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Epilepsy, affecting approximately 50 million individuals worldwide, is a
neurological disorder characterized by recurrent seizures. Mitochondrial
dysfunction and oxidative stress are critical factors in its pathophysiology,
leading to neuronal hyperexcitability and cell death. Because of the multiple
mitochondrial pathways that can be involved in epilepsy and mitochondrial
dysfunction, it is optimal to treat epilepsy with multiple antioxidants in
combination. Recent advancements highlight the potential of antioxidant
therapy as a novel treatment strategy. This approach involves tailoring
antioxidant interventions—such as melatonin, idebenone, and plant-derived
compounds—based on individual mitochondrial health, including
mitochondrial DNA mutations and haplogroups that influence oxidative stress
susceptibility and treatment response. By combining antioxidants that target
multiple pathways, reducing oxidative stress, modulating neurotransmitter
systems, and attenuating neuroinflammation, synergistic effects can be
achieved, enhancing therapeutic efficacy beyond that of a single antioxidant
on its own. Future directions include conducting clinical trials to evaluate these
combination therapies, and to translate preclinical successes into effective
clinical interventions. Targeting oxidative stress and mitochondrial dysfunction
through combination antioxidant therapy represents a promising adjunctive
strategy to modify disease progression and improve outcomes for individuals
living with epilepsy.
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Introduction

Epilepsy is a common and complex neurological disorder characterized by chronic,
unprovoked seizures and affects approximately 50 million individuals worldwide (World
Health, 2019). It is defined by the International League Against Epilepsy (ILAE) as transient
occurrences of signs or symptoms due to abnormal excessive or synchronous neuronal
activity in the brain (Scheffer et al., 2017). The hallmark characteristic is spontaneous
recurrent seizures (SRS), corresponding with increased neuronal synchrony and
excitability. The etiology ranges from genetic mutations, structural abnormalities, and,
importantly, metabolic and/or mitochondrial dysfunction. Since the brain already has high
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aerobic metabolic demands and polyunsaturated fatty acids, it
becomes particularly susceptible to insult and functional
disturbances (Patel, 2002; Rho and Boison, 2022) (Supplementary
Table S1; Table 1).

Although the exact mechanisms of epileptogenesis have not
been fully elucidated, there is increasing evidence for the
involvement of mitochondria as crucial organelles in cellular
energy production. In neurons, mitochondria are essential for
maintaining membrane potential, calcium regulation (Bierhansl
et al., 2024), and bioenergetics that support the high energetic
demands for synaptic transmission. Dysfunction of mitochondrial
processes, such as in ATP generation, calcium buffering, and the
regulation of apoptosis, are increasingly recognized as contributors
to the development and progression of epilepsy, particularly in
mitochondrial epilepsies (Lopriore et al., 2022). In primary
mitochondrial diseases such as MELAS or MERRF syndromes,
defects in oxidative phosphorylation (OXPHOS) can lead to ATP
depletion, impairing neuronal hyperpolarization and contributing
to excessive excitatory activity. This disruption of energy
homeostasis not only changes sodium-potassium pump (Na+/K+

ATPase) activity but also leads to the death of inhibitory
interneurons, which are particularly vulnerable to OXPHOS
deficiencies (Reinecke et al., 2009). This results in reduced
GABAergic inhibition, increased glutamate release from
astrocytes, and an overall hyperexcitable network, lowering the
seizure threshold.

Oxidative stress and epilepsy

Oxidative stress plays a complex role in the pathophysiology of
epilepsy, particularly in patients with mitochondrial dysfunction
(Patel, 2002). Under normal physiological conditions, reactive
oxygen species (ROS) and reactive nitrogen species (RNS) are
produced as byproducts of cellular metabolism, especially in the
mitochondrial respiratory chain, which accounts for many of the
free radicals produced in the body (Juan et al., 2021; Kowalczyk et al.,
2021). These species, including superoxide (O2

−·), hydrogen
peroxide (H2O2), and the hydroxyl radical (HO·), are involved in
cellular signalling but can become harmful when produced in excess
(Pizzino et al., 2017).

Specifically in mitochondria, superoxide radicals are generated
through the reduction of molecular oxygen during electron transport
(Turrens, 2003). While hydrogen peroxide is a by-product of this
reaction and is not a free radical, it can be converted into hydroxyl
radicals, some of the most damaging forms of ROS. The reaction
between superoxide and nitric oxide (NO) forms peroxynitrite
(ONOO−), a highly reactive molecule capable of initiating lipid
peroxidation, protein nitration, and DNA damage (Castro and
Freeman, 2001; Rowley et al., 2015). NADPH oxidase (Nox2) and
cyclooxygenase-2 (COX-2) are additional enzymes that contribute to
the oxidative stress burden in epilepsy (Rawat et al., 2019; Almeida et al.,
2022). COX-2 is expressed in astrocytes, which are responsible for
releasing proinflammatory cytokines, further exacerbating neuronal
damage (Rawat et al., 2019). Oxidative stress in epilepsy results from
an imbalance between pro-oxidant species and the potential of
antioxidant defences that normally neutralize them. When this
balance is disturbed, ROS and RNS can cause oxidative damage to

DNA (Di Meo et al., 2016), proteins, and lipids, leading to cellular
damage and apoptosis (Schieber and Chandel, 2014). Oxidative stress-
induced damage has been implicated in numerous diseases, including
epilepsy, atherosclerosis (Batty et al., 2022), diabetes complications
(Volpe et al., 2018), and cancer (Glorieux et al., 2024). In the
literature, the role of free radicals in causing malondialdehyde
(MDA) elevation is particularly significant in epilepsy, as MDA is a
marker of lipid peroxidation and higher levels have been observed in
patients with recurrent seizures (Yilgor and Demir, 2024).

More specifically in epilepsy, oxidative stress can further impair
mitochondrial function and set up a “vicious cycle”, leading to
metabolic disturbances in neurons. It is generally understood that
low levels of antioxidant enzymes such as superoxide dismutase
(SOD) and catalase (CAT), combined with high levels of MDA, are
indicative that the antioxidant defence system is overwhelmed by
ROS production (Yilgor and Demir, 2024). Non-monogenic
epilepsies are well-documented to be associated with
mitochondrial dysfunction. There is evidence from both
preclinical (Supplementary Table S1) and clinical studies
(Table 1) that oxidative stress plays a key role in the initiation
and progression of epilepsy. This is primarily founded on animal
models using kainic acid or pilocarpine models of status epilepticus
(Dal-Pizzol et al., 2000).

Mitochondrial disorders are frequently associated with epilepsy,
and, conversely, seizures are associated with causing mitochondrial
dysfunction with oxidative stress (Kunz, 2002; Patel, 2002). It has
been hypothesized that impaired mitochondrial energy production
could be the basis of pharmacoresistance in epilepsy (Yuen and
Sander, 2011). The standard method of treating epilepsy patients
consists of successive trials of many antiepileptic drugs, most of
which raise the seizure threshold without addressing other aspects of
their disorder, such as pervasive mitochondrial dysfunction. Status
epilepticus (SE), sometimes fatal, is associated with oxidative stress,
bioenergetic failure, and impaired mitochondrial dynamics in both
mature and immature brains, all ameliorated by antioxidant
treatments (Folbergrová and Kunz, 2012). Remarkably,
antioxidant therapy is not used in SE, a treatment which could
be quite safe and easily translatable. As argued below, it is becoming
clear that the approach of using multiple rather than one or two
antioxidants appears to be an improved approach for treating the
many facets of mitochondrial dysfunction in epilepsy, as well as
other neurological/neurodegenerative disorders. Neuroprotectants,
particularly antioxidants, may have therapeutic value in epilepsy by
reducing oxidative stress and its damaging effects on neurons.
Increased levels of antioxidant enzymes such as SOD, CAT, and
glutathione (GSH) have been proposed as potential therapeutic
targets in refractory epilepsy (Cardenas-Rodriguez et al., 2013).

Rationale for personalized
antioxidant therapy

Predictive, preventive, and personalized medicine (PPPM/3PM)
is a shift from the traditional “one-size-fits-all” approach in diseases
that involve significant metabolic dysfunctions like mitochondrial
diseases (MDs). Mitochondrial genetics significantly affect
individual responses to therapies, including antioxidant
treatments, which are increasingly being explored for their
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potential to counteract mitochondrial oxidative stress. One example
includes mitochondria being a critical target in the context of
hypoxic and ischemic injury, being central to therapeutic

strategies aimed at improving outcomes in stroke patients (Ham
III and Raju, 2017). Mitochondrial health and quality control are
pivotal not only for assessing the risk of ischemic stroke but also for

TABLE 1 Summary of clinical trials investigating antioxidant therapies in epilepsy.

NCT
Number

Study title Conditions Antioxidant(s)
used

Status Key findings/Notes

NCT05987397 Exploring the Preventive Effect of
Mitochondrial Protective Agent
Idebenone on Post-stroke Epilepsy

Post-stroke Epilepsy Idebenone Recruiting Ongoing study; results not yet
available. Idebenone is investigated for
its neuroprotective antioxidant
properties

NCT05654415 Melatonin vs. Sleep Deprivation for
Nap EEG

Epilepsy Melatonin Active, not
recruiting

Comparing the effectiveness of
melatonin versus sleep deprivation in
inducing sleep for EEG recordings in
epilepsy patients. Results pending

NCT05637086 Clinical Study Evaluating Safety of
Pentoxifylline and Celecoxib in Patients
With Grand-Mal Epilepsy Treated by
Phenytoin Monotherapy

Epilepsy Pentoxifylline,
Celecoxib

Recruiting Evaluating safety of anti-inflammatory
agents pentoxifylline and celecoxib as
adjunct therapy. Results not yet
available

NCT05485558 The Safety and Efficacy of N-Acetyl
Cysteine in Children With Drug-
Resistant Epilepsy

Drug-Resistant Epilepsy N-Acetyl
Cysteine (NAC)

Recruiting Assessing NAC’s antioxidant effects
on seizure control in children with
drug-resistant epilepsy. Results
pending

NCT04665453 Dexmedetomidine and Melatonin for
Sleep Induction for EEG in Children

Epilepsy, EEG Sleep
Induction

Melatonin Completed Studied melatonin’s efficacy in
inducing sleep for EEG procedures in
pediatric epilepsy patients. Results
may provide insights into melatonin’s
sedative properties

NCT04545346 The Potential of a Low Glutamate Diet as
a Treatment for Pediatric Epilepsy

Pediatric Epilepsy Low Glutamate Diet Completed Investigated dietary intervention to
reduce excitatory neurotransmission.
Findings may inform nutritional
approaches in epilepsy management

NCT03776656 Evaluation of a Treatment With
Allopurinol in Adenylosuccinate Lyase
Deficiency

Adenylosuccinate Lyase
Deficiency

Allopurinol Completed Explored allopurinol’s potential to
reduce oxidative stress in a metabolic
disorder associated with epilepsy.
Results could have implications for
antioxidant therapy

NCT03590197 Effect of Melatonin on Seizure Outcome,
Neuronal Damage, and Quality of Life in
Patients With Generalized Epilepsy

Generalized Epilepsy Melatonin Completed Evaluated melatonin’s impact on
seizures, neuronal protection, and
patient quality of life. Awaiting
published results

NCT01764516 Study on Serum Zinc and Selenium
Levels in Epileptic Patients

Generalized Epilepsy Zinc, Selenium Completed Investigated antioxidant mineral levels
in patients with epilepsy. Findings may
highlight the role of micronutrient
status in epilepsy

NCT01161108 Trial of Melatonin to Improve Sleep in
Children With Epilepsy and
Neurodevelopmental Disabilities

Epilepsy, Developmental
Disability, Insomnia

Melatonin Completed Assessed melatonin’s effectiveness in
improving sleep quality in children
with epilepsy. Results could inform
sleep management strategies

NCT00965575 Pilot Study of Melatonin and Epilepsy Epilepsy Melatonin Completed
(with results)

Results available; investigated
melatonin’s impact on seizure
frequency and sleep patterns in
epilepsy patients

NCT00678834 Human Tissue Distribution of Orally
Supplemented Natural Vitamin E
Tocotrienol

Various Conditions,
Including Healthy
Subjects

Vitamin E Tocotrienol Completed
(with results)

Studied distribution of vitamin E
tocotrienol; may have implications for
antioxidant therapy in neurological
conditions

NCT00004637 Double-Blind, Placebo-Controlled Trial
of Vitamin E as Add-on Therapy for
Children With Epilepsy

Epilepsy Vitamin E Completed Evaluated the efficacy of vitamin E as
an adjunctive treatment in pediatric
epilepsy. Results may indicate
antioxidant benefits

Overview of clinical trials registered on ClinicalTrials.gov evaluating the efficacy and safety of various antioxidant therapies in individuals with epilepsy.
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protecting neural tissue, supporting survival, and enhancing
recovery outcomes on a personalized basis (Anzell et al., 2018;
He et al., 2020). Furthermore, damage to the blood-brain barrier in
the peri-infarct area, which often results in secondary injury, is
strongly associated with limited recovery and significant disruptions
in mitochondrial function (Nahirney et al., 2016). Another example
is shown in tuberculosis (TB) and the body’s redox response to
infection. The non-protein thiol glutathione (GSH) protects against
Mycobacterium tuberculosis (MTB) infection. GSH, in conjunction
with the transcription factor Nrf2 (nuclear factor erythroid 2-related
factor 2), are crucial in counteracting the redox imbalance induced
by MTB. Nrf2 mediates the expression of numerous antioxidant
genes, and its antioxidant response element (ARE) signalling
pathway is increasingly recognized as central to the pathogenesis
of TB (Palanisamy et al., 2011). Personalized modulation of Nrf2-
target genes highlights the potential of antioxidant therapies to
enhance the efficacy of TB treatments (Petrillo et al., 2022).

Mitochondrial variability in epilepsy

Mitochondrial DNA (mtDNA) mutations have been
increasingly associated with many neurological disorders,
including epilepsy. While most genetic neurological conditions
are linked to nuclear DNA mutations, defects in mtDNA
significantly contribute to diseases such as Autism Spectrum
Disorder (ASD) (Varga et al., 2018; Wang et al., 2022),
Huntington’s disease (Ayala-Peña, 2013; Neueder et al., 2024),
bipolar disorder (Munakata et al., 2004), and Leigh Syndrome
(Ball et al., 1993). The mtDNA is a circular, double-stranded
molecule comprising 16,659 nucleotides. It encodes 13 protein-
coding genes essential for the electron transport chain (ETC.)
complexes I, III, IV, and V, crucial for OXPHOS and ATP
production (Anderson et al., 1981). Mutations in these genes can
impair mitochondrial function, leading to decreased ATP
production and increased ROS generation, contributing to
neuronal hyperexcitability and seizures (Larsson et al., 1998).
Specific mtDNA mutations are linked to mitochondrial
encephalomyopathies associated with epilepsy, notably
Mitochondrial Encephalopathy, Lactic Acidosis, Stroke-like
episodes (MELAS) and Myoclonic Epilepsy with Ragged Red
Fibers (MERRF) syndromes (Zeviani et al., 1993). In MELAS, the
m.3243A > G mutation in the tRNÂLeu(UUR) gene affects
mitochondrial protein synthesis, leading to defective OXPHOS
and increased oxidative stress (Pia and Lui, 2024). MERRF is
commonly associated with the m.8344A > G mutation in the
tRNÂLys gene, resulting in similar mitochondrial dysfunction
(Hameed and Tadi, 2024). Variations in mtDNA can also
influence mitochondrial biogenesis, apoptosis, calcium ion
regulation, and other essential cellular processes (Osellame et al.,
2012). Heteroplasmy, the coexistence of mutant and wild-type
mtDNA within cells, contributes to variability in clinical
presentations and disease severity (Stewart and Chinnery, 2015).
In rat models, heteroplasmy has been shown to alter metabolic
function, causing behavioural and cognitive deficits (Stewart and
Chinnery, 2015).

Mitochondrial haplogroups, defined by specific mtDNA
polymorphisms inherited maternally, may influence susceptibility

to oxidative stress and response to antioxidant therapies (Gómez-
Durán et al., 2010). Different haplogroups can affect mitochondrial
efficiency and ROS production, potentially altering an individual’s
vulnerability to mitochondrial dysfunction-related epilepsy (Amo
et al., 2008). Certain haplogroups may be associated with higher
baseline ROS production due to less efficient electron transport,
increasing oxidative stress and seizure susceptibility; however, in
cases of neurodegeneration, the potential as a risk factor remains
controversial (Mancuso et al., 2008; Ingram et al., 2012).
Understanding the role of mitochondrial haplogroups in epilepsy
could aid in predicting disease risk and tailoring antioxidant
therapies (Rea et al., 2013). Mitochondrial dysfunction resulting
from genetic mutations leads to increased ROS production,
contributing to neuronal damage and epileptogenesis (Soini et al.,
2013). Antioxidant therapies have been explored to mitigate
oxidative stress in epilepsy, but responses vary based on
mitochondrial genetic background (Vergani et al., 2004). Studies
have demonstrated that patients with mitochondrial disorders
respond differently to antioxidants like Coenzyme Q10 (CoQ10)
(Quinzii and Hirano, 2010). In cases of primary CoQ10 deficiency,
resulting from mutations in nuclear genes involved in
CoQ10 biosynthesis (e.g., PDSS2, COQ9, ADCK3),
supplementation with CoQ10 has led to improvements in animal
experiments, including reduced seizure duration (Sattarinezhad
et al., 2014; Simani et al., 2020) and has been measured in
various mitochondrial disorders in an RCT (Glover et al., 2010).
In mitochondrial disorders caused by mtDNA mutations, such as
MELAS, the efficacy of antioxidant therapies shows some evidence
(Rodriguez et al., 2007). The variable responses may be due to
differences in how specific mutations affect mitochondrial function
and the resulting oxidative stress levels. Given the heterogeneity of
mitochondrial genetic defects, personalized antioxidant therapies
hold promise for improving treatment outcomes. By identifying
specific mitochondrial mutations or haplogroups present in a
patient, clinicians can tailor antioxidant strategies to target the
underlying mitochondrial dysfunction more effectively (Meng
et al., 2021). For instance, patients with mutations leading to
deficiencies in, ETC complexes might benefit from antioxidants
that support electron transport and reduce ROS production.
Mitochondrial-targeted antioxidants, such as MitoQ or SkQ1, are
designed to accumulate within mitochondria and directly neutralize
ROS at the source (Murphy and Smith, 2007; Skulachev et al., 2023).
These targeted therapies could enhance treatment efficacy and
reduce potential toxicity associated with higher doses of non-
specific antioxidants (Wang et al., 2011).

Synergistic benefits in treating epilepsy

The potential for the use of multi-ingredient supplements to
target the multiple final common pathways of neuronal dysfunction
was first proposed in 2001 by Tarnopolsky and Beal (2001). Others
have supported this contention, suggesting that synergism occurs
when the combined effect of multiple antioxidants is greater than the
sum of their individual effects (Thoo et al., 2013). This phenomenon
can arise from various mechanisms, including antioxidant
regeneration, differences in cellular localization, and
complementary actions on oxidative pathways (Wang et al.,
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2011). For instance, one antioxidant may regenerate another by
donating electrons to restore its active form, thereby extending its
antioxidant activity. Several mechanisms contribute to this
improved synergism such as redox cycling, antioxidant
partitioning, and various formulations and combinations. In
redox cycling, one antioxidant regenerates another by donating
electrons, restoring its active form. For example, ascorbic acid
(vitamin C) can regenerate α-tocopherol (vitamin E) by reducing
the α-tocopheroxyl radical back to α-tocopherol (Niki, 1987). This
process maintains antioxidant activity and prolongs protection
against oxidative damage. Antioxidants with varying solubilities
will also localize differently within biological systems, targeting
oxidative stress in multiple compartments. Lipid-soluble
antioxidants protect cell membranes, while water-soluble
antioxidants defend the cytosol (Sharifi-Rad et al., 2020). Their
distinct localization can enhance overall antioxidant efficacy.
Together, antioxidants that scavenge free radicals and those that
chelate pro-oxidant metal ions can more effectively reduce oxidative
stress by addressing multiple pathways simultaneously (Halliwell,
1987). The concept of the use of multi-ingredient supplements for
genetic mitochondrial disease was first studied in a randomized,
double-blind study showing that the use of a multi-ingredient
supplement that provided an alternative energy source (creatine
monohydrate) + a membrane anti-oxidant (vitamin E) and two
mitochondrial localized anti-oxidants/redox couple (COQ10 +
alpha lipoic acid) lowered ROS markers and lactate (improved
mitochondrial function) (Rodriguez et al., 2007; Tarnopolsky and
Beal, 2001). Support for the superiority of the multi-ingredient
supplement approach vs. a single agent targeting one pathway
(ROS) was reflected in the fact that very high doses of CoQ10
(600 mg bid) neither lowered oxidative stress nor lactate in a similar
cohort genetic mitochondrial disease patients (Glover et al., 2010).

For example, the combination of ascorbic acid and α-tocopherol
has shown synergistic antioxidant effects in protecting phospholipid
bilayers (Liebler et al., 1986). Ascorbic acid regenerates α-tocopherol
from its radical form, sustaining membrane protection against lipid
peroxidation. Flavonoids like quercetin and myricetin, which have
lower redox potentials than α-tocopherol, can regenerate α-
tocopherol and enhance its antioxidant activity (Marinova et al.,
2008). Studies have reported synergistic interactions between α-
tocopherol and flavonoids in inhibiting lipid oxidation (Bayram and
Decker, 2023). Combining mitochondrial-targeted antioxidants
with agents that modulate gene expression can restore
mitochondrial function more effectively. Activation of Nrf2, a
transcription factor that upregulates antioxidant defences, has
shown promise in enhancing cellular resilience to oxidative stress
(Li and Kong, 2009). Epigenetic therapies influence gene expression
without altering the DNA sequence, affecting pathways involved in
oxidative stress andmitochondrial health (Shaughnessy Daniel et al.,
2014). By combining antioxidants with epigenetic modulators, it is
possible to target genetic pathways that restore mitochondrial
function and reduce seizure susceptibility. Nrf2 controls the
expression of antioxidant enzymes and cytoprotective proteins by
activating an ARE (Cardenas-Rodriguez et al., 2013). Activating
Nrf2 enhances the cell’s endogenous antioxidant capacity.
Compounds like RTA 408, an Nrf2 activator, have shown
neuroprotective effects in preclinical models (Shekh-Ahmad
et al., 2019). NOX enzymes are significant sources of ROS in the

central nervous system. Inhibiting NOX reduces ROS generation
during seizures. Agents like AEBSF, a NOX inhibitor, can decrease
oxidative damage when combined with antioxidants (Shekh-Ahmad
et al., 2019). This combination prevented seizure-induced
mitochondrial depolarization, ROS generation, and neuronal cell
death more effectively than either agent alone. In vivo, the
combination therapy increased antioxidant capacity following
kainic acid (KA)-induced SE, prevented the development of
epilepsy, and reduced seizure frequency in established epilepsy
models (Shekh-Ahmad et al., 2019).

The use of multiple antioxidants offers a promising strategy to
address the complex pathophysiology of epilepsy, particularly in cases
where personalized medicine is not feasible. Mitochondrial dysfunction
plays a central role in epilepsy, even in monogenic forms of the disease,
with downstream effects including excitotoxicity, calcium
dysregulation, excessive reactive oxygen species (ROS) production,
and neuroinflammation. Combining antioxidants that target diverse
pathways associated with these dysfunctions can enhance therapeutic
efficacy. Evidence from animal models and clinical studies highlights
the potential of antioxidants such as vitamin E, melatonin, coenzyme
Q10, and polyphenols to reduce seizure frequency and severity.
However, when used as monotherapies, antioxidants may exhibit
pro-oxidant effects under certain conditions, as demonstrated by
Tarnopolsky (Tarnopolsky, 2008), making combination therapies a
safer and more effective approach. Like “mitochondrial cocktails,”
multi-antioxidant regimens provide broad-spectrum coverage,
mitigating oxidative stress while modulating neuroinflammatory and
neurotransmitter pathways. This strategy has shown promise in
epilepsy-related dietary interventions like the ketogenic diet, which
enhances mitochondrial health (Miller et al., 2020). Additionally, a
multi-antioxidant approach can address comorbidities frequently
associated with mitochondrial dysfunction, such as cognitive decline
andmood disorders (Fattal et al., 2007). Further, by combiningmultiple
antioxidants to target various regions in the oxidative and inflammatory
cascades, antioxidant therapies can synergistically counteract the
multifactorial nature of epilepsy pathogenesis, offering a robust
alternative when personalized treatments are unattainable. This has
been introduced as a preventative method from DNA injury in
diagnostic radiation exposure (Merlin et al., 2022; Xhuti et al., 2023).

Preclinical models of antioxidant use

A substantial body of preclinical research has explored the
therapeutic potential of antioxidant compounds in managing
epilepsy. These studies have employed animal models to
investigate how antioxidants can potentially mitigate seizure
activity, prevent neuronal damage, and modulate oxidative stress
and neuroinflammatory pathways associated with epileptogenesis.

Natural antioxidants derived from plants and other sources have
been featured in many of these articles. For instance, royal jelly (RJ)
demonstrated significant neuroprotective effects in kainic acid-
induced TLE in rats by reducing seizure severity and oxidative
stress markers, while enhancing total antioxidant capacity and
preventing hippocampal neuronal damage (Hashemi et al., 2023).
Proanthocyanidins (PACs) exhibited anticonvulsant effects in
pentylenetetrazole (PTZ)-induced epilepsy in mice through
activation of the Nrf2 pathway, leading to decreased oxidative
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stress, inflammation, and neuronal apoptosis (Alyami et al., 2022).
Sulforaphane (SFN), another Nrf2 activator, reduced ROS
production, restored glutathione levels, and attenuated neuronal
death in kainic acid-induced SE in rats (Sandouka and Shekh-
Ahmad, 2021). Other plant-derived compounds, such as
curcumin derivatives, lycopene, and extracts from Melissa
officinalis, Echinops spinosus, and Syzygium cumini, have also
shown significant anticonvulsant and neuroprotective effects.
These effects are primarily mediated through antioxidant
mechanisms, modulation of neurotransmitter systems (e.g.,
GABA), and attenuation of neuroinflammation (Mahmoudi et al.,
2020; Taskiran and Tastemur, 2021; Abd Allah et al., 2022; Kandeda
et al., 2022; Alkhudhayri et al., 2023). Synthetic antioxidants and
pharmaceuticals have been evaluated for their efficacy in epilepsy
models as well. Tempol, a membrane-permeable radical scavenger,
could attenuate PTZ-induced seizures in mice by reducing oxidative
and nitrosative stress, enhancing GABAergic neurotransmission,
and inhibiting pro-inflammatory cytokines (Zhang et al., 2018).
Lacosamide, an antiepileptic drug (AED), not only decreased seizure
activity in pilocarpine-induced SE in rats but also exerted
antioxidant effects by restoring superoxide dismutase (SOD)
activity and glutathione (GSH) levels (Shishmanova-Doseva et al.,
2021). Mitochondrial dysfunction has emerged as a critical factor in
epileptogenesis. Succinate accumulation contributed to increased
oxidative stress and mitochondrial ROS levels, leading to neuronal
degeneration and SE in kainic acid-induced models. Inhibiting
succinate dehydrogenase (SDH) and related metabolic pathways
reduced seizure severity and oxidative damage (Zhang et al., 2020).
Interventions targeting mitochondrial bioenergetics, such as
treatment with ascorbic acid, alpha-tocopherol, and sodium
pyruvate (AATP), improved mitochondrial function, reduced
seizure burden, and enhanced synaptic activity in temporal lobe
epilepsy models (Simeone et al., 2014). Combination antioxidant
therapies targeting multiple pathways have shown promise in
providing enhanced neuroprotection. Preservation of ion channel
function and enzyme activities has also been a focus. Agents like
lipoic acid (LA) and idebenone prevented seizures and restored the
activities of critical enzymes such as Na⁺/K⁺-ATPase and δ-
aminolevulinic acid dehydratase (δ-ALA-D), which are essential
for maintaining neuronal excitability and metabolic homeostasis (de
Sales Santos et al., 2010; Ahmed, 2014).

Future directions

Despite the promising results from preclinical studies
demonstrating the neuroprotective and anticonvulsant effects of
antioxidant therapies in epilepsy, several challenges hinder the
translation of these findings into clinical practice. One significant
challenge lies in the selective uptake limitations of mitochondria-
targeted antioxidants. Damaged mitochondria, which typically
exhibit lower membrane potential, may uptake these antioxidants
less efficiently than their healthy counterparts, thereby reducing the
efficacy of treatments aimed at mitigating oxidative stress within the
very mitochondria that require intervention (Plotnikov and Zorov,
2019). Additionally, there is a risk of reductive stress, where
excessive antioxidant supplementation disrupts the delicate
balance of reactive oxygen species (ROS) necessary for normal

cellular signaling and physiological functions. Over-suppression
of ROS can impair essential processes such as cell differentiation,
apoptosis, and immune responses, potentially leading to adverse
cellular outcomes. There is also a potential for prooxidant activity
under certain conditions, such as high concentrations or the
presence of transition metals, which can paradoxically exacerbate
oxidative stress rather than mitigate it (Podmore et al., 1998).

Determining the optimal dosage and administration regimen is
complex, as factors such as bioavailability, pharmacokinetics, and
individual patient variability influence therapeutic outcomes.
Additionally, the lack of standardized methods for evaluating the
efficacy and safety of these antioxidants poses significant regulatory
challenges, making it difficult to establish universally accepted
guidelines for their use. Addressing these disadvantages requires
a multifaceted approach. Future research should focus on
conducting clinical trials to evaluate the efficacy and safety of
antioxidant compounds in patients with epilepsy. Personalized
medicine holds great potential in optimizing antioxidant
therapies, considering the variability in mitochondrial genetics
among individuals. Exploring the role of mitochondrial DNA
mutations and haplogroups in influencing the response to
antioxidant treatments could enable the tailoring of therapies to
individual patient profiles. Identifying oxidative stress and
mitochondrial dysfunction biomarkers may further aid in
customizing antioxidant interventions, enhancing
therapeutic outcomes.

Moreover, combining antioxidants with anti-inflammatory
agents or traditional antiepileptic drugs may provide synergistic
effects, as suggested by preclinical studies (Pauletti et al., 2019;
Shekh-Ahmad et al., 2019). The development of novel
mitochondria-targeted antioxidants, such as MitoQ and SkQ1,
offers the potential for a more effective reduction of oxidative
stress at its primary source within neurons (Snow et al., 2010).
Additional research is needed to understand the precise mechanisms
by which antioxidants exert their anticonvulsant effects.
Investigations into the role of the Nrf2 pathway, mitochondrial
bioenergetics, and ion channel modulation in the context of
antioxidant treatment could provide deeper insights (Waldbaum
and Patel, 2010). Furthermore, the advantage of a multi-ingredient
approach is notable, as it is likely to address a broader range of
disorders compared to single-agent therapies. Given that
mitochondrial genetic disorders, epilepsy, and most other
neurological disorders converge on common pathways such as
mitochondrial dysfunction, excitotoxicity, apoptosis, calcium
dysregulation, ROS excess, and inflammation (Madireddy and
Madireddy, 2023).

Conclusion

Oxidative stress and mitochondrial dysfunction play critical
roles in the pathophysiology of epilepsy, contributing to neuronal
hyperexcitability and cell death. Preclinical studies have provided
substantial evidence that antioxidant therapies can mitigate these
pathological processes, reduce seizure activity, and protect neuronal
integrity. Compounds such as melatonin, sulforaphane, and various
plant extracts have demonstrated significant anticonvulsant and
neuroprotective effects in animal models. While clinical trials
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investigating antioxidant therapies in epilepsy are limited,
preliminary findings suggest potential benefits. However, more
extensive clinical research is necessary to confirm these effects
and to establish optimal dosing regimens, safety profiles, and
patient selection criteria. Considering individual genetic and
metabolic differences may enhance the efficacy of antioxidant
treatments. Antioxidant therapies represent a promising
adjunctive strategy in the management of epilepsy. By targeting
oxidative stress and mitochondrial dysfunction, these agents have
the potential to modify disease progression and improve patient
outcomes. Continued research efforts are essential to translate
preclinical successes into effective clinical interventions for
individuals living with epilepsy.
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