 ± 9.1 T 0.379

TT 22 25.9 ± 3.5 173.8 ± 4.6 72.1 ± 8.4

P-value 0.0959 0.5203 0.7461

c.2482-2236G>A
(rs4148738)

GG 25 25.9 ± 3.4 174.0 ± 4.4 71.8 ± 8.2 G 0.4032 2.6217 0.1054

GA 50 26.6 ± 4.4 175.4 ± 5.5 73.7 ± 8.9 A 0.5968

AA 49 25.2 ± 2.9 175.0 ± 5.4 73.2 ± 8.7

P-value 0.1723 0.5191 0.6828

CES1

c.1168–33A>C
(rs2244613)

AA 16 25.5 ± 3.1 175.8 ± 6.0 74.8 ± 9.7 A 0.3911 0.8674 0.3517

AC 65 26.3 ± 3.9 175.3 ± 4.9 74.1 ± 8.6 C 0.6089

CC 43 25.4 ± 3.7 174.1 ± 5.5 71.0 ± 8.0

P-value 0.4152 0.4111 0.1258

c.257 + 885T>C
(rs8192935)

TT 78 25.9 ± 3.8 174.5 ± 5.4 71.8 ± 8.2 T 0.7984 0.0909 0.7631

TC 42 25.9 ± 3.8 175.7 ± 5.1 75.5 ± 9.4 C 0.2016

GG 4 25.0 ± 1.6 175.5 ± 3.5 73.7 ± 3.8

P-value 0.8870 0.5028 0.0828

UGT2B15

c.253G>T (rs1902023) GG 32 25.6 ± 2.8 175.6 ± 4.0 71.4 ± 7.3 G 0.5161 0.0366 0.8482

GT 64 26.0 ± 3.9 174.5 ± 5.9 73.2 ± 9.0 T 0.4839

TT 28 25.9 ± 4.1 175.2 ± 4.9 74.4 ± 8.9

P-value 0.9016 0.6071 0.4090

Bold values and asterisks (*) indicate statistically significant differences (P < 0.05).
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a constant flow rate of 0.2 mL/min. Quantification was performed
using multiple reaction monitoring mode, with transitions of m/z
472.2→289.1 for DAB and 476.2→293.1 for the internal standard. A
linear calibration curve for DAB, ranging from 0.5 to 350 ng/mL,
was established, with regression correlation coefficients exceeding
0.9999. Both intra- and inter-day coefficients of variation were
maintained below 5%. The concentration difference between total
and free DAB was attributed to the DABG concentration.

2.5 Pharmacokinetic analysis

The pharmacokinetic parameters for total and free DAB, as well
as DABG, were determined using non-compartmental analysis with
WinNonlin software (version 8.5.1; Pharsight Corp., Mountain
View, CA, United States). Maximum plasma concentration
(Cmax) and the time to reach Cmax (Tmax) were estimated directly
from the raw data. The total area under the plasma concentration-
time curve (AUCall) was calculated using the linear trapezoidal rule.
Oral clearance (CL/F) of DAB was estimated using the dose/AUC
method. The metabolite-to-parent ratio (m/p ratio) was calculated
by dividing the Cmax and AUCall of DABG by those of free DAB. The
Cmax ratio was calculated by dividing the Cmax of the metabolite by
that of the parent, and the AUC ratio was calculated by dividing the
AUCall of the metabolite by that of the parent.

2.6 Statistical analysis

The data were expressed as the mean ± standard deviation (SD)
in the text and tables. Statistical comparisons between genotype

groups (ABCB1, CES1, and UGT2B15) were performed using one-
way analysis of variance (ANOVA) or, where appropriate,
Kruskal–Wallis one-way ANOVA by rank test. Pharmacokinetic
parameters were compared according to each genotype. These tests
were chosen based on the normality of the data distribution, which
was assessed prior to ANOVA. Multiple post hoc comparisons were
performed using the normality test to identify significant differences
between specific groups. Geometric mean ratios (GMRs) for Cmax

and AUCall were calculated to compare pharmacokinetic parameters
among genotypes. GMRs and their 90% confidence intervals were
derived using logarithmic transformations, and statistical
significance was assessed via t-tests. Heterozygote mutant and
homozygote mutant genotypes were analyzed individually, and
they were also grouped together to compare against the wild-type
genotype, as genetic variations in these genotypes can affect the
function of transporters or enzymes involved in drug metabolism.
Demographic variables including age, body weight, and height, were
used as covariates. However, the interactions between genotype and
these covariate were not statistically significant. Data analysis was
performed using SAS 9.2 for Windows. Statistical significance was
set at p < 0.05.

3 Results

3.1 Genotype frequencies and demographic
characteristics

This study analyzed the genotype distributions and allelic
frequencies of ABCB1, CES1, and UGT2B15 polymorphisms in
124 Korean subjects, along with demographic data such as age,

TABLE 2 Comparisons of pharmacokinetic variables of free DAB, DABG, and metabolite-to-parent ratios (m/p ratios) by UGT2B15 genetic polymorphisms.

Parameters Substance Wild
type (W)

Heterozygous
(H)

Homozygous
mutants (M)

H and M P-value

GG
(n = 32)

GT (n = 64) TT (n = 28) GT, TT
(n = 92)

W vs. H
vs. M

W vs.
H and M

Tmax (h) DAB 2.5 ± 0.8 2.2 ± 0.7 2.4 ± 0.6 2.2 ± 0.7 0.0479* 0.0654

DABG 2.2 ± 0.7 2.2 ± 0.7 2.2 ± 0.8 2.2 ± 0.7 0.9989 0.9869

Cmax (ng/mL) DAB 108.1 ± 37.6 95.4 ± 51.9 111.4 ± 38.2 100.3 ± 48.5 0.2184 0.4102

DABG 42.3 ± 16.3 32.4 ± 20.5 29.7 ± 17.1 31.6 ± 19.5 0.0188*a,b 0.0059*

AUCall (ng·h·mL-1) DAB 927.8 ± 325 803.2 ± 430.2 972.5 ± 360.1 854.7 ± 415.6 0.1098 0.3681

DABG 327 ± 148.3 238.7 ± 166.5 223.3 ± 165.4 234 ± 165.4 0.0207*a,b 0.0058*

Half-life (h) DAB 8.6 ± 0.9 9.1 ± 1.5 8.9 ± 1.5 9.1 ± 1.5 0.2698 0.1318

DABG 10.2 ± 1.6 10.6 ± 2.5 10.4 ± 3.1 10.6 ± 2.7 0.6692 0.4107

CL/F (L/h) DAB 185.8 ± 90.9 247.9 ± 155.5 177.2 ± 81.5 226.4 ± 140.6 0.0171*c 0.1309

DABG - - - - - -

m/p ratio, Cmax DABG/DAB 0.4 ± 0.1 0.4 ± 0.2 0.3 ± 0.1 0.3 ± 0.1 0.0217*b,c 0.004*

m/p ratio, AUCall 0.4 ± 0.1 0.3 ± 0.2 0.2 ± 0.1 0.3 ± 0.2 0.0003*b,c 0.0088*

Cmax, maximum concentration; Tmax, time required to reach the maximum concentration; AUCall, total area under the plasma concentration–time curve. *P < 0.05; aP < 0.05 betweenW and H;
bP < 0.05 between W and M; cP < 0.05 between H and M.

Bold values and asterisks (*) indicate statistically significant differences (P < 0.05).
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height, and weight (Table 1). The mean age of participants was
25.0 ± 3.7 years, with a mean body weight of 73.1 ± 8.6 kg and height
of 175.0 ± 5.2 cm. No significant demographic differences were
observed between the genotype groups, except for ABCB1
c.2677G>T(A) polymorphism, which exhibited five distinct
genotype groups and significantly deviation from Hardy-
Weinberg equilibrium (p = 0.0258), probably due to greater
genetic variability among the observed genotypes.

3.2 Effects of polymorphic ABCB1, CES1 and
UGT2B15 genotypes on free DAB
pharmacokinetics

The pharmacokinetics of free DAB, including Tmax, Cmax, AUCall,
half-life, and CL/F, were evaluated in relation to the genotypes of
ABCB1, CES1, and UGT2B15 polymorphisms (Table 2). The
UGT2B15 c.253G>T polymorphism was associated with significant
differences in the Tmax (p = 0.0479) and CL/F (p = 0.0171). Subjects
with the GG genotype exhibited slightly longer Tmax (2.5 ± 0.8 h)
compared with the GT (2.2 ± 0.7 h) and TT (2.4 ± 0.6 h) genotypes,
but with borderline significance (p = 0.047). Wild type versus
heterozygote/homozygote mutant anaylsis was also not statistically
significant. Although CL/F appeared lower in the TT genotype group
(177.2 ± 81.5 L/h) compared to the GT (247.9 ± 155.5 L/h) and GG

(185.8 ± 90.9 L/h) groups, there was no consistent allelic dose-effect
relationship observed to suggest a clear genotype-related trend. No
significant differences in DAB pharmacokinetics were observed in the
ABCB1 and CES1 polymorphisms. Additionally, no significant
differences in GMR values for DAB were observed among the
UGT2B15 genotypes (Table 3).

3.3 Effects of polymorphic ABCB1,CES1, and
UGT2B15 genotypes on DABG
pharmacokinetics

The UGT2B15 c.253G>T polymorphism significantly affected
the pharmacokinetics of DABG (Table 2, 3; Figures 1–3). Subjects
with the GG genotype exhibited higher Cmax and AUCall values than
those with GT or TT genotypes (p = 0.0188 and p = 0.0207,
respectively). GMR analyses revealed significantly lower Cmax and
AUCall values in the TT genotype compared to the GG genotype
(Cmax GMR: 0.70, p = 0.0059; AUCall GMR: 0.65, p = 0.004).
Similarly, GT vs. TT comparisons showed reductions in both
Cmax (GMR: 0.72, p = 0.0264) and AUCall (GMR: 0.67, p =
0.0111). These findings indicate that the UGT2B15 c.253G>T
polymorphism plays a critical role in DABG metabolism,
potentially affecting drug exposure. No significant differences
were observed for the ABCB1 and CES1 polymorphisms.

TABLE 3 Geometric Mean Ratio (GMR) Comparisons of Cmax and AUCall for DAB, DABG, and metabolite-to-parent Ratios (m/p ratios) by UGT2B15 genetic
polymorphisms (GT and TT were compared to GG, and TT was compared to GT).

Substance Parameter Comparison GMR 90% CI (Lower) 90% CI (Upper) P-Value

DAB Cmax GG vs. GT 0.83 0.68 1.01 0.1861

GG vs. GT 1.04 0.86 1.26 0.7124

GT vs. TT 1.26 0.99 1.59 0.0941

AUCall GG vs. GT 0.80 0.65 0.98 0.1085

GG vs. GT 1.05 0.87 1.26 0.6823

GT vs. TT 1.32 1.04 1.66 0.0504

DABG Cmax GG vs. GT 0.98 0.78 1.23 0.8727

GG vs. GT 0.70 0.56 0.87 0.0059*

GT vs. TT 0.72 0.56 0.92 0.0264*

AUCall GG vs. GT 0.98 0.78 1.22 0.8698

GG vs. GT 0.65 0.52 0.82 0.0040*

GT vs. TT 0.67 0.52 0.86 0.0111*

m/p ratio Cmax GG vs. GT 1.18 1.01 1.37 0.0898

GG vs. GT 0.67 0.57 0.78 <0.0001*

GT vs. TT 0.57 0.52 0.63 <0.0001*

AUCall GG vs. GT 1.23 1.06 1.42 0.0379*

GG vs. GT 0.62 0.54 0.72 <0.0001*

GT vs. TT 0.51 0.46 0.56 <0.0001*

Cmax, maximum concentration; AUCall, total area under the plasma concentration–time curve; GG, wild type; GT, heterozygote mutant; TT, homozygote mutant.

Bold values and asterisks (*) indicate statistically significant differences (P < 0.05).
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3.4 Effects of polymorphic ABCB1,CES1, and
UGT2B15 genotypes on m/p ratio

The UGT2B15 c.253G>T polymorphism was also associated
with significant differences in the m/p ratio of DABG (Table 2, 3;
Figure 3). Specifically, significant differences were observed in the
Cmax (p = 0.0217) and AUCall (p = 0.0003) values between the GG,
GT, and TT genotypes. GMR analyses revealed significantly lower
m/p ratio values for both Cmax and AUCall in the TT genotype
compared to the GG genotype (Cmax GMR: 0.57, p < 0.0001, AUCall

GMR: 0.51, p < 0.0001). Similarly, GT vs. TT comparisons
demonstrated reductions in Cmax (GMR: 0.57, p < 0.0001) and
AUCall (GMR: 0.51, p < 0.0001). These findings suggest a genotype-
dependent effect on the conversion of DAB to its acylglucuronide
form, highlighting the potential influence of UGT2B15
polymorphism on DAB metabolism.

4 Discussion

This study demonstrated that a UGT2B15 polymorphism,
specifically c.253G>T, significantly influences the

pharmacokinetics of DABG and the m/p ratio, supporting
the hypothesis that genetic variability in UGT2B15 plays
a key role in DAB metabolism. DAB undergoes
glucuronidation primarily by UGT2B15, which converts the
active form of the drug into its acylglucuronide metabolite
(Ebner et al., 2010).

Our data showed that individuals with the GG genotype had
significantly higher DABG concentrations than those with the GT
or TT genotypes, suggesting that this polymorphism influenced
both the rate (Cmax) and extent (AUCall) of glucuronidation.
Specifically, the Cmax of DABG was 42.3 ± 16.3 ng/mL in the
GG genotypes, compared with 32.4 ± 20.5 ng/mL in the GT and
29.7 ± 17.1 ng/mL in the TT genotypes (p < 0.05) (Table 2; Figures
1, 2). The AUCall of DABG followed a similar trend, with values of
327 ± 148.3 ng h·mL-1 in the GG genotypes, 238.7 ± 166.5 ng h·mL-

1 in the GT genotypes, and 223.3 ± 165.4 ng h·mL-1 in the TT
genotypes, highlighting the significant impact of the UGT2B15
c.253G>T polymorphism on glucuronidation efficiency.
Furthermore, the observed differences in the m/p ratios provide
additional evidence to support this hypothesis. The m/p ratios for
both Cmax and AUCall were significantly higher in the GG and GT
genotypes than in the TT genotype (Table 2; Figure 3), indicating

FIGURE 1
Concentration-time profiles of DAB and DABG for the UGT2B15 genotype (rs1902023): CC (wild-type), CA (heterozygote mutant), and AA
(homozygote mutant). (A) Free DAB plasma concentrations (ng/mL); (B) log10-transformed free DAB plasma concentrations (log10 [ng/mL]); (C) DABG
plasma concentrations (ng/mL); (D) log10-transformed DABG plasma concentrations (log10 [ng/mL]).
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more efficient conversion of DAB to its acylglucuronide form in
the GG and GT genotypes. Conversely, the reduced m/p ratio
among individuals with the TT genotype suggests that this
polymorphism impairs the conversion of DAB to its
acylglucuronide form, further confirming the role of UGT2B15
in DABmetabolism. A lower m/p ratio in TT genotypes (indicative
of less extensive metabolism) aligns with the hypothesis that
the UGT2B15 polymorphism diminishes enzyme function,
resulting in reduced glucuronidation capacity. Indeed, the role
of UGT2B15 in sipoglitazar glucuronidation activity was
experimentally demonstrated previously (Nishhara, 2013). The
UGT2B15 variant exhitibed 2-fold reduction in intrinsic
clearance for sipoglitazar when compared to the wild-
type. Taken together, our results suggest that
UGT2B15 is responsible for DAB glucuronidation, and
the UGT2B15 polymorphism in humans likely decreases
DABG formation due to the loss of function associated with
this mutation.

In contrast, ABCB1 and CES1 polymorphisms did not
significantly affect DAB metabolism in this study Supplementary
Tables S1-S3. No statistically significant differences in the
pharmacokinetic parameters were observed between the ABCB1
and CES1 genotypes, suggesting that these genetic variations do not
play a major role in DAB metabolism.

This study had several limitations. First, it was conducted on
healthy adult males, which may limit the generalizability of the
findings to broader patient populations, including females, older
individuals, and those with comorbid conditions. However, limiting
the study to specific demographic variables allowed for the control of
potential confounders (Park et al., 2021). Second, this study only
examined the effects of a single-dose administration of DAB, leaving
the impact of UGT2B15 polymorphisms on long-term treatment
and real-world clinical settings remain to be determined. Third,
although we identified the effects of genetic polymorphisms on DAB
metabolism, we did not assess the clinical outcomes associated with
these genetic variations, such as bleeding risk or therapeutic efficacy.

FIGURE 2
Concentration-time profiles of free DAB (A, B) and DABG (C, D) stratified by UGT2B15 genotype (rs1902023) groups: GG (wild-type), GT
(heterozygote mutant), and TT (homozygote mutant). Data are presented as mean ± SD for plasma concentrations (A, C) and log10-transformed plasma
concentrations (B, D) for each genotype group.
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Future studies should investigate these clinical endpoints to provide
a more comprehensive understanding of the effects of UGT2B15
polymorphisms.

In conclusion, this study provides preliminary evidence that the
UGT2B15 c.253G>T polymorphism may influence the
pharmacokinetics of DABG in humans, particularly in
glucuronidation and the m/p ratio, suggesting a potential role for
genetic variability in individual responses to DAB therapy. However,
further studies are necessary to assess their potential impact on
clinical outcomes and to evaluate the generalizability of these
findings to the broader population.
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