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Metformin has become the frontline treatment in addressing the significant
global health challenge of type 2 diabetes due to its proven effectiveness in
lowering blood glucose levels. However, the reality is that many patients struggle
to achieve their glycemic targets with the medication and the cause behind this
variability has not been investigated thoroughly. While genetic factors account for
only about a third of this response variability, the potential influence of
metabolomics and the gut microbiome on drug efficacy opens new avenues
for investigation. This review explores the different molecular signatures to
uncover how the complex interplay between genetics, metabolic profiles, and
gut microbiota can shape individual responses to metformin. By highlighting the
insights from recent studies and identifying knowledge gaps regarding
metformin-microbiota interplay, we aim to highlight the path toward more
personalized and effective diabetes management strategies and moving
beyond the one-size-fits-all approach.
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Introduction

Type 2 Diabetes (T2D) is a complex and chronic metabolic disorder that has become a
major global health issue. The impact of this disease is significant, exerting substantial
pressure on healthcare systems and affecting a considerable portion of the population
(Pasquel et al., 2021). T2D is characterized by high blood glucose levels due to inadequate
production of insulin or impaired insulin function, including a less drastic and more
progressive loss of β-cell secretory capacity. It can cause major complications, impacting
several organ systems and reducing the quality of life for those affected with the condition
(Yun and Ko, 2021). As we explore the complex nature of T2D and its widespread
prevalence, the healthcare sector is perceiving the rise of precision medicine as a
hopeful direction. Precision medicine is an emerging concept in clinical research that
concentrates on treating diseases by collecting data from various sources to make patient-
specific decisions. It represents categorising people into subpopulations and identifying
specific treatment options that benefit those populations (Woodcock, 2007). Personalised
medicine involves focusing on individualized details such as clinical diagnosis, laboratory
assessments, imaging, including external factors such as environmental, demographics and
lifestyle (Oh et al., 2022).
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T2D patients showcase heterogeneity in the phenotype of the
disease and as well in treatment response and disease progression.
While non-adherence to treatment explains much of the difference,
there might be a possibility that it stems from diverse physiological
factors among patients. Some individuals may respond well to one
drug but not to another due to difference in the underlying cause of
their disease condition (Unnikrishnan et al., 2021). The tolerance to
side effects of these antidiabetic medications also differs significantly
between individuals. In addition, glycemic control in diabetic
individuals involves not just exogenous insulin, but also range of
pharmacologic treatments offering effects such as enhancing insulin
sensitivity, stimulating insulin release, and slowing down the
adsorption of glucose in the intestines (Malandrino and Smith,
2011). In this context, metformin, a well-established initial
treatment (Maruthur et al., 2016), distinguishes itself for its
hypoglycemic ability and its broader effects such as enhanced
endothelial function, reducing oxidative stress and insulin
resistance, improving lipid profiles and managing fat
redistribution (Rojas and Gomes, 2013).

Metformin, a biguanide agent, is the preferred first line oral
medication for the treatment of hyperglycemia in type 2 diabetes.
Metformin is created synthetically, comprising of two coupled
molecules of guanidine (biguanide) (Wilcock and Bailey, 1994). It is
hydrophilic with a pKa value of 11.5 and predominantly remains as an
organic cation at physiological pH (Pentikäinen et al., 1979).Metformin
is primarily absorbed in the upper small intestine and exhibits variable
pharmacokinetics, and its oral bioavailability (F%) is limited
(Pentikäinen et al., 1979; Graham et al., 2011). Metformin’s brief
plasma half-life of 2–6 h results in a steady-state metformin plasma
concentration of approximately 4–15 μM (~0.5–2.0 μg/mL) in
individuals with T2D (Graham et al., 2011). It reduces basal and
postprandial glucose and increases glucose tolerance. The precise
underlying mechanisms of metformin are still unknown; however,
the reduction of glucose is due to decreased production in the liver
due to the activation of AMP-activated protein kinase (AMPK).
Contradicting evidence suggests that activation of AMPK has no
direct impact on the glucose synthesis (Foretz et al., 2023a; Foretz
et al., 2019), and the use of millimolar quantities of metformin in the
studies (He and Wondisford, 2015; LaMoia and Shulman, 2021) has
raised doubts about the physiological relevance of these processes. In
fact, research has demonstrated that glucose synthesis in primarymouse
hepatocytes is suppressed by relevant micromolar metformin doses
through processes that are independent of alterations in adenine
nucleotide levels (Foretz et al., 2023a; Alshawi and Agius, 2019; Ma
et al., 2022). Additionally, metformin can also elevate skeletal muscle’s
absorption of glucose, thereby increases insulin sensitivity. Metformin
does not go through hepaticmetabolism and is excreted unaltered in the
urine (Guo and Priefer, 2021; Sansome et al., 2020). It is noteworthy that
metformin can accumulate to higher amounts in a variety of tissues
than in plasma. This underscores the inconstancy surrounding the
appropriate concentrations of metformin for in vitro research (Wilcock
and Bailey, 1994; Graham et al., 2011). Despite its commendable safety
and effectiveness, there are notable differences in glycemic response in
individuals with metformin therapy (DeFronzo and Goodman, 1995),
probably due to uncertainty in the pharmacokinetics and
pharmacodynamics of metformin.

Pharmacogenomics plays an important role in management of
T2D by taking into account the genetic propensity and potential

pharmacogenetic variations associated with antidiabetic agent like
metformin (Avery et al., 2009). Research indicate that genetic
variations account for 34% of metformin response variability,
suggesting that genetic makeup of patients plays a major role in
their reaction to treatment which may not be evident from their
visible traits (Zhou et al., 2014). Similar to other complex traits,
glycemic response to metformin depends on possible interplay
between genetic and environmental factors. In addition,
metformin also causes adverse side effects such as diarrhea and
nausea which is experienced by 30% of patients, and some
individuals experience, to a lesser extent, lactic acidosis. Even
with metformin’s remarkable safeness and efficacy, over 38% of
diabetic population still struggle to achieve glycemic targets with
metformin. Regardless of the identification of gene variations that
impact the pharmacokinetics or mechanism of action of metformin,
these variants explain only a small portion of the diversity in
metformin response (Song et al., 2008; Shu et al., 2007).
Therefore, research is rapidly progressing beyond genomes in the
era of personalized medicine to find clinically relevant molecular
and metabolic indicators linked to a drug’s response.

In the current landscape of personalized medicine, the focus is
shifting from solely examining genetic variations to a broader, more
integrative approach. While genomics has provided valuable
insights into how genetic differences can influence drug response
(Jithesh et al., 2022), it has become evident that genetics alone
cannot fully explain the variability in drug efficacy and safety across
individuals (Zhou et al., 2022). Consequently, research is now
extending into other ‘omics’ fields, such as metabolomics,
microbiomics, and transcriptomics to uncover additional
biomarkers that might better predict individual responses to
therapies. For an optimum approach to personalized metformin
treatment in diabetes, it is crucial to understand the effect of
phenotypic variation in drug response and utilize the field of
omics to enhance the ability to forecast outcome which will
result in favourable modifications in patient care and preferred
result (Pearson, 2016). Metabolomics has a significant potential to
increase the knowledge of patient’s drug response as it provides
information on distinct metabolic signatures associated with drug
efficacy. Additionally, studies have demonstrated the role of
metabolomics in exploring the pharmacodynamics of metformin
in diabetic patients (Gong et al., 2012; Kim, 2021a). Environmental
aspects such as lifestyle, medication, and the microbiome play an
important role in the variability of drug response (Figure 1).

Increasing evidence suggests that microbiota, specifically gut
microbiota contributes to the drug metabolism (Li and Jia, 2013).
The complex interactions between the human body (host) and the
gut microbiome require the development of innovative models to
predict treatment outcomes accurately. (Wilson and Nicholson,
2017). Various research has concentrated on discovering the
relationship between metabolic disorders and gut microbiome,
although focus on diabetes has only just scratched the surface
(Lee C. B. et al., 2021).

In this review, we explore the diverse factors contributing to the
variability in metformin response among T2D individuals, with a
particular focus on recent advancements in genomics,
metabolomics, and microbiomics. While repurposing of
metformin is being expanded to include a variety of
pathophysiological disorders due to its pleiotropic modes of
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action (Foretz et al., 2023a), we aim to specifically examine the
current knowledge on metformin-microbiota connection and its
associated synergistic and/or detrimental effects in T2D individuals.
Finally, we discuss the advantages of utilizing multi-omics
approaches in order to emphasize the systemic changes induced
by metformin treatment, with the goal of tailoring the drug more
effectively to the specific needs of T2D patients.

Genetics and pharmacogenomics for
personalized metformin treatment

An essential aspect of personalized medicine in diabetes
management is its ability to unveil the genetic factors influencing
an individual’s predisposition to the condition. Genetic screening
helps identify people at risk of diabetes, allowing for timely
intervention with targeted preventive measures and lifestyle
modifications (Petrie et al., 2018). Advancements in genetic
testing has increased the knowledge of genetic aetiology of T2D,
with the identification of nearly 80 susceptibility loci (Kleinberger
and Pollin, 2015; Hara et al., 2014). Aside from genetic variations
that may be causative factors in diabetes, individual patient
attributes that influence how well a given medication works have
major impact on personalized diabetes care.

From pharmacogenetics, pharmacogenomics is a method that
has expanded into new areas for the pharmaceutical and biomedical
industries (Khoury, 2003). Pharmacogenomics enhances
personalized medication regiment according to a patient’s genetic

and genomic characteristics. The field has the potential for a novel
approach to drug selection by optimizing pharmacokinetics and
pharmacodynamics to improve drug efficacy and safety (Sadée and
Dai, 2005) by studying the gene expression over time (Bozkurt et al.,
2007). Gene content or a person’s DNA content remains constant
throughout time; however, the amount of RNA or how much a gene
is utilized fluctuates. Determining the genes products across time
adds further complexity to the process of identifying genes that are
crucial to the disease (Klonoff, 2008).

Candidate genes and genome-wide association studies have
determined genes with variations in sequence that are correlated
with response (decrease or increase) to metformin in various study
populations (Takane et al., 2008; Shikata et al., 2007; Becker et al.,
2009a). As metformin is not metabolised but rather transported and
excreted unchanged, studies have highlighted the role of genetic
variations in genes associated with organic cation transporters
(OCT) and multidrug and toxin extrusion (MATE) proteins in
influencing metformin response. Genetic variations in SLC22A1
(OCT1) have been linked to altered metformin uptake and response.
For example, individuals containing minor C allele in single
nucleotide polymorphism (SNP) rs622342 of the gene
SLC22A1 showed slower reduction in glucose after metformin
therapy (Becker et al., 2009b; Naja et al., 2020).

Functional variants such as R61C, M420del, G465R, G401S were
associated with poor response to metformin and AMPK activation,
potentially affecting glucose levels and insulin response in
individuals according to study conducted by Shu et al. (Shu
et al., 2007). Another prospective study demonstrated that the

FIGURE 1
Host genetics play an important role in gut microbiota composition and also affect the drug metabolism. Exogenous factors such as exercise, diet,
other lifestyle factors, and consumption ofmetformin alter the diversity of themicrobiota. On the other hand, gut microbiota affects the drugmetabolism
via microbiota-related and -derived metabolites. These metabolites make up themetabolome as well. The interplay between these factors causes varied
response to metformin in individuals.
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same reduced functional variants of OCT1 (M420del, R61C, G465R,
and G401S) were linked to trough concentrations of metformin and
progress in HbA1c post 6 months of metformin treatment in a group
of 151 diabetic patients in South Danish cohort (Christensen et al.,
2011). On the contrary, M420del polymorphism of OCT1 is
associated with good response to metformin in patients with
newly diagnosed diabetic individuals. The study focused on
responders and non-responders, where the former had
significantly lower frequency of M420del mutant allele compared
to the latter (Mahrooz et al., 2015). In another prospective
observational study, researchers found that a specific genetic
variation (rs72552763 SNP) in the SLC22A1 gene is associated
with better metformin response. Individuals with the deletion
version (del_G) had higher metformin response and lower
HbA1 levels compared to those with the common GAT-GAT
(G-G) genotype. While the association was not replicated at the
allele level, the del_G was consistently linked to improved glycemic
control (Degaga et al., 2023). In a Japanese cohort, 2 variants of
SLC22A1, rs4646272 and rs628031, are found to have negative and
positive associations with metformin efficacy, respectively (Shikata
et al., 2007).

Empirically supported studies demonstrated that genetic
polymorphisms of SLC22A2 (OCT2) cause inter-patient
heterogeneity in the metformin uptake and clearance (Takane et al.,
2008; Todd and Florez, 2014). Studies in Korean and Chinese
populations indicated decreased metformin clearance and increased
plasma concentrations in carriers of c.596C>T, c.602C>T, c.808G >T
variants, implying the need for potential adjustments in dosage to
optimize metformin treatment (Song et al., 2008). Multiple studies have
failed to provide a connection between OCT2 variants and metformin
response (Sundelin et al., 2017; Kerb et al., 2002; Rena et al., 2013; Dujic
et al., 2017). However, it has been suggested that C allele of rs8192675 in
the gene SLC2A2, which encodes GLUT2 (glucose transporter), is
essential for regulating metformin action (Zhou et al., 2016). A recent
meta-analysis studied 13 OCT2 variants with varying frequency and its
impact of metformin efficacy in a mixed ethnic cohort, among which
one variant (rs316019) displayed both positive and negative effects in
pharmacokinetics and pharmacodynamics of the drug (Borra et al.,
2023) (Peng et al., 2023).

Similarly, variations in the MATE1 gene (SLC47A1) have been
associated with changes in metformin’s capability to alter glucose
levels. Becker et al. have demonstrated that homozygous carriers of
SLC47A1 rs2289669 A-allele show a larger reduction in HbA1c to
metformin therapy compared to the prevalent G-allele (Becker et al.,
2009a). Another study also showed that the diabetic patients with
homozygous A-allele showed 2-fold decrease in HbA1c in contrast
to patients carrying G-allele (Tkáč et al., 2013). Polymorphism
rs622342 A > C was associated with lower reduction in HbA1c,
hence, genetic variation at rs622342 is correlated with hypoglycemic
effect of metformin in diabetes (Becker et al., 2009b). Although,
meta-analysis of Metformin Genetics Consortium identified no
significant association between metformin-related glycemic
response and MATE1 transporter genes (Dujic et al., 2017).
Therefore, findings are inconsistent for metformin response in
this gene (Christensen et al., 2011; Dujic et al., 2017; Tkáč et al.,
2013; Jablonski et al., 2010).

Pharmacogenomics studies have identified additional genetic
variations associated with changes in metformin response in diverse

populations. A genome-wide association study demonstrated that
the serine/threonine kinase encoding - ATM gene (ataxia
telangiectasia mutated) has potential involvement in the
mechanism of enzymes responsible for response to metformin
(Zhou et al., 2011). According to another pharmacogenetics
study, the metformin transporters OCT1, OCT2, OCT3, and
P-GP are not associated with treatment inefficacy in Mexican
type 2 diabetes patients (Hemauer et al., 2010). OCT3 variants
T44M, V423F, and T400I were exhibiting decreased metformin
uptake and changed substrate selectivity in another study by
Chen et al. (Chen et al., 2010). In addition, a recent study has
identified a novel variant (rs143276236) in the gene ARFGEF3 in the
discovery cohort with a potential to reduce HbA1c in individuals
with metformin monotherapy in African-Americans, although this
find was not significant in the validation cohort (Wu et al., 2023). A
correlation was found between the GA genotype of
SLC47A2 rs12943590 and reduced response to metformin
therapy, and CT genotype of rs12752688 was strongly associated
with improved response to metformin therapy (Xhakaza et al.,
2020). Evidently, continuous efforts are made to identify
potential genetic causes that alter response to metformin therapy
worldwide. Even with the identified transporter genes of metformin,
the reaction to therapy is remarkably diverse across various
ethnicities (Ochi et al., 2024). It is imperative that further studies
are crucial to confirm these findings across larger and diverse ethnic
populations. Current pharmacogenomics of metformin are depicted
in Figure 2.

Although pharmacogenomics has advanced considerably in
connecting drug responses to genetic variations, it does not
account for the influence of environmental factors and the
interplay between the metabolism of the individual and the gut
microbiome. There’s growing evidence that alternative sites of
activity, like the gut microbiome, tissue-resident immune cells,
and the gastrointestinal system, may potentially be significant in
metformin efficacy (Thakkar et al., 2013; Lalau et al., 2021). It has
been reported that the variation in metformin response due to
genetic variation is minimal and majority of the difference can
be explained by environmental and lifestyle factors (Zhou et al.,
2014). In this context, metabolomics provides an integrative
technique to explore the variation of metabolites in response to
alterations in physiological systems, which can offer a novel insight
to the varied reactions to treatment.

Metabolomics and
metformin treatment

Metabolomics is a subset of omics tools that concentrates on the
biological changes that closely reflect the endpoints of biochemical
events. It includes extensive biological changes from the genomics to
proteomics (Johnson and Gonzalez, 2012). Metabolomics is the
study of small molecules, in a body fluid or tissue extract, involved in
cellular processes. It provides a screenshot of the phenotype of an
individual and evaluates the alterations caused by drug intake,
thereby increasing the understanding of mechanism of drug
action and heterogeneity observed in drug response
(Shahisavandi et al., 2023; Bain et al., 2009).
Pharmacometabolomics is a valuable method for examining the
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alterations in metabolites resulting from disorders or environmental
factors and predicting the efficiency or potential toxicity of a specific
drug intervention (Corona et al., 2012). It aids in the understanding
of pharmacokinetics and pharmacogenetics, providing knowledge of
the processes underlying medication responses at the level of
genetics (Corona et al., 2012). Multiple studies have reported on
the association between the progression of diabetes and alterations
in metabolites after hypoglycemic treatments (Zhao et al., 2010; Cai
et al., 2009).

It is important to note that metformin can significantly affect the
levels of various metabolites, including those involved in the glucose
metabolism, lipid metabolism, tricarboxylic acid cycle (TCA), and
urea cycle (t Hart et al., 2018a). A comprehensive investigation
concluded that, regardless of the metabolic status or disease
condition, metformin administration significantly changed the
metabolic profiles linked with multiple pathways (Kim, 2021b).
For example, a study found that metformin-related metabolites,
such as eicosanoids, hydroxyl-methyl uracil, propionic acid, and
glycerol-phospholipids, significantly altered in those who took a
single dose of metformin with no underlying medical issues

(Dahabiyeh et al., 2021). Therefore, it is conceivable that the
metabolic profiles of individuals using metformin may undergo
alterations, leading to distinctions in the profiles of responders and
non-responders to the drug. To determine the metabolic profiles of
metformin users and identify those who respond well or poorly,
metabolomics research is essential. In the case of metformin therapy,
this strategy is crucial for developing precision medicine and
customizing treatment plans. For example, a
pharmacometabolomic approach has been proposed with the
potential to identify distinct metabolic signatures associated with
response to the metformin, paving the way for personalized
metformin therapy strategies (Naja et al., 2023).

A study by Safai et al. demonstrated that metformin therapy is
correlated with reduced amino acids, such as, tyrosine, valine, and
carnitine in serum, which contributes to insulin resistance and
mitochondrial dysfunction. Interestingly, this study found no
metabolites that indicate or associate with HbA1c-lowering effect
of metformin (Safai et al., 2018). Another study has reported that
metformin seemingly increases the production of 3-hydroxy fatty
acids (3-HFAs) either by beta-oxidation or via gut microbiota. 3-

FIGURE 2
Variants associated with metformin action in T2D population.
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HFAs can activate G protein-coupled receptors and thereby regulate
the pleiotropic effects of metformin (Naja et al., 2024). Additionally,
alanine is reported to be significantly increased with metformin
monotherapy and combined with sulfonylurea, and branched-chain
amino acids (valine, leucine, and isoleucine) are increased with
metformin therapy (t Hart et al., 2018b).

It is possible to define the mechanisms of heterogeneity in
response to medication by combining the baseline data on
metabotype with signature of drug exposure. Various studies
have explored the impact of metformin on the plasma
metabolome in diabetes. Gormsen et al. has reported that
1,000 mg of metformin twice a day improved the fasting plasma
glucose level in only metformin-treated diabetes and the metabolite
1,5-anhydroglucitol (1,5-AG) was associated with glucose-lowering
effect (Naja et al., 2023; Gormsen et al., 2019). A cross-sectional and
longitudinal study using LC-MS and non-targeted metabolomics
reported that citrulline showed lower relative concentrations in
individuals with metformin-treated T2D individuals compared to
those without metformin treatment in the human study. This effect
was confirmed in mice, where significantly lower citrulline values
were observed in plasma, skeletal muscle, and adipose tissue of
metformin-treated animals (Adam et al., 2016). This result was also
consistent with another study by Breier et al. where citrulline was
reduced in serum after metformin treatment in a cohort of
previously untreated diabetic patients (Breier et al., 2017). Irving
et al. conducted a randomized, double-blind, placebo-controlled
design, it was observed that the combination therapy of pioglitazone
and metformin led to a reduction in the concentrations of citrulline
and arginine (Irving et al., 2015). These studies suggest that
metformin may influence downregulating the urea cycle in T2D.
However, the metabolic signature associated with good and poor
response to metformin therapy is crucial to adjust the treatment that
best suit the patient. In line with this, only a handful of studies have
investigated the differences in metabolites between responders and
non-responders. Park et al. has reported three metabolites, hippuric

acid, citric acid, and myoinositol as potential diagnostic biomarkers
to predict metformin response (Park et al., 2018). Naja et al. has
shown that sphingomyelins, acylcholines, and glutathione
metabolites were increased in good responders (Naja et al., 2023).
A recent review has summarised studies focusing on metabolic
patterns related to metformin response in pre-diabetes and
diabetes (Kim, 2021b). A concise table presenting the discussed
studies are presented in Table 1.

Metabolomic research on metformin treatment began in the early
2010s and has grown since, however, the number of publications based
on clinical research is limited. Studies have shown that metformin is
correlated with TCA cycle, lipid metabolism, glucose metabolism,
although the results were inconsistent between studies and not
enough to derive robust conclusions. Moreover, the metabolite
markers associated with responders and non-responders to
metformin are not clearly established as either a cause or an effect
of genetic alterations on the pharmacokinetics of metformin (Florez,
2017). However, these metabolites may be helpful in predicting how
people would react to metformin and facilitate categorization of
individuals based on their responses to the treatment, and thereby
paving the way for individualized metformin treatment plans.

As previously discussed, metformin users have heterogeneous
response to hyperglycemia in diabetes patients (Pearson, 2016).
Metabolomics is, nonetheless, a powerful approach to discover
the complex metabolic interactions and metabolic patterns in
health and disease. The microbiome, medication, lifestyle, and
other environmental factors have a significant impact on how
differently individuals respond to different drugs. There is
mounting evidence that the microbiota—more especially, the gut
microbiota—plays a role in drug metabolism (Kim, 2021b;
Vernocchi et al., 2016). The microbiota is responsible in multiple
biochemical functions directly correlated with the host, investigation
of metabolic interactions between the gut microbiota and host
metabolism with provide a comprehensive view of the genetics-
environment-health connection.

TABLE 1 Summary of metabolites in relation to metformin treatment and its response.

Metabolite(s) Observation Associated mechanisms

Eicosanoids, glycerophospholipids, 5 hydroxyl-
methyl uracil, Propionic acid

Inverse relationship with metformin levels Reduce inflammation and dyslipidemia, alter DNA lesion repair
mechanisms, and suppress appetite (Dahabiyeh et al., 2021)

Tyrosine, valine, carnitine Reduced with metformin intake No direct connection to lowering HbA1c levels (Safai et al., 2018)

Alanine Significantly increased with metformin
monotherapy and combined with sulfonylurea

Metformin-treatment associated metabolite (t Hart et al., 2018b)

3-hydroxy fatty acids (3-hydroxydecanoate, and
3-hydroxyoctanoate)

Increased in metformin therapy Associated with mitochondrial β-oxidation (Naja et al., 2024)

Branched-chain amino acids (valine, leucine,
and isoleucine)

Decrease? Suppress BCAA activity and PI3K/Akt/mTOR pathway

1,5-anhydroglucitol (1,5-AG) Reported in fasting plasma of metformin-treated
diabetes patients

Glucose lowering effect in metformin users (Naja et al., 2023; Gormsen
et al., 2019)

Citrulline Lower concentration after metformin use Observed in plasma, skeletal muscle, and adipose tissue in human and
mouse studies. Indication of insulin sensitization (Adam et al., 2016)

Hippuric acid, Citric acid, Myoinositol Lowered levels in the metformin responders Proposed as diagnostic markers for metformin responders vs. non-
responders (Park et al., 2018)

Sphingomyelins, Acylcholines, Glutathione Increased levels in individuals showing response to
metformin

Potential biomarkers of favourable metformin response (Naja et al.,
2023)
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Pharmacomicrobiomics

The gastrointestinal tract is home to a varied and dynamic
colony of bacteria known as the gut microbiota, which has a major
influence on human health and disease (Clemente et al., 2012).
These microbes are necessary for immune system modulation,
nutritional absorption and digestion, and the synthesis of critical
metabolites (Thursby and Juge, 2017). A number of factors,
including as medication use, lifestyle choices, and nutrition, affect
the makeup and functionality of the gut microbiota (Hasan and
Yang, 2019). In turn, gut metabolites can underline how lifestyle and
dietary habits can influence the response to different treatments
(Vernocchi et al., 2016).

Gut diversity as a marker for metformin
responsiveness

Microbes can influence drug pharmacokinetics through
mechanisms such as activation, competition, biodegradation, and
potentiation. Microbes can play a direct role in the activation and
inactivation of drugs via biotransformation of drug molecules into
secondary metabolites (Enright et al., 2016). They can indirectly
influence the drug response by generating microbial metabolites that
interfere with gene expression and host signaling pathways (Haiser
et al., 2013). Moreover, modifications to the gut microbiome can
result in variability in drug responses (Panebianco et al., 2018).
Pharmacomicrobiomics is the study of synergistic effects between
the drug and gut microbiome and explains the impact of variations
in microbiome on drug action and response (Aziz et al., 2011; Saad
et al., 2012). The complex relationship between the gut microbiota
and metabolic health, especially in the context of T2D is crucial for
understanding and treating the condition. The gut microbiome has
an impact on the host metabolism, influencing insulin secretion and
intestinal development and playing a significant role in metabolic
disorders. Evidence from multiple microbiota transplantation
studies suggest that modulation of microbiome could improve
metabolic health of individuals. As diabetes is associated with
alterations in the microbial profiles and reduced diversity,
microbiome may contribute to the severity and progression of
the disease (Vrieze et al., 2012; Wang et al., 2011; Koeth et al.,
2013). A recent review has summarized the direct effects of gut
microbiota on the mechanisms involved in the development of T2D,
underlining the alterations on the microbial composition due to
different therapeutic interventions, and its effect on insulin
resistance and glycemic control (Barlow and Mathur, 2022).
Taken together, these studies indicate potential therapeutic
strategies for managing T2D by restoring or altering the gut
microbial composition.

The study of the microbiome in connection to metformin
response is gaining a lot of attention, with possible applications
to personalized therapy. Developing microbiome-targeting
methodologies by understanding the role of gut microbiome in
response to drugs can improve drug efficiency and reduce adverse
drug effects (Lee H. L. et al., 2018; Tsunoda et al., 2021). Utilizing
microbiome modulators to treat metformin sensitivity has
previously been reported to be successful according to the
research by Burton et al. (Burton et al., 2015). Evidently,

pharmacomicrobiomics is becoming a crucial aspect of
personalized medicine and modifying the gut microbiome has
the potential to manage drug efficiency and safety at the
individual level. (Ting et al., 2022).

Gut microbiota composition changes due
to metformin

Metformin is increasingly recognised for its role in the gut,
including modifications to the microbiome which might account for
some of the drug’s therapeutic efficacy and side effects (McCreight
et al., 2016; Forslund et al., 2015). In addition to many functions
such as, enhancing the absorption of glucose, the formation of
glycolytic lactate, the secretion of glucagon-like peptide-1 (GLP-1),
and the bile acid pool, metformin alters the microbiome
composition in the gut (Wu T. et al., 2017). For example, a study
by Lee et al. (Lee Y. et al., 2021) demonstrated that the
administration of metformin changed the relative abundances of
metabolites such as carbohydrates, amino acids, and fatty acids as
well as specific gut bacteria (Escherichia, Romboutsia,
Intestinibacter, and Clostridium). These alterations were linked to
important metabolic processes that are implicated in the
hypoglycemic effect of metformin via AMPK activation,
including gluconeogenesis, energy metabolism, and branched-
chain amino acid metabolism (Lee Y. et al., 2021; Wang et al.,
2022; Damanhouri et al., 2023).

Notably, the gut serves as the main human reservoir for orally
ingested metformin with 100–300 times higher than in serum
(Wilcock and Bailey, 1994; Foretz et al., 2023b). In fact, it is
apparent that the microbiome is the main source of metabolic
interactions (Wu H. et al., 2017; Shin N. R. et al., 2014). The
microbiome is altered in response to genetic influences
(Goodrich et al., 2014), environmental factors (Nagpal et al.,
2017), and lifestyle (Lee S. H. et al., 2018), and taken together
these factors create a unique microbial signature of a person.
Additionally, not everyone benefits equally from metformin
therapy, some experience negative effects as well (DeFronzo and
Goodman, 1995) and therefore the microbiome is an important part
in the inter-individual variability in drug response. These facts
present intriguing concerns regarding the molecular mechanisms
by which metformin affects the gut microbiota and involvement of
the gut microbiota with respect to tolerance or intolerance to
metformin. Metformin-treated diabetic patients have shown
evidence of gut dysbiosis, however, only hypothetical
mechanisms of metformin affecting glucose regulation in the gut
exist so far (Buse et al., 2016). The causal relationship reported
between the unique microbial metabolic pathways found in distinct
gut microbiota compositions and the long-term durability of the
glycemic response to metformin monotherapy in T2D further
emphasised on the interplay between metformin and gut
microbiota metabolism (Foretz et al., 2023a). For example,
thiamine biosynthesis pathways may have a role in maintaining
the glycemic response to metformin monotherapy over time. (Hung
et al., 2021).

Investigations conducted in animal models validated that
metformin-induced modulation of gut microbiome resulted in
the formation of short-chain fatty acids (SCFAs), reduced
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lipopolysaccharides in circulation, impeded intestinal
proinflammatory signalling and altered hepatic uptake of
metformin (Ahmadi et al., 2020; Zhang et al., 2019; Liu et al.,
2021; Wu et al., 2019). This is particularly interesting as SCFA-
producing bacteria such as Butyrivibrio and Roseburia ferment
indigestible complex carbohydrates and enhance insulin
sensitivity (Pedersen et al., 2016). Forslund et al. proposed that
the microbial production of SCFAs mediates the efficacy of
metformin in the treatment of type 2 diabetes by enhancing
glucose regulation.

Several mechanisms have been hypothesized linking metformin
action on the GM and the improvement of glucose tolerance (Foretz
et al., 2023a). In a study involving in vivo models, altered hepatic
uptake of metformin was observed in pseudo-germ-free rats
compared to conventional diabetic rats. The pharmacodynamic
and pharmacokinetic property of metformin was modified in the
pseudo-germ-free rats, possibly due to decreased OCT1 expression
(Wu et al., 2019). Another study showed that bile acid
glycoursodeoxycholic acid (GUDCA) was increased and
Bacteroides fragilis was decreased in newly diagnosed T2D
patients under metformin treatment. Additionally, the benefits of
metformin were eliminated in high fat diet (HFD)-fed mice
colonized with B. fragilis, suggesting that the intestinal farnesoid
X receptor (FXR) axis mediated the glucose-lowering effect of
metformin (Sun et al., 2018). In contrast, Silamikele at el. has
reported an elevated abundance in B. fragilis in response to
metformin treatment in HFD groups of both sexes of mouse
model (Silamiķele et al., 2021). Hence, further investigations are
required to elucidate the exact effect of B. fragilis on
metformin efficacy.

Role of gut microbiota in modulating
metformin efficacy

Studies have reported the influence of gut microbiota
community on the hypoglycemic effect of metformin in T2D
individuals. An in silico human microbiota metabolic modeling
study providing evidence for metformin–microbiota interactions
revealed a projected increase in agmatine synthesis capability by
E. coli in metformin-treated T2D patients (Pryor et al., 2019). A
randomised clinical trial demonstrated that metformin improved
hyperglycemia in T2D by increasing Blautia and Faecalibacterium
in the gut (Tong et al., 2018). In another double-blind randomized
study, metformin altered the gut microbiome by increasing
Escherichia and Akkermansia muciniphila in individuals with
treatment naïve T2D. This study examined the metabolic benefits
of metformin by transplanting the fecal samples from donors who
were treated with metformin to germ-free mice. It was speculated
that glucose tolerance was enhanced either by elevating the
production of SCFAs or modifying plasma bile acid composition
(Wu H. et al., 2017). Based on these data, it is understood that
metformin’s ability to treat type 2 diabetes may be linked to its
impact on the gut microbiota and its generation of short-chain fatty
acids (SCFAs). In a recent systematic review, the species A.
muciniphila and many taxa in the order Enterobacteriales were
found to be more prevalent in insulin resistant (pre-diabetic) and
T2D patients using metformin (Cao et al., 2020). The underlying

mechanism is not fully debunked, although, A. muciniphila is found
in the mucus layer of the colon responsible for secretion of mucus
and improving the integrity of the intestine by decreasing the
permeability of the epithelial layer (Geerlings et al., 2018).
Metformin is also correlated with an improvement in the
thickness of mucin-secreting cells (Induri et al., 2022).
Interestingly, in a mouse model with impeded bile acid flow,
FXR axis was activated by ligand TC-100, which prevents the
intestinal mucosal damage, and showed association with increase
in A. muciniphila (Marzano et al., 2022). This study emphasizes on
the preservation of intestinal barrier which plays a metabolic role in
regulating inflammation in the intestines, which could eventually
lead to management of adipose tissue dysfunction, chronic systemic
inflammation, and glucose intolerance in T2D. Li et al. discovered
that A. muciniphila enhances HFD-induced intestinal
hyperpermeability and influences the intestinal barrier function
via upregulation of tight junction (TJ) closure proteins (Li et al.,
2016), thereby reducing the circulation of pro-inflammatory
lipopolysaccharides (LPS) and inflammation. In line with the
research that showed increase in the abundance of Akkermansia
species, it has been demonstrated that use of metformin was
essentially associated with an increased production of SCFAs
(Wu H. et al., 2017; Ejtahed et al., 2019; Huang et al., 2018).

Additionally, metformin treatment shows higher abundance of
Bifidobacterium which can stabilize the GI mucosa by increasing the
production of gastric mucin. Increasing the amount of
Bifidobacterium in the gut led to a larger level of proglucagon
mRNA, which in turn encouraged the production of glucagon-
derived peptides (Cani et al., 2009). In the process, glucagon-like
peptide-2 (GLP-2) increased the proliferation of intestinal epithelial
cells and decreased permeability, thus strengthening the intestinal
mucosal barrier. Together with the ability of metformin to improve
intestinal barrier integrity and strengthen it by increasing intestinal
expression of TJ proteins, these data suggest that metformin also
indirectly reduces insulin resistance through modulating GM
composition, SCFA levels, and intestinal barrier integrity.

Bidirectional relationship between
metformin and gut microbiota

It is important to note that the relationship between metformin
and the gut microbiota is bidirectional. Metformin affects the gut
microbiota composition, which in turn may influence its therapeutic
effects. Study by Ezzamouri et al. used metabolic modeling to
understand the metabolic interactions between the human gut
microbiome and metformin treatment in diabetes patients. The
research provided insight into the metabolic contribution of the
gut microbiota and the effect of metformin treatment, including the
changes in the abundance of specific microbial species (increased
Blautia wexlerae, a short chain fatty acid-producing species) and
decreased Alistipes obesi (Alistipes genera), Roseburia sp. CAG:100,
Faecalibacterium prausnitzii 7, F. prausnitzii 3 (L2–6), butyrate
producers, and several firmicutes bacteria) in response to
metformin (Ezzamouri et al., 2023). In line with this context, the
metabolites generated by the gut microflora can affect how well
metformin works as a treatment contributing to interindividual
variability in the drug’s response. For instance, metabolomic analysis
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of plasma from metformin-treated individuals with high blood
glucose levels and those with low blood glucose levels revealed a
microbial metabolite, imidazole propionate, as a negative regulator
of metformin efficacy in humans (Koh et al., 2020). Imidazole
propionate lessened the immediate glucose-lowering impact of
metformin in mice fed a western diet by inhibiting AMPK
signaling in the liver via p38γ-dependent mechanism. It’s
interesting to note that p38γ inhibition blocked imidazole
propionate’s inhibitory effect on acute metformin action,
suggesting possible therapy options for T2D patients who do not
respond well to metformin (Koh et al., 2020).

Several studies have demonstrated that metformin can alter the
composition of the gut microbiota in both healthy individuals
(Ejtahed et al., 2019; Bryrup et al., 2019) and in diabetic patients
(Forslund et al., 2015; Wu H. et al., 2017; Sun et al., 2018; Tong et al.,
2018), however, studies have not fully investigated the difference in
microbiota composition between responders and non-responders
under metformin therapy. This is an essential point to consider
when assessing the inter-variability in the response to metformin, as
it helps to understand the gut microbiota’s contribution to the
unresponsiveness.

Notably, metformin also causes unfavourable side effects, for
example, increased relative abundance of Escherichia spp. and its
virulence factors, causing bloating, diarrhea, and vomiting (Forslund
et al., 2015) in some individuals. Increase in Enterobacteriaceae
species, such as Salmonella, Klebsiella, Shigella, and Escherichia, was
observed in independent cohorts of European women (Karlsson
et al., 2013) and Nordic (Huang et al., 2018) diabetic patients taking
metformin. In another cohort from Colombia, metformin
administration significantly boosted Prevotella and Megasphaera
genus, responsible for bacterial vaginosis, while reducing
Clostridiaceae 02d06, Oscillospira and Barnesiellaceae (de la
Cuesta-Zuluaga et al., 2017). Individuals under metformin
treatment showed positive correlations were found with
Bacteroids and Escherichia species and negative associations were
obsevered with Ruminocococus and Faecalibacterium even with
shorter duration of metformin treatment in Japanese cohort (Li
et al., 2021). In short, in some cohorts metformin treatment
essentially alters the gut microbiota in a way the “good” bacteria
are reduced and the virulent or pathogenic species are increased.

Alpha diversity is a measure of species diversity in an ecosystem,
and Shannon diversity is a metric of alpha diversity commonly used
in gut microbiome studies as a marker for metabolic health (Yin
et al., 2019; Kim et al., 2017). Wilmanski et al. have shown that 1-
carboxyphenylalanine and methyl glucopyranoside (α+β) were
among the 11 strong predictors of Shannon α-diversity of gut
microbiota (Wilmanski et al., 2019). 1-carboxyphenyalanine is
reported to be associated with poor response to metformin (Naja
et al., 2023) and with lower microbiome diversity (Wilmanski et al.,
2019), and previously shown to bemost discriminating metabolite of
insulin resistance (Almuraikhy et al., 2023; Diboun et al., 2021). In
this context, patients under metformin and probiotics had a larger
reduction in glycated hemoglobin levels compared to those under
metformin-monotherapy (Şahin et al., 2022). As discussed earlier,
metformin affects relative abundance of various phyla that may lead
to gastrointestinal issues independent of potential influence on
glycemic control which can lead to intolerance to metformin
(Forslund et al., 2015; Adeshirlarijaney and Gewirtz, 2020). Up to

30% of individuals on metformin are considered to experience
undesirable gastrointestinal side effects (Forslund et al., 2015).
The impact of metformin on gut microbiota is known for both
its beneficial effects and unfavourable gastrointestinal side effects,
which can result in suspension or drastically lowering the daily
dosages, and thereby reducing the medication’s effectiveness as a
first-line antidiabetic treatment. In order to limit these detrimental
effects, probiotic treatment, which alters the microbiota, has also
been demonstrated to improve insulin resistance by boosting the
abundance of SCFA producing bacteria and modulating bile acid
metabolism, possibly improving glucose regulation while working
alongside metformin (Shin N. R. et al., 2014; Şahin et al., 2022; Chen
et al., 2023). Probiotics and prebiotics alter the gut microbiota and
enhance the effects of metformin therapy on T2D in both human
and animal studies (Foretz et al., 2023a; Seicaru et al., 2022).

It is challenging to draw robust conclusions because of the wide
range of roles played by the microbiome, the variety of
microorganisms that are there, and the numerous variables that
can affect their activity. A systems-based approach and customized
drug testing techniques may be required to gain a deeper
understanding of the underlying mechanisms and causes (Aziz
et al., 2011). This may contribute to the explanation of the
distinct variables that may impact drug-microbe-host interactions
and offer more individualized therapeutic options. Therefore,
further research is necessary to clarify the many functions that
various bacteria play in host metabolism.

Integration of pharmacogenomics,
metabolomics and microbiomics: Path
to personalized metformin therapy

Until recently, personalized medicine in T2D has predominantly
focused on variation in DNA sequence; however, this captures only a
part of the overall complexity of individual variation. The genotype
of an individual does not explain the dynamic process impacted by
several environmental and/or disease-related factors, however, the
metabotype serves as the culmination of the “genome-environment-
microbiome” interplay (Bafiti and Katsila, 2022; Beger et al., 2016).
Personalized medicine is pacing towards combining clinical and
molecular signatures that can forecast treatment outcomes and
decrease the ambiguity in deciding suitable treatment. Clinical
care of diabetes patients emphasizes on reducing plasma glucose
levels and the risk of complications associated with the condition.
However, significant variability is present in response to the same
intervention. To carry out the most appropriate intervention plan
based on a patient’s particular characteristics, a deeper
understanding of the underlying reasons of various
pharmacological reactions is required. For this reason, studies
that collect molecular signatures in terms of genes, metabolites
and microbiomes can truly elucidate the complex interplay at
hand (Figure 3).

Multi-omics interpretation of omics data is crucial for a
thorough understanding of T2D and for their prognosis,
diagnosis, and treatment. Advancements in technologies have
provided exceptional opportunities to evaluate and combine
individual omics data, which has captured biological variation to
enable targeted therapeutic options. Walford et al., combined
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genetics, metabolomics and clinical parameters from 1,622 non-
diabetic individuals enhanced the prediction of possible T2D
diagnosis in the future. A 62-variant GRS showed an AUC of
64%, which increased to 88% with the combination of genetics,
metabolomics, and clinical factors (Walford et al., 2014).

Since the early 2010s, studies have shown that integration of
multiple data can enhance personalized therapeutic options in the
field of diabetes research. For example, researchers have complied
genomics, metabolomics, proteomics, and microbiome analyses in a
single framework to develop individualized dietary interventions for
T2D (Price et al., 2017). Genome-wide association studies (GWAS)
coupled with metabolomic profiling has provided novel insights the
role of inherited variation in blood metabolic diversity and potential
opportunities for novel drug development in T2D (Shin S. Y. et al.,
2014). Integration of data on dietary intake, physical activity, sleep,
anthropometric measurements, and gut microbiota using machine
learning algorithm predicted postprandial glycemic response to real-
life meals, this enables personalized diets to reduce postprandial
blood glucose (Zeevi et al., 2015). However, only a handful of studies
exist to date that are specific to metformin therapy and inter-

individual variability and are mentioned here. Combining
metagenomics data with genome-scale metabolic modelling
predicted the changes in the gut microbial species in response to
metformin treatment, establishing guidelines on how dietary
modifications can improve drug efficacy (Ezzamouri et al., 2023).
Xu et al. combined both metabolomics and genomics data and
identified metformin-associated metabolites (PC ae C36:4, PC ae
C38:5, and PC ae C38:6), which are involved in the AMPK pathway
associated with FADS1 and FADS2 genes (Xu et al., 2015).
Furthermore, artificial intelligence has been useful in identifying
complex patterns in multi-omics datasets. Deep learning methods
have proven helpful in the development of biological mechanism
prediction and disease prediction models in several conditions
(Wang et al., 2023; Bokulich et al., 2022). For example, multi-
omics variational encoders (MOVE), a deep learning framework
identified novel associations between gut microbiota and metformin
in T2D patients (Allesøe et al., 2023). Following the examples, it is
indeed necessary to conduct integrated omics research to further our
understanding on variability in the response to metformin therapy
in diabetic individuals.

FIGURE 3
Inter-individual variability in response tometformin therapy is observed T2D individuals. Biological samples (such as blood, faeces, etc.) from awell-
defined cohort is used to derive patient information. Followed by leveraging the power of multi-omics to integrate clinical parametric data, along with
genomics, metabolomics and microbiomics to decipher inherent genetic variations, altered biodiversity and metabolic profile to further our
understanding of diverse responses to metformin therapy and enabling personalized treatment options.
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Major upstream causal factor is the genome, with metabolome,
microbiome and other omics being mediators which are impacted
by age, gender, demographic characteristics, and pharmacological
intervention (Yu et al., 2024). Moreover, current literature suggests
that gut microbiome is a strong contender in metformin therapy and
the microbiome-regulated mechanisms involving alterations in the
gut microbiota composition influence its pleiotropic effects (Hung
et al., 2021; Pryor et al., 2019; Seicaru et al., 2022; Zhao et al., 2023).
The integration of various omics can shed light on the interactions
and relationships between various molecular entities and biological
processes (Ivanisevic and Sewduth, 2023). In essence, when these
fields are applied to well-categorized cohort, they can provide deeper
understanding on metformin efficacy and the microflora
contribution to the genetic-influenced drug metabolism and
thereby improve the accuracy of individualized treatment plans.

Integration of omics involves collection of data from various
sources, i.e., biological structure (cell, organ, tissue), samples (urine,
blood), conditions (time-points, experimental groups) etc. Omics
data is generated by different analytical techniques (DNA
sequencing, mass spectrometry or nuclear magnetic resonance
spectroscopy). Microbiomics is analysed using nucleotide
sequencing, amplicon sequencing, metagenomics, and
metatranscriptomics (Joshi et al., 2023). Depending on the
interest or experimental design, the quality and quantity of omics
data can defer largely. Following collection, multi-omics studies
integrate omics data from various sources, keeping the biological
information from each omics intact (Ivanisevic and Sewduth, 2023).
The complexity of the field and the multi-disciplinary nature
requires collaboration between researchers with knowledge of
human biology, genetics and epidemiology, health professionals,
data scientists, and bioinformaticians to address the issues and
challenges associated with the integration (Yu et al., 2024).

Despite the ongoing research, integration of multi-omics is still
in its early stages. Full implementation of integration for precision
medicine in clinical practice requires further efforts. Firstly, robust
and reproducible omics data is scarce. Even state-of-the-art omics
technologies have not captured enough biological variation to allow
the creation of logical and distinct categories, and to enable targeted
therapy (Hu and Jia, 2021).

Integration of genomics with metabolomics have been
previously performed in many studies (Xu et al., 2015; Inouye
et al., 2010; Yousri et al., 2023), however, the integration of the
microbiome with the other omics is challenging and still in its
infancy (Mallick et al., 2017). Microbiome data is sparse where
several taxa are detectable in only a few samples and therefore
require robust statistical methods. Microbiome and metabolome are
measured as relative abundances, and this compositional nature is
susceptible to bias and may result in misleading associations if not
corrected. Adding control features with known concentrations to
samples before profiling, data transformation methods like centered
log-transformation, and data normalization processes, including
more recently created methods like empirical Bayes
normalization, are some strategies for resolving compositionality
(Quinn et al., 2019; Kumar et al., 2018). It can also be challenging to
interpret the results because many identified metabolites have
unknown chemical identities. Additionally, ambiguity in the
origin of known metabolites, that is, we are exactly not sure if
the metabolite was consumed, made by the host, the outcome of a

microbial metabolism, or the consequence of combination of these.
Hence, human microbial reference genome databases and more
extensive metabolite databases will be crucial for upcoming
integrative analytic projects (Pasolli et al., 2019; Lee-Sarwar et al.,
2020; Li et al., 2014). The diverse and complex nature of multi-omics
data poses significant computational and statistical challenges in
terms of data heterogeneity, integration, analysis, and validation
(Vahabi and Michailidis, 2022). Moreover, ensuring data reliability
and consistency across studies remains challenging.

To handle complexity of the microbiome reliably, additional
investigation and advancement are required to enhance the multi-
omics integration approaches and applications. The effort of
integrating data for multi-omics investigations is complex and
demanding, which necessitates rigorous planning and execution
of the experimental design, including data acquisition, processing,
and analysis. In addition, biological interpretation and validation of
results requires comprehensive understanding of the relevant field
and further experimental confirmation (Ivanisevic and Sewduth,
2023). For example, confirming the microbial origin of a metabolite
requires in vitro culturing of microorganisms isolated from the
faeces followed by looking for the desired compounds in the
appropriate microbial extracts (Puig-Castellví et al., 2023).

The development and utilization of suitable analytical
techniques capable of integrating multi-omics securely and
reliably is further necessitated. Certain approaches to data
interpretation are covered in recent research, particularly when
handling big datasets such as predictive models (Subramanian
et al., 2020), correlation-based analysis (Chen and Zhang, 2016),
matrix factorization (Zhang et al., 2012), multiple kernel learning,
and multi-step analysis (Ritchie et al., 2015). Researchers have
reviewed and compiled several methods of integration and
analysis of multi-omics data. A recent survey covering the
statistical methodology for microbiome data analysis can be
found here (Lutz et al., 2022). A guide to collect and combine
multi-omics data was recently published by Athieniti and Spyrou in
(Athieniti and Spyrou, 2023) and a comprehensive review of
integrative methods and associated statistical methodologies by
Vahabi and Michailidis can be found here (Vahabi and
Michailidis, 2022).

Integrated approaches offer a way to use the integrated
relationships seen in multi-omics data to better comprehend the
inter-variability observed in metformin response, shedding a light
on the microbial contribution to the drug efficiency (Ivanisevic and
Sewduth, 2023). Our knowledge of how the gut microbiome affects
the efficacy of metformin could further be improved by AI-based big
data comparative studies of the gut microbiota with diverse
population with drug usage. AI could help in finding and
selecting a specific gut bacterial genera that can enhance drug
efficacy (Huang et al., 2023).

Conclusion

Integration of pharmacomicrobiomics to pharmacogenomics
and pharmacometabolomics represents a significant stride
towards personalized treatment of metformin in T2D. This
comprehensive approach underlines the importance of moving
beyond the traditional focus on genetic variations to incorporate
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the relationship between genetics, environment, lifestyle choices and
their associated microbiome influence on individual’s health and
disease outcomes (Li and Jia, 2013; Wilson and Nicholson, 2017; Lee
C. B. et al., 2021). Through multi-omics, we can understand the
mechanisms underlying the variability in drug responses which
enables the tailoring of treatment options to the unique
molecular and clinical signatures of each diabetic patient
(Pearson, 2016).

However, the approach to integrating multi-omics into clinical
practice is filled with challenges (Ivanisevic and Sewduth, 2023),
such as the need for robust and reproducible data, the complexity of
integrating various data types, and the computational and statistical
difficulties involved in analysing the data. Despite the issues,
advancements in analytical technologies, bioinformatics, and
artificial intelligence are paving the way for more effective
integration strategies (Huang et al., 2023). Ongoing research and
collaboration across disciplines are essential to further our
understanding of the multi-omics in addition to the significant
progress that has already been made. As we continue to decipher
the involvement of the genome, metabolome, and microbiome
interactions in predicting the efficacy of metformin, we move
closer to delivering personalized treatment strategies.
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