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Introduction: A significant proportion of mothers take medication during the
breastfeeding period, however knowledge of infant safety during continued
breastfeeding is often limited. Breastmilk exhibits significant physiological
heterogeneity, with a range of milk fat (creamatocrit), protein and pH values
available within the literature. Mathematical models for the prediction of infant
exposure are available and these predict that variable milk physiology will
significantly affect accumulation of drugs within the breastmilk. These models
are typically validated against limited datasets only, and to the best of our
knowledge no widescale review has been conducted which accounts for the
heterogeneity of breastmilk.

Methods: Observed area under the curve milk-to-plasma (M/P) ratios and
physicochemical properties were collected for a diverse range of drugs. The
reliability of previously published mathematical models was assessed by varying
milk pH and creamatocrit across the physiological range. Subsequently,
alternative methods for predicting lipid and protein binding within the milk,
and the effect of ionisation and physicochemical properties were investigated.

Results: Existing models mis-predicted >40% of medications (Phase Distribution
model), exhibited extreme sensitivity to milk pH (Log-Transformed model) or
exhibited limited sensitivity to changes in creamatocrit (LogPo:w model).
Alternative methods of predicting distribution into milk lipids moderately
improved predictions, however altering the way in which milk protein binding
was predicted and the effect of ionisation on this demonstrated little effect. Many
drugs were predicted to have a significant range of M/P ratios.

Discussion: These data show that consideration of the biological heterogeneity
of breastmilk is important for model development and highlight that increased
understanding of the physiological mechanisms underlying distribution within
the milk may be essential to continue improving in silico methodologies to
support infant and maternal health.
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1 Introduction

Breastmilk is an essential and valuable source of sustenance and
immunological protection for infants, providing important
nutrients and antibodies that promote strong growth and
development (Wedekind and Shenker, 2021; Czosnykowska-
Łukacka et al., 2018). Over 50% of women take medication
during the breastfeeding period, but data regarding the potential
exposure of their nursing infants to maternal medication are
typically limited, forcing women to choose between their own
health and potential harm to their children (Bérard and Sheehy,
2014; Stultz et al., 2007; Al-Sawalha et al., 2016; Ojara et al., 2023;
Wang et al., 2017). Although there is increasing demand and
regulatory recommendation of the inclusion of lactating women
in clinical trials, there is still much work to be done to support safe
medicine use during breastfeeding (FDA, 2019; EMA, 2024).

The inclusion of breastfeeding women in clinical trials does
present with ethical issues, and so the development of alternative
methods of to support increased understanding of potential infant
exposure is desirable (Nauwelaerts et al., 2021). A number of non-
clinical methods to assess the passage of maternal medication into the
breastmilk are available, including in vitro human (Kimura et al.,
2006; Andersson et al., 2017) and animal models (Ito et al., 2015; Al-
Bataineh et al., 2009), in vivo animal models (McNamara et al., 1992;
Osz et al., 2017) and in silico models for the prediction of milk
concentrations (Begg and Atkinson, 1993; Fleishaker et al., 1987;
Koshimichi et al., 2011; Nauwelaerts et al., 2023). Differences in
transporter expression of cell lines have been noted within the
literature and in vitro work is also complicated by the use of cell-
specific media over natural biological matrices (Nauwelaerts et al.,
2021; Qu et al., 2015). Similarly, species-specific differences may limit
the use of animal models. Rodent models, in particular, have shown a
much higher milk-to-plasma (M/P) ratio for some drugs than has
been reported in humans (Ito et al., 2013). More recently, Gottingen
Minipigs have shown promise as an in vivo model, with a strong
correlation between minipig and human M/P ratios being reported
[unpublished data from IMI ConcePTION (Annaert, 2024)]. Full
reviews of in vitro and in vivomodels have been published previously
(Nauwelaerts et al., 2021; Ventrella et al., 2019).

The use of mathematical modelling for the in silico prediction of
maternal M/P ratios is of interest as it removes the concerns regarding
species-specific differences in lactation mechanisms. Such models have
been used to successfully predict the M/P ratio for medications
including primaquine, theophylline, ondansetron and sotalol (Begg
and Atkinson, 1993; Pan et al., 2023; Abduljalil et al., 2022; Job
et al., 2022). Quantification of maternal plasma concentrations
through clinical study and/or physiologically based pharmacokinetic
(PBPK) modelling allows M/P ratios to be translated into milk
concentrations and therefore the subsequent prediction of infant
exposure to maternal medications through breastfeeding (Abduljalil
et al., 2022; Job et al., 2022; Abduljalil et al., 2021; Pansari et al., 2022).

Mathematical models for predicting the drug transfer into milk
have been of interest for decades, with Atkinson and Begg, and
Fleishaker et al separately publishing mathematically identical
models over 30 years ago (Begg and Atkinson, 1993; Fleishaker
et al., 1987; Atkinson and Begg, 1990). These models quantify a
‘phase distribution’ theory of drug partitioning in which the
unbound and unionised fraction of drug in the plasma and the

breastmilk exists in equilibrium, and differences in milk and plasma
concentrations arise due to differences in protein binding, ionisation
and lipid partitioning between the two matrices. Natural variability in
milk pH, fat content (creamatocrit) and protein content/binding
therefore lead to prediction of variable M/P ratios, assuming these
factors are sufficiently considered. This Phase Distribution model is
supported by in vitro bioanalysis conducted by Atkinson and Begg, in
which formulae for the prediction of milk protein binding [fum
(Atkinson and Begg, 1988a)] and lipid partitioning [Pappmilk

(Atkinson and Begg, 1988b)] at pH 7.2 were developed based on
the known plasma protein binding (fup) and octanol-to-water
distribution coefficient (LogD) respectively. This formula for
prediction of Pappmilk shows a steep relationship between LogD7.2

and Pappmilk, but was developed using drugs with a LogD7.2 of <3 only
(See Supplementary Figure S2). Following this initial work, Atkinson
and Begg employed linear regression to optimise predictions of acidic
and basic drugs, with this ‘Log-Transformed’ model providing better
predictions than the initial Phase Distribution model (Begg and
Atkinson, 1993; Atkinson and Begg, 1990).

More recently, Abduljalil et al. incorporated these mathematical
models into PBPK modelling software using an alternative
formulation of the Phase Distribution model in which the lipid
partitioning is represented by LogPo:w (LogPo:w model). This results
in a significantly reduced predicted M/P ratio for lipophilic drugs
but was shown to accurately predict the milk distribution of
acetaminophen, alprazolam, caffeine and digoxin (Abduljalil
et al., 2021; Zhang et al., 2022). Subsequent work by the same
group has successfully used both the Phase Distribution and Log-
Transformed model to predict infant exposure to a number of
medicines (Pan et al., 2023; Abduljalil et al., 2022; Pansari et al.,
2022). Although this LogPo:w model represents a misinterpretation
of the original Phase Distribution model, it is a useful comparator to
study the way in which drug distribution into the milk lipid is
incorporated into the model.

In best practice, use of these models includes a sensitivity analysis
which accounts for the physiological variability of breastmilk (Pan
et al., 2023; Pansari et al., 2022). This is particularly important because
lactation studies do not typically include paired recording of factors
which are predicted to affect the M/P ratio, such as pH and
creamatocrit (Crt), which itself present challenges for model
development. Despite their increasing use, to the best of our
knowledge there has been no widescale review of the reliability of
the Phase Distribution, Log-Transformed or LogPo:w model
accounting for the biological heterogeneity of human breastmilk.
Additionally, the formulae for prediction of lipid partitioning and
milk protein binding have come under little scrutiny since their
conception. As such, the present paper aims to assess the reliability
of existing mathematical models for predicting the M/P ratio of a
diverse list of medications, and to subsequently interrogate additional
factors that may alter prediction reliability.

2 Methods

2.1 Observed milk-to-plasma ratios

Observed M/P ratios were collected from the literature for a
diverse range of drugs. Only those for which an area under the
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curve (AUC) M/P ratio was available were included for analysis.
AUC M/P ratios were identified for 91 drugs. Where multiple
publications were available for a single drug, the mean M/P ratio
was used, weighted for sample size in each publication. The
physicochemical properties of each drug were extracted from
publicly available databases.

2.2 Milk composition

Where possible, details of the observed milk pH and
creamatocrit (Crt) were also extracted from the identified
literature (see Supplementary Table S2). Milk pH was recorded
in 15 studies, whilst creamatocrit was detailed in just 2 of
the publications. Mean (±SD) milk pH, weighted for the number
of samples in each study, was 7.12 ± 0.24 and so the pH range
6.88–7.37 was used for initial simulations (see Supplementary Figure
S1). As such limited data were available on milk Crt, further
literature searches were performed. The Crt range of 3%–12%
decided upon for investigations (Allen et al., 1991; Meier et al.,
2006; Erickson et al., 2013; Mandel et al., 2005).

Predicted M/P ratios were generated by varying pH in twenty
identical increments and Crt in increments of 0.1%, thus for each drug
~1900 simulations were run to generate a range of predicted M/P
ratios accounting for the physiological heterogeneity of breastmilk.

2.3 Transport-mediated medications

As the models detailed below do not account for the impact of
active transport, initial work was conducted using only medications
which are not known substrates of drug transporters present in
human mammary cells. Transporters expressed in the breast were
identified using existing literature (Nauwelaerts et al., 2021;
Ventrella et al., 2019) and these data were cross-referenced with
ISTransbase (Peng et al., 2024) in order to categorise medicines into
those which are and are not mediated by transporters (see
Supplementary Table S3).

ABC (MRP2,MRP4, P-gp, BCRP,MRP1,MRP5), SLC (OCTN1,
OCTN2, PEPT1, PEPT2, NTCP2, SVCT2, CNT1, CNT3, MCT1,
GLUT1, GLUT2, LAT1, OCT1, OCT3, ENT1, ENT3) and SLCO
(OATP1A2, OATP3A1, OATP4A1, OATP2B1) family transporters
were investigated but only substrates of BCRP, MDR1, MRP2,
MRP2, OCTN1, OCTN2, OCT1, OCT3, OATP1A2,
OATP2B1 were identified and excluded from initial analysis.
41 medications were identified which are not mediated by
transporters thought to be expressed in the breast.

2.4 Published lactation models

Predicted M/P ratios were initially generated using the basic
Phase Distribution model, the Log-Transformed version of this
model (Begg and Atkinson, 1993; Atkinson and Begg, 1990) and
the more recent interpretation which used LogPo:w in place of the
predicted Pappmilk (LogPo:w model; (Abduljalil et al., 2021)). The
Phase Distribution and LogPo:w model calculations are
shown below:

M/P ratio � fup · fun
p

fum · fun
m · S/W ratio

(1)

fum � fup
0.448

6.94 × 10−4( )0.448 + fup
0.448 (2)

S/W ratio � 1
1 + Crt · fum · Pappmilk − 1( )

(3)

Where fux, fun
x are the unbound and unionised fraction in the

plasma (p) and milk (m) respectively. Fraction unionised was
calculated using Henderson Hasselbach equations. The S/W ratio
represents the skim-to-whole milk ratio (i.e., the ratio between the
concentration of drug in the [aqueous] phase vs. the [aqueous +
lipid] phase). Pappmilk represents the apparent partition coefficient
for milk fat and is calculated in the Phase Distribution model as:

Pappmilk � 10−0.88+1.29·LogDpH,milk (4)
and in the LogPo:w model as:

Pappmilk � LogPo:w (5)

LogPo:w values were collected from the literature, whilst LogDpH,

milk was calculated from:

DpH,milk � Po:w · fun
m (6)

The Log-Transformed model used linear regression to
separately optimise predictions for acidic and basic drugs,
and predicts:

Acidic drugs: lnM/P ratio � −0.405 + 9.36 ln
fun
p

fun
m

− 0.69 lnfup − 1.54 lnK

(7)
Basic drugs: lnM/P ratio � 0.02477 + 2.28 ln

fun
p

fun
m

+ 0.886 lnfup + 0.505 lnK

(8)
where:

K � 1 − Crt( )
fum

+ Crt · Pappmilk (9)

and fum and Pappmilk are calculated using Equation 2 and
Equation 4 respectively.

2.5 Modified lactation models - Pappmilk

Figure 2 presents alternative models for predicting M/P ratios,
generated by using modified formulae to calculate Pappmilk. These are
discussed below and detailed in Supplementary Section S2. The models
use the following formulae in conjunction with Equations 1–3:

ABImodel: Pappmilk � 10 0.4017·LogDpH,milk( )+0.1548 (10)
MCDBmodel: Pappmilk � 10 2.162−5.327( )· exp −0.1153·LogP( )+5.327 (11)
Bartels − LogPmodel: Log Pappmilk( ) � −4.653 + 7.972

1 + 100.1175−0.2849·LogP

(12)
Bartels − LogDmodel: Log Pappmilk( ) � −4.653 + 7.972

1 + 100.1175−0.2849·LogDpH,milk

(13)
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2.6 Modified lactation models–fum

Figure 3 presents alternative models for predicting M/P ratios,
generated by using modified formulae to calculate fum. The
formulae investigated have been published previously and are
detailed in Supplementary Section S3. The models were used in
conjunction with the Bartels-LogD model.

Yangmodel: fum � 1.033 × fup/ 0.988 + fup( ) + 0.1017 × ln PSA( )
(14)

Ito/Atkinson/Beggmodel: fum � fup × 0.4956( ) + 0.5335

(15)
Additionally, the fup value used to predict fum via the Yang

(Yang et al., 2022), Ito (Ito et al., 2013) and Atkinson/Begg (see
Equation 2) models was modified to account for ionisation as per
Lobell et al. [Supplementary Section S3; (Lobell and
Sivarajah, 2003)].

2.7 Predicted-to-observed ratio

For all models, model reliability was assessed using predicted-to-
observed (P/O) ratios, calculated as:

P/O ratio � PredictedM/P ratio

ObservedM/P ratio
(16)

Drugs were considered as predicting within 2- or 5-fold of the
observed data if any predicted M/P across the physiological range of
milk being investigated was within that range. For example, a drug
with a predicted M/P range of 1 – 3 would be considered within 2-
fold of the observed data if the observed M/P ratio was
between 0.5 and 6.

2.8 Software

All predictions were made using RStudio version 4.4.0 (2024-04-
24) (Posit Software). Scripts are available upon request.

3 Results

3.1 Reliability of published lactation models

Predictions of M/P ratios were first generated for the Phase
Distribution, LogPo:w (Equations 1–6) and Log-Transformed
(Equations 7–9) models for 41 drugs (not mediated by
transporters) at pH 7.12 (Figure 1, left) and with a Crt range of
3%–12%. At pH 7.12, the Phase Distribution model showed a
tendency to overpredict (Figure 1A; 39.0% >2-fold over-
predicted; 14.6% underpredicted), whilst the Log-Transformed
model tended towards underprediction (Figure 1C; 28.5%
underpredicted and 11.9% overpredicted) and the LogPo:w model
showed more balance, but a similarly low overall prediction
reliability (Figure 1B; 24.4% overpredicted and 26.9%
underpredicted). It was also noted that for lipophilic drugs such
as zolpidem, the LogPo:w model showed relative insensitivity to

changes in Crt (M/P range of 0.09–0.10) compared to the Phase
Distribution and Log-Transformed models (ranges of 2.35–9.16 and
0.91–1.80 respectively).

Expanding the milk parameters to pH 6.88–7.37 increased
proportion of drugs which were predicted within 2- and 5-fold of
the observed data (righthand side of Figure 1). The Phase
Distribution model (Figure 1A) predicted 61.0% and 78.0% of
drugs within 2- and 5-fold respectively, compared with 68.3% and
82.9% for the LogPo:w model (Figure 1B) and 84.8% and 97% for
the Log-Transformed model (Figure 1C). The Log-Transformed
model also exhibited a lower mean (±SD) average fold error (AFE)
of 3.68 ± 3.24, compare with 8.87 ± 15.08 for the Phase
Distribution model and 5.97 ± 10.76 for the LogPo:w model.
The mean predicted M/P ratios exhibited limited linear
correlations with the observed values (0.29, 0.21 and 0.21 for
the Phase Distribution, LogPo:w and Log-Transformed models
respectively).

Although the statistics presented above suggest that the Log-
Transformed model predicts better than the other models, the
predicted range of M/P ratios for acidic drugs was extremely
large (>900-fold difference between minimum and maximum
predicted M/P ratio), demonstrating the model to exhibit a high
sensitivity to changes in pH. This range does not accurately
reflect the observed data, and makes the predicted M/P ratios
difficult to interpret fully. In addition to poorly predicting acidic
drugs, there was little linear correlation between the predicted
and observed values for basic drugs using the Log-Transformed
model (R2 = 0.08). It also does not include a formula for
prediction of neutral drugs. These data are summarised in
Supplementary Table S4 and all data points listed in
Supplementary Tables S5–S8.

3.2 Interrogating Pappmilk

Given these limitations of the Log-Transformed model, we
opted to investigate the Phase Distribution and LogPo:w models.
Although the LogPo:w model showed better prediction of drug
distribution in the breastmilk, it was insensitive to changes in
Crt and appears to be no longer used by the authors, with the
Phase Distribution (and Log-Transformed) models being
preferred, likely due to a stronger experimental basis
(Abduljalil et al., 2022; Abduljalil et al., 2021; Pansari et al.,
2022). The incorporation of drug lipophilicity is the only
difference between the Phase Distribution and LogPo:w
models (see Equations 4, 5), and it is therefore noteworthy
that the Phase Distribution model significantly overpredicted
the M/P ratio of lipophilic drugs: 6/7 drugs with a LogD >
2.3 were overpredicted, with a mean (±SD) P/O ratio of 23.3
(±22.6) see Equation 16. In comparison, 7/14 drugs with a
LogP > 2.3 were underpredicted by the LogPo:w model, and
only 2/14 overpredicted (P/O ratio of 0.94 ± 1.1). Equation 4
was originally derived through the assessment of milk lipid
partitioning in a limited dataset only, and shows a steep
relationship between LogPo:w and LogPappmilk [See Supplementary
Figure S2; (Atkinson and Begg, 1988b)]. As such, we investigated
alternative models for predicting Pappmilk. These are detailed in
Supplementary Section S2 but in brief:
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• The ABI model pools the original milk lipid partitioning data
with a more modern data set (Ito et al., 2013), with the pooled
data being best fit by a linear equation (Equation 10).

• The MCDB model is based on ~680 datapoints describing the
lipid partitioning of ~150 compounds in bovine milk
(Foroutan et al., 2019), with data being best fit by an
exponential function (Equation 11).

• The Bartels model relies on published correlations between the
LogP (Equation 12) or LogD (Equation 13) and the olive oil
partitioning (LogPvo:w) coefficient (Bartels et al., 2012).

Predictions were run across a pH range of 6.88–7.37 and a Crt
range of 3%–12%. The ABI and Bartels-LogD models offered a
modest improvement over the Phase Distribution model, with
68.3% and 85.4% (ABI; Figure 2A), and 61.0% and 85.4%

(Bartels-LogD; Figure 2D) of drugs predicting within 2- and 5-
fold, respectively. Thus, these models demonstrated similar
reliability to the LogPo:w model, but with a stronger basis in
experimental evidence and with a more appropriate response to
changes in Crt. A significant improvement in prediction of lipophilic
drugs was recorded for both models. A small increase in R2 was
observed with the ABI model (R2 = 0.31) but a stronger association
between the observed and predicted values was identified by the
Bartels-LogD model (R2 = 0.51). A slight reduction in mean (±SD)
AFE was also seen for the ABI (5.54 ± 11.17) and Bartels-LogD
(5.47 ± 10.51) models compared to the Phase Distribution model.
These improvements in prediction were not noted for the MCDB
model, which consistently overpredicted M/P ratios (Figure 2B), or
for the Bartels-LogP model (Figure 2C). These data are summarised
in Supplementary Table S4 and all data points listed in

FIGURE 1
Assessment of published lactationmodels. Mean (range) predictedM/P ratios versus the observed data for the Phase distribution (A), LogPo:w (B) and
Log-Transformed (C)models, for drugs which are not substrates of transporters expressed within the breast. Predictions weremade at pH 7.12 and across
the range of 6.88–7.37. Solid and dashed black lines represent a P/O ratio of 1 and within 2-fold respectively. Data points are coloured to highlight over-
predictions (yellow), underpredictions (red) and predictions within 2-fold (green), whilst shapes represent acids (○), bases (◇) and neutral drugs (□).
Data are considered within 2-fold if any value in the predicted range is within 2-fold of the observed data.
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Supplementary Tables S7–S8. As the best performing model, the
Bartels-LogD model was used for all simulations in the remainder of
the manuscript.

3.3 Interrogating fum

In addition to predicted values for Pappmilk, the models also
depend upon a predicted value for protein binding within the
skimmed fraction of the milk (Equation 2). Similar to the above,
this prediction is based on a low number of drugs (Atkinson and
Begg, 1988a) and it calculates fum using fup only. For a fraction of
drugs analysed above (13/42), an observed fum was available and
in some instances these were significantly different to the
predicted values (Figure 3A). As such, simulations were run
using the observed values for fum in place of those predicted
by Equation 2.

The observed value did not significantly impact predictions for
most drugs (Figure 3B). For one drug (propylthiouracil; observed
M/P = 0.13), the use of the measured value shifted the range of

predicted M/P ratios from 0.16-0.21 to 0.46-0.61, reducing the
prediction accuracy ~3-fold.

In addition to the Atkinson/Begg model for predicting fum, other
methods are available within the literature (Ito et al., 2013; Yang
et al., 2022) see Equations 14, 15. Additionally, increased ionisation
reduces binding to plasma proteins, and so it is plausible that
changes in milk pH may also be associated with a change in fum.
This phenomenon is not currently incorporated into the model, but
can be estimated using Lobell and Sivarajah’s (2003) work which
drew correlations between the ionisation state of a compound, it’s
lipophilicity, and it’s binding to plasma proteins ((Lobell and
Sivarajah, 2003); see Supplementary Section S3). The effect of
alternative methods for predicting fum including or excluding the
effect of ionisation were therefore investigated. As shown in
Figure 3C, none of these methods significantly affected prediction
reliability. The Yang model (minus ionisation), which incorporates
polar surface area (PSA) into the prediction of fum, did increase the
predicted M/P ratio for some underpredicted medications. As such,
only one medication (phenacetin) was >2-fold underpredicted by
this model (overall 69.0% within 2-fold and 88.1% within 5-fold).

FIGURE 2
Alternative methods for predicting Pappmilk. Mean (range) predicted M/P ratios versus the observed data for the ABI (A), MCDB (B), Bartels-LogP (C)
and Bartels-LogD (D) models, for drugs which are not substrates of transporters expressed within the breast, at a pH of 6.88–7.37 and a Crt of 3%–12%.
Solid and dashed black lines represent a P/O ratio of 1 and within 2-fold respectively. Data points are coloured to highlight overpredictions (yellow),
underpredictions (red) and predictions within 2-fold (green), whilst shapes represent acids (○), bases (◇) and neutral drugs (□). Data are considered
within 2-fold if any value in the predicted range is within 2-fold of the observed data.
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3.4 Interrogating the effect of transporters

For the simulations presented above, 51 substrates of
transporters expressed in the breast were excluded from analysis
as it may be expected that active transport would contribute to
mispredictions. The impact of 26 transporters was investigated (see
Methods), however there were only 6 transporters for which a
reasonable number (≥5) of substrates were identified (BCRP,
MDR1, MRP2, OCT1, OATP2B1 and OATP1A2). Compared to
the drugs which were not mediated by transporters, there was no
significant difference in the prediction reliability (P/O ratio) for
substrates of BCRP (p = 0.068), MDR1 (p = 0.12), MRP2 (p > 0.99),
OATP2B1 (p > 0.99) or OATP1A2 (p > 0.99; Figure 4A). The P/O
ratio of OCT1 substrates, however, was significantly lower (p < 0.05;
Figure 4A) than drugs not mediated by transporters, suggesting that
the M/P ratio for OCT1 substrates is typically underpredicted.

These data are complicated somewhat by the fact that transport
of most drugs is mediated by multiple transporters (see
Supplementary Table S3 for breakdown). When limiting the
transport-mediated drug lists to those which are only mediated
by a single transporter, only a significant number of
MDR1 substrates were available. The P/O ratio of drugs
mediated only by MDR1 was also not significantly different from
those drugs not mediated by any transporter (Figure 4B).

3.5 Interrogating the effect of pH

The simulations presented above, all used a pH range of
6.88–7.37. To investigate whether this pH range had a significant
effect on predictions, simulations were also run for the 13 drugs for
which matched observed pH data were available. Predictions using
the observed pH range showed broad agreement with the
predictions presented above, although prediction reliability was
reduced for two drugs (disopyramide and salicylate; Figure 5).

To further investigate the effect of pH, simulations were run at
the mean observed pH (7.12) ± 0, 1, 2 and 3 standard deviations (See
Supplementary Figure S1). Substrates of BCRP, MDR1, MRP2,
OATP2B1 and OATP1A2, were included in this analysis given
that these transporters were not shown to affect prediction
reliability. Increasing the pH range led to an increased number of
predictions matching the observed data, with 53.2% and 82.3% being
within 2- and 5-fold, respectively when only pH 7.12 was used
(Figure 6A), compared with 73.4% and 88.6% when using the more
complete physiological range of pH 6.38–7.87 (Figure 6D).
Figure 6D also shows that over the largest pH range investigated,
the predicted range of M/P ratios for ~25% of drugs was large (>30-
fold). For example, the M/P ratio of atenolol was predicted to be
between 0.3 and 10.2. These data are summarised in Supplementary
Table S4 and detailed in Supplementary Table S9.

FIGURE 3
Effect of observed versus predicted protein binding. (A) Paired predicted and observed fum values for each drug in the dataset for which an observed
value was identified. (B) Range of P/O ratios calculated using the Bartels-LogDmodel and either the predicted (blue) or observed (red) fum value. (C)Mean
P/O ratios calculated for each of the 42 drugs using the Bartels-LogD model in conjunction with the Atkinson/Begg (red), Ito/Atkinson/Begg (blue) or
Yang (green) formulae for predicting fraction unbound in the milk, with or without incorporating the effect of ionisation. In (B, C), the dashed lines
represent 0.5 and 2 (2-fold error).
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3.6 Interrogating the effect of
physicochemical properties

To investigate whether particular physicochemical properties
affected prediction reliability, correlations were drawn between the
P/O ratio and fup, LogD, molecular weight (MW), PSA, number of
hydrogen bond donors (HBD) and acceptors (HBA). The
relationship between P/O ratio and fup was best described by a
non-linear relationship suggesting that drugs which exhibit high
protein binding in the plasma (fup < 0.05) were more likely to be

underpredicted (Figure 7A). No relationship between prediction
reliability and LogD, MW, PSA, HBD or HBA was identified
(Figures 7B–F).

Finally, it was noted that basic dugs predicted better than both
acidic or neutral drugs, with 78.6% and 92.9% of basic medicines
predicting within 2- and 5-fold, respectively, compared with 57.9%
and 73.7% for acids and 50.0% and 77.8% for neutral drugs when
predictions were made at pH 6.88–7.37. Increasing the pH range to
6.38–7.87 led to 88.1% of basic drugs to be predicted within 2-fold
(95.2% within 5-fold).

FIGURE 4
Effect of transporters on prediction reliability. (A) Mean predicted P/O ratios for drugs which are not substrates of transporters expressed in the
breast (grey), and for those mediated by apical (red) and basolateral (green) efflux transporters or apical influx transporters (blue). Statistics represent a
Kruskal–Wallis ANOVAwith Dunn’smultiple comparison, comparing each transporter with the control group. (B) Predicted P/O ratios for drugs which are
not substrates of transporters expressed in the breast (grey), and for those transported by MDR1 only (red). Statistics represent an unpaired t-test. All
data were generated using the Bartels-LogD model and the dotted lines represent 0.5 and 2 (2-fold error).

FIGURE 5
Effect of observed versus mean milk pH values on prediction reliability. Range of P/O ratios calculated using the Bartels-LogDmodel and either the
mean ± SD (blue) or observed (red) milk pH values. The dashed lines represent 0.5 and 2 (2-fold error).
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4 Discussion

All models evaluated showed misprediction of a significant
proportion of the drugs. Of the pre-existing models investigated,
the Log-Transformed model appeared to be most reliable for the
prediction of drug distribution into milk for basic drugs, however
the prediction of acidic drugs was very variable and there is no
formula for predicting neutral medications. We subsequently
investigated whether interrogation of the formulae underpinning
the Phase Distribution model could improve predictability. An
alternative model for prediction of milk lipid distribution
(Bartels-LogD model) improved predictions, but the use of
observed fum or milk pH values; alternative equations for
predicting fum; or incorporation of ionisation into milk protein
binding predictions failed to significantly improve model reliability.
OCT1 substrates and drugs with a low fup were identified as more
likely to be underpredicted.

The limited predictability of the Log-Transformed model has
been highlighted previously, where analysis of 69 medications,
assuming a milk pH of 7.2 and a Crt of 4.5%, showed no
correlation between the predicted and observed M/P values [R2 =

0.01; (Larsen et al., 2003))] and this concern has also been raised by
other groups (Yang et al., 2022; Pansari et al., 2024). Although the
LogPo:w model showed reasonable predictability compared with the
other models, the use of LogP rather than the partition coefficient
(i.e., the exponent of LogP; see Equations 4, 5) results in the model
failing to recapitulate how changes in Crt affect drug distribution.
For example, the LogPo:w model predicts the M/P ratio of the
lipophilic compound labetalol to increase from 0.80 to 0.91 as
Crt increases from 3% to 12%, whereas the Phase Distribution
model predicts this to rise from 2.95 to 9.50. As such, focusing
on the non-log-transformed Phase Distribution model to derive
better predictions was deemed most appropriate. This is supported
by the knowledge that the LogPo:w model is in fact a
misrepresentation of the original Phase Distribution model [as
detailed in (Zhang et al., 2022)], and that the authors have
subsequently employed the Phase Distribution and Log-
Transformed models (Pan et al., 2023; Abduljalil et al., 2022;
Pansari et al., 2022). The ABI and Bartels-LogD models predict a
significantly lower Pappmilk for drugs with a LogD of more than 3
(see Supplementary Figure S2), and the improved predictions of
lipophilic drugs using these models demonstrate that the linear

FIGURE 6
Effect of widening the range of milk pH. Mean (range) predicted M/P ratios versus the observed data for the Bartels-LogD model at a pH of 7.12 (A),
6.88–7.37 (B), 6.63–7.62 (C) or 6.38–7.87 (D). BCRP, MDR1 and OATP2B1 substrates were analysed in addition to drugs which are not mediated by
transporters expressed within the breast. Solid and dashed black lines represent a P/O ratio of 1 or within 2-fold respectively. Data points are coloured
according to highlight overpredictions (yellow), underpredictions (red) and predictions within 2-fold (green), whilst shapes represent acids (○), bases
(◇) and neutral drugs (□). Data are considered within 2-fold if any value in the predicted range is within 2-fold of the observed data.
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extrapolation of the Atkinson/Begg formula included in the Phase
Distribution model may not be appropriate.

Our data showed that OCT1 substrates were significantly
underpredicted, and this is consistent with a role for OCT1 in
the active transport of drugs into the breastmilk. To the best of our
knowledge, there has been little study into this role of OCT1 during
lactation in humans, but rodent models have shown a reduction in
the OCT1 substrate, thiamin, in the milk of OCT1 knockout mice
(Kato et al., 2015). In support of this, OCT1 is upregulated during
lactation (Kimura et al., 2006; Alcorn et al., 2002). Similarly, BCRP
has been shown to be upregulated during lactation (Ahmadzai et al.,
2022; Sychterz et al., 2024), and it was therefore surprising to see that
the prediction reliability for BCRP substrates was not significantly
different to that of drugs not mediated by transporters (Figure 4A;
p = 0.068). We acknowledge that this may have been the result of
using a limited dataset only, with other groups previously
highlighting that BCRP substrates are likely to be actively
transported into the breast milk (Ito et al., 2015; Yang et al.,
2022; Sychterz et al., 2024; Gong et al., 2024). Similar to the
present study, these previous works typically rely on a small
number of BCRP substrates only. Prior work has demonstrated
that in vitro to in vivo extrapolation (IVIVE) can be used to better
predict the M/P ratio of BCRP substrates (Ito et al., 2015; Yang et al.,
2022). This was considered outside the scope of the current work but
is certainly an area in which more work should be focused, and
gathering data from more substrates of BCRP (and other

transporters) would clearly be beneficial. At present, these data
are challenging to interpret given that the majority of medications
are substrates for multiple transporters that are expressed within the
breast. Our data agree well with the previously suggestion that
MDR1 and MRP2 do not play a significant role in the transfer of
drug into the breast milk (Alcorn et al., 2002; Ahmadzai et al., 2022;
Gong et al., 2024).

From a clinical perspective, the underprediction of M/P ratios
may contribute towards dosing nursing infants with unsafe
quantities of maternal medications via the breastmilk, and
therefore understanding the role of transporters such as BCRP
and OCT1 is imperative. When considering only drugs that are
not OCT1/BCRP substrates, 97% of medications were predicted
within 2-fold of the observed data or overpredicted (2/
64 underpredicted) when using the pH range of 6.63–7.62.
Although overpredictions are not desirable per se, these scenarios
allow the use of a model-based approach for estimating worst-case
scenarios in the presence of limited clinical data. Whilst work should
be encouraged to continue improving the reliability of such models,
understanding of current limitations to ensure models are employed
in appropriate ways is also beneficial.

It was somewhat surprising to see that using observed fum values
and alternative models for predicting fum did not improve or even
significantly affect predictions (Figure 3). The model assumes that
only the unbound fraction of a drug is able to partition into milk
lipids, and so increasing the milk protein binding will lead to a

FIGURE 7
Associations between prediction reliability and physicochemical properties. Correlations between the P/O ratio and Fuplasma (A), LogD (B), molecular
weight (C), polar surface are (D), number of hydrogen bond donors (E) and number of hydrogen bond acceptors (F). All data were generated using the
Bartels-LogDmodel and drugswhich are substrate of transporters expressed in the breast, or are BCRP1, MDR1 orOATP2B1 substrates. All plots were best
fit by linear equations other than A.
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‘compensatory’ increase in lipid partitioning, and therefore little
change in predicted M/P ratio. Although this physiological
mechanism supports our findings, there is little-to-no
experimental evidence to verify the interplay between protein
binding, lipid partitioning and ionisation. Atkinson and Begg’s
original protein binding (Atkinson and Begg, 1988a) and lipid
partitioning (Atkinson and Begg, 1988b) experiments were all
performed at pH 7.2, as were more recent, similar, experiments
(Ito et al., 2013). More detailed in vitro work is therefore needed to
quantify the relationship between these factors in order to develop
more reliable models.

The limited availability of paired milk pH, Crt, protein binding
and M/P ratio data provides additional complications. The models
can be used to predict the effect of variable milk physiology on drug
accumulation, and therefore infant exposure, however there are little
data available to verify this predicted effect of Crt or pH. Our
publication list contained only two studies with an AUC M/P ratio
and Crt data (Rampono et al., 2000; Kristensen et al., 2007). In one of
these, fore- and hindmilk were analysed separately and shown to
have Crt values of 6.2% and 13.7% respectively, which correlated
with a 2.3-fold increase in mirtazapine concentration [LogP 2.9;
(Kristensen et al., 2007)]. This change is recapitulated by both the
Phase Distribution model (2.1-fold increase) and the Bartels-LogD
model (1.89-fold increase), with the Bartels-LogD model more
accurately predicting the M/P ratio (P/O ratio of 0.87–1.65 vs.
3.10–6.56; all at pH 7.12). Such a difference in the Crt of fore-
and hindmilk is well established throughout the literature, with
hindmilk typically exhibiting Crt values 2-3 times higher than that of
the foremilk (Meier et al., 2006; Kristensen et al., 2007; Daly et al.,
1993; Bowornkitiwong et al., 2023; Mizuno et al., 2009). These data
may be beneficial when considering study design: if a drug has a low
LogD at breast milk pH then it can be anticipated that samples of
foremilk only will reflect drug concentrations in the whole milk. In
contrast, for lipophilic drugs, sampling of whole milk or fore- and
hindmilk will be considered more important. When we have a
robust understanding of how changes in Crt affect dug distribution,
it is plausible that modelling may be used to extrapolate whole milk
values from fore-milk only, whichmay reduce the burden on women
recruited to clinical trials. As stated, additional observed data with
paired milk pH and Crt information are required to verify this
suggestion, and will thus support the use of modelling in the
optimisation of trial design. Variation of the milk pH and across
postpartum time has also been reported and may affect drug
distribution (Morriss et al., 1986; Ansell et al., 1977; Matheson
et al., 1990), however the intra-individual and inter-individual
variability likely outweighs the variability caused by the
maturation of breastmilk production (see Supplementary Figure S4).

Breastmilk pH data were available in 15 publications, however
this was presented as paired in only half of these (See Supplementary
Table S2). Full interpretation of these data is challenging however,
when the other parameters which are predicted to affect the M/P
ratio are not simultaneously presented. Figure 6 showed that for a
number of drugs, the predicted range of M/P ratios was >30-fold,
however this is much larger than the observed range of M/P ratios. It
is unclear whether this mismatch is due to our incomplete
understanding of the effect of pH on M/P ratios (as discussed
above), or because the range of milk pH’s collected in each study
was more narrow than the physiological range simulated. It is

acknowledged that studies quantifying all these milk parameters
present a considerable technical challenge, particularly given that
milk pH changes with storage time and this likely has knock-on
effects for protein binding and lipase activity, which subsequently
affects Crt and lipid partitioning (Erickson et al., 2013; Van Den
Berg, 1961; Vázquez-Román et al., 2018). It should, however, be
feasible to measure milk pH and Crt in milk aliquots prior to storage
in order to pair these data with drug concentrations at a
later timepoint.

In addition to the quantity of robust data available, another
limiting factor in model development may be the quality of data
available. To increase the reliability of observed M/P ratios only
medications with milk AUC were included, however concerns do
still exist. Many of the studies included within the datasets used were
conducted over 30 years ago, at a time when analytical methods were
less reliable than they are now. The development of deuterated
internal standards has significantly improved our ability to quantify
drug concentrations within the breastmilk, and our understanding
and awareness of drug retention in labware has increased greatly
(Alshogran et al., 2024; Lopes et al., 2016). With that in mind, it is
noteworthy that the Bartels-LogD model predicted 17/18 non-
transporter-mediated drugs within 2-fold of the observed data
(across a pH range of 6.63–7.62) when considering publications
from 1990 onwards (100% within 3-fold). In contrast, 10/24 drugs
published prior to 1990 were mis-predicted, with 9 of these being
over predictions. It is plausible to suggest that overpredictions may
be more likely to occur due to the reduced reliability of drug
extraction and the higher likelihood of sample degradation in
older studies. As more clinical data collected in the modern era
become available, it is likely that more reliable models may
be developed.

Koshimichi et al. developed a semi-mechanistic model for the
prediction of M/P ratios using linear regressions to predict the effect
of physicochemical properties on secretion (CLsec) and reuptake
(CLre) into the breastmilk (Koshimichi et al., 2011), with this model
being incorporated into the PKsim software to predict infant
exposure to 10 medications (80% were predicted within 2-fold;
(Nauwelaerts et al., 2023)). Separate prediction of CLsec and CLre
results in time-dependent differences in the predicted M/P ratio,
thus offering an advantage over the models included in the present
analysis which calculate a steady state M/P ratio only. The semi-
mechanistic model predicted theM/P ratio of 72% of drugs within 3-
fold of the observed data, compared with 71%–84% for the Bartels-
LogD model (from Figure 6). More recently, an IVIVE model has
been developed which incorporates an optimised efflux ratio to
improve prediction of transport-mediated drugs (Yang et al., 2022).
Across a dataset of 162 drugs (48 of were mediated by passive
diffusion only), this model was shown to outperform other models
with 66% of 162 drugs being predicted within 2-fold of the observed
data compared with 51%, 44% and 43% for the Phase Distribution,
Log-Transformed and Koshimichi models, respectively (Yang et al.,
2022). This compares with 51%–72% for the Bartels-LogD model.

Overall, these data suggest that the Bartels-LogD model
presented here may offer an improvement on existing
mathematical models for predicting steady state M/P ratios and
performs comparably to other, more mechanistic models published
recently. The range of predicted milk-to-plasma ratios presented in
this study for each drug demonstrates that consideration of the
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biological heterogeneity of breastmilk is important for model
development and validation. The paucity of data supporting the
physiological mechanisms underlying lipid partitioning, protein
binding and the effect of ionisation therefore limits the
development of models. Although there are technical challenges
associated with clinical lactation studies which have hindered this, it
is expected that increasing advances in bioanalysis and continuous
effort to improve maternal and infant safety will lead to further
improvements in model development.
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