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Background: Colorectal cancer (CRC) is the leading cancer among Saudis, and
mutations in BRAF, KRAS, and NRAS genes are therapeutically significant due to
their association with pathways critical for cell cycle regulation. This study
evaluates the prevalence and frequency of somatic mutations in these
actionable genes in Saudi CRC patients and assesses their pathogenicity with
bioinformatics methods.

Methodology: The study employed the TruSight Tumor 15 next-generation
sequencing (NGS) panel on 86 colorectal cancer (CRC) samples to detect
somatic mutations in BRAF, KRAS, and NRAS genes. Bioinformatic analyses of
NGS sequences included variant annotation with ANNOVAR, pathogenicity
prediction, variant reclassification with CancerVar, and extensive structural
analysis. Additionally, molecular docking assessed the binding of Encorafenib
to wild-type and mutant BRAF proteins, providing insights into the therapeutic
relevance of pathogenic variants.

Results:Out of 86 tumor samples, 40 (46.5%) harbored somatic mutations within
actionable genes (BRAF: 2.3%, KRAS: 43%, NRAS: 2.3%). Fourteen missense
variants were identified (BRAF: n = 1, KRAS: n = 11, NRAS: n = 2). Variants with
strong clinical significance included BRAF V600E (2.32%) and KRAS G12D
(18.60%). Variants with potential clinical significance included several KRAS
and an NRAS mutation, while variants of unknown significance included KRAS
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E49K and NRAS R102Q. One variant was novel: NRAS R102Q, and two were rare:
KRAS E49K and G138E. We further extended the CancerVar prediction capability by
adding new pathogenicity prediction tools. Molecular docking demonstrated that
Encorafenib inhibits the V600E variant BRAF protein less effectively compared to its
wild-type counterpart.

Conclusion: Overall, this study highlights the importance of comprehensive
molecular screening and bioinformatics in understanding the mutational
landscape of CRC in the Saudi population, ultimately improving targeted drug
treatments.

KEYWORDS

somatic mutations, BRAF V600E, TruSight tumor 15 panel, targeted drug therapy,
colorectal cancer

1 Introduction

Colorectal cancer (CRC) ranks as the third most prevalent
cancer around the world, with estimations of approximately
1.9 million new cases and around 935,000 deaths in the year
2022 (Bray et al., 2024). Further estimations suggest an increase
to 3.2 million new cases by the year 2040 (Morgan et al., 2023). Even
as most of the cases occur among those older than 50 years, there is a
significant rise in the rates of younger-onset colorectal cancers (Patel
et al., 2022). In Saudi Arabia, CRC ranks first among males at 15.3%
and third among females at 9.8% (Elwali et al., 2023). Most patients
are present in advanced stages with symptoms of altered bowel
habits, abdominal pain, rectal bleeding, and anemia (Dekker et al.,
2019). CRC results from molecular changes in the colon or rectum,
where there is the formation of a benign polyp that can take
5–15 years to advance into cancer (Huck and Bohl, 2016). The
cause of this disease is multifactorial, with interactions between
genes and the environment. About 70% of cases are considered
sporadic, while 30% are inherited, with 5% being due to syndromes
such as Lynch and familial adenomatous polyposis (Jasperson et al.,
2010). The genetic basis of CRC has been posed to be consistent with
that of the Fearon and Vogelstein model, which describes the
progression from a benign adenoma to carcinoma (Fearon and
Vogelstein, 1990). This model is thought to account for 70%–90% of
CRC cases (Li et al., 2021). A less common way through which CRC
arises is the microsatellite instability pathway, due to defects in DNA
mismatch repair genes, accounting for 15%–20% of cases (Gupta
et al., 2021). Lifestyle factors associated with the development of
CRC include obesity, low physical activity, tobacco smoking,
consumption of alcohol, and a diet high in processed red meat
(Keum and Giovannucci, 2019). Endoscopic testing is considered
the gold standard for diagnosing CRC, and surgical removal remains
the main form of treatment for the disease (Montminy et al., 2020).
In metastatic CRC (mCRC), genetic testing is used to personalize
treatment protocols based on actionable somatic mutations on
specific genes, namely, BRAF, KRAS, and NRAS, among others
(Van Cutsem et al., 2016; Biller and Schrag, 2021). For patients
who are not positively testing for such mutations, chemotherapy is
administered with combined EGFR inhibitors. The KRAS andNRAS
mutation-positive patients are treated with chemotherapy only
(FOLFOX or FOLFIRI protocols) (Van Cutsem et al., 2016).
Patients with the BRAF V600E mutation slightly benefit from
chemotherapy in combination with VEGF inhibitors or a mixture

of BRAF and EGFR inhibitors (Santarpia et al., 2012). The
determination of somatic mutations in actionable genes (such as
BRAF, KRAS, and NRAS) is vital with regards to prognosis and in
offering personalized therapies. BRAF, KRAS, and NRAS encode
core proteins in the RAS-RAF-MEK-MAPK pathway, which, if
altered, can induce aberrant proliferation through dysregulating
apoptosis and cell cycle progression from G1 to S phase (Seruca
et al., 2009). Importantly, some detection of rare or novel variants in
these actionable genes may help in the identification of new
biomarkers for better therapeutic outcomes (Mikolajcik et al.,
2021). In Saudi Arabia, a retrospective study from two hospitals
reported a somatic mutational rate of 2.5% in the BRAF gene and
28.6% in KRAS (Siraj et al., 2014). Moreover, a similar study from
another hospital revealed a 2.4% rate in BRAF and 30.1% in KRAS
(Beg et al., 2015). Furthermore, a study for patients from the Gulf
countries who were treated at two hospitals in the United States
showed a mutational rate of 4% in BRAF, 44% in KRAS, and 4% in
NRAS (Al-Shamsi et al., 2016). A more recent study from one Saudi
hospital has shown slightly different findings for BRAF (0.4%),
KRAS (49.6%), and NRAS (2%) (Alharbi et al., 2021).
Additionally, a recent review has combined mutational rates
from several other Saudi hospitals, showing 0.4%–2.5% rate for
BRAF, 28.6%–56% in KRAS, and 2%–2.2% in NRAS (Alfahed, 2023)
Our understanding of the mutational landscape of CRC in the Saudi
population is lacking, and the percentage of common somatic
mutations reported from Saudi hospitals is sparse. Moreover,
diagnostic labs may sometimes ignore the rare mutations in CRC
tumors, which could affect treatment outcomes. Overall, the genetic
characterization of CRC is largely incomplete due to its complex
nature. We analyzed CRC samples for somatic mutations in the
BRAF, KRAS, and NRAS genes for the TruSight Tumor 15 gene
panel (TST 15). The 15 genes covered by the TST 15 panel include
AKT1, BRAF, EGFR, ERBB2, FOXL2, GNA11, GNAQ, KIT, KRAS,
MET, NRAS, PDGFRA, PIK3CA, RET, and TP53 genes, which are
frequently altered in solid tumors (Kopetz et al., 2015; Yan et al.,
2015; Van Cutsem et al., 2016; Voskoboynik et al., 2016). Therefore,
to understand the pathogenicity and clinical relevance of both
known and novel variants, an extensive computational analysis
was performed. We have combined raw DNA sequence analysis,
variant clinical interpretation, pathogenicity prediction, functional
domain mapping, secondary structure and stability analyses, and 3D
structure superimposition. In addition, molecular docking was
performed on Encorafenib against both the BRAF V600E variant
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protein and its wild-type counterpart. This integrated approach aims
to provide insight not only into the novel biomarkers but also to
extend the knowledge of the mutational spectrum of CRC in the
Saudi population, helping to further refine precision oncology
interventions.

2 Materials and methods

2.1 Patient selection and data collection

This study utilized CRC patient data from King Abdulaziz
University Hospital (KAUH), Jeddah, Saudi Arabia. The ethical
approval was obtained from the King Abdulaziz University College
ofMedicine Ethical Committee (No. 487-22). All data, including raw
DNA sequences, were collected from the Molecular Diagnostics
Laboratory at KAUH over 4 years (2018–2021). Molecular screening
was conducted using the TST 15 panel on the MiSeqDx next-
generation sequencing (NGS) platform (Illumina, San Diego, CA,
United States).

2.2 Inclusion/exclusion criteria

The study included ~140 mm2 colorectal tissue samples with above
30% tumor content frommale and female patients. Surgeons at KAUH
performed biopsies on those patients, and the KAUH Pathology
Department examined these samples histopathologically. The
histopathological types considered were adenoma, adenocarcinoma,
cystic, mucinous, serous neoplasms, neoplasms not otherwise specified
(NOS), squamous cell neoplasms, ductal and lobular neoplasms,
complex epithelial neoplasms, mature B-cell lymphomas, epithelial
neoplasms NOS, lipomatous neoplasms, and chronic colon
inflammation. Samples that originated from tumors outside the
colon or rectum or derived from whole blood were excluded. The
collected data included patient demographics, clinical and
histopathology diagnoses, molecular screening results, and raw DNA
sequence files for the complete gene panel (AKT1,BRAF, EGFR, ERBB2,
FOXL2, GNA11, GNAQ, KIT, KRAS,MET, NRAS, PDGFRA, PIK3CA,
RET,TP53). After excluding tumors of other types of cancer, 86 samples
out of 90 collected were eligible for this study. Corresponding to those
samples, 49 raw DNA sequence files were available. The remaining files
were missing due to patient requests.

2.3 Molecular screening

The TST 15 panel screens 15 genes frequently mutated in solid
tumors, targeting hotspot exonic regions for single nucleotide
variants (SNVs) and small insertions/deletions (Indels). The
panel design is based on international guidelines by the College
of American Pathologists (CAP), the International Association for
the Study of Lung Cancer (IASLC), the Association for Molecular
Pathology (AMP), and the American Society of Clinical Oncology
(ASCO) (Andre et al., 2012; Gonzalez et al., 2013; Lindeman et al.,
2013; Sepulveda et al., 2017). DNA extractions were performed from
formalin-fixed paraffin-embedded (FFPE) colorectal tissue samples
(~140 mm2 tissue with above 30% tumor content) using the

QIAamp DNA FFPE Tissue Kit. DNA libraries were prepared
using the TruSight Tumor 15 MiSeqDx kit according to the
manufacturer’s instructions. Sequencing was achieved by the
MiSeqDx NGS system, generating 2 × 150 bp reads using a 5%
variant allele frequency (VAF) detection threshold. The Local Run
Manager software was used to analyze the data, and runs took about
36 h to complete. Quality control relied on the following metrics:
mean depth of coverage: ~30×, Q-score: ≥80% of bases higher than
Q30. Demultiplexing, generation of FASTQ files, alignment to the
hg19 reference genome, and variant calling in variant call format
(VCF) were all done on the TruSight Tumor 15 Analysis Module on
the MiSeqDx instrument. These VCF files then served as input in
subsequent bioinformatic analysis that aimed at identifying and
interpreting the somatic variants in CRC samples.

2.4 Annotation, filtration, and clinical
interpretation of variants within CRC
actionable genes

Functional annotation highly facilitates NGS data analysis. We
utilized the Annotate Variation (ANNOVAR) webserver tool
(wANNOVAR) to annotate the raw DNA sequence files (https://
wannovar.wglab.org) (Wang et al., 2010; Chang and Wang, 2012;
Yang and Wang, 2015). The input settings used in wANNOVAR
were default while selecting hg19 as a reference genome. The gene
panel used in this study comprises 15 genes. Only variants from
3 genes (BRAF, KRAS, NRAS), however, were used in our
computational analysis since they hold established therapeutic
relevance in CRC. Accordingly, variant data were filtered by the
3 genes of interest, coding region, and functional effect (non-
synonymous). Only the most common gene transcripts (BRAF:
ENST00000288602.6, KRAS: ENST00000311936.3, NRAS:
ENST00000369535.4) were used. The resulting list of variants
(Table 1) was cross-checked with molecular screening results
reported by the laboratory. Missing SNP ID numbers were
manually retrieved from the National Center for Bioinformatics
database (NCBI) (http://www.ncbi.nlm.nih.gov). To interpret
variants based on clinical significance, we have used the
2017 four-tiered system by the Association for Molecular
Pathology (AMP), the College of American Pathologists (CAP),
and the American Society for Clinical Oncology (ASCO). The
system uses 12 criteria for variant classification: 1) Evidence of
being a therapeutic biomarker for FDA-approved or investigational
drugs in professional guidelines. 2) Evidence of being diagnostic in
professional guidelines or with consensus. 3) Evidence of being
prognostic in professional guidelines or with consensus. 4) Mutation
type: activating or loss of function, copy number variation (CNV), or
gene fusion. 5) Variant allele frequency (50% or 100%). 6) Potential
germline: tested as germline in normal tissue. 7) low frequency in
population databases. 8) Reported as pathogenic in ClinVar or the
Human Gene Mutation Database (HGMD). 9) Reported in the
Catalogue of Somatic Mutations in Cancer (COSMIC), My Cancer
Genome (MCG), the International Cancer Genome Consortium
(ICGC), or the Cancer Genome Atlas Program (TCGA). 10)
Predicted as pathogenic by pathogenicity prediction tools. 11)
Association with disease or pathway. 12) Availability of
convincing functional or population studies (Li et al., 2017).
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TABLE 1 Genetic variants identified in CRC patients via TST 15 NGS molecular screening.

Serial
No.

Gene Genomic
coordinates

Exon/CDS
position

AA
position

Ref/Alt
allele

SNP
reference ID

Frequency/
Percentage

AMP/ASCO/CAP
interpretation

MAF (ESP6500,1000g
gnomAD, ExaC)

1 BRAF chr7:140453135 14/c.T1799A V600E A/T rs113488021 2/2.32% Tier I - strong clinical
significance

A/A/3.98E-6/1.65E-5

2 KRAS chr12:25398284 2/c.G35C G12A C/G rs121913529 3/3.48% Tier II - potential clinical
significance

A/A/A/A

3 KRAS chr12:25398284 2/c.G35A G12D C/T rs121913529 16/18.60% Tier I - strong clinical
significance

A/A/4.011E-5/1.976E-5

4 KRAS chr12:25398285 2/c.G34C G12R C/G rs121913530 1/1.16% Tier II - potential clinical
significance

A/A/A/A

5 KRAS chr12:25398285 2/c.G34A G12S C/T rs121913530 1/1.16% Tier II - potential clinical
significance

A/A/A/A

6 KRAS chr12:25398284 2/c.G35T G12V C/A rs121913529 5/5.81% Tier II - potential clinical
significance

A/A/A/A

7 KRAS chr12:25398281 2/c.G38A G13D C/T rs112445441 3/3.48% Tier II - potential clinical
significance

A/A/A/A

8 KRAS chr12:25380313 3/c.G145A E49K C/T rs2141510396 1/1.16% Tier III - variant of unknown
significance

A/A/A/A

9 KRAS chr12:25380275 3/c.A183T Q61H T/A rs17851045 1/1.16% Tier II - potential clinical
significance

A/A/A/A

10 KRAS chr12:25378647 4/c.A351T K117N T/A rs770248150 2/2.32% Tier II - potential clinical
significance

A/A/A/A

11 KRAS chr12:25378585 4/c.G413A G138E C/T rs754870563 3/3.48% Tier II - potential clinical
significance

A/A/3.981E-6/8.242E-6

12 KRAS chr12:25378562 4/c.G436A A146T C/T rs121913527 2/2.32% Tier II - potential clinical
significance

A/A/A/A

13 NRAS chr1:115256530 3/c.C181A Q61K G/T rs121913254 1/1.16% Tier II - potential clinical
significance

A/A/A/A

14 NRAS chr1:115252335 4/c.G305A R102Q C/T rs1247510820 1/1.16% Tier III - variant of unknown
significance

A/A/A/A

CDS, Coding Sequence; AA, Amino acid position; Ref/Alt Allele, Reference and alternative alleles; SNP Reference ID, Single Nucleotide Polymorphism Cluster ID; AMP/ASCO/CAP Interpretation, Association for Molecular Pathology/American Society for Clinical

Oncology/College of American Pathologists standard clinical interpretation; MAF, Minor Allele Frequency; A, Absent in database; ESP6500, Exome Sequencing Project v.6500 database; 1000g, 1000 genome database; gnomAD, Genome Aggregation Database; ExaC,

Exome Aggregation Consortium Database.
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To facilitate variant interpretation, we used the CancerVar
(Cancer Variant Interpretation) webserver (https://cancervar.
wglab.org). CancerVar is a deep learning rule-based scoring
software containing clinical records for 13 million variants from
1911 cancer census genes (Li et al., 2022). The input parameters
specified were cancer type: colorectal cancer, genome build: hg19,
and the amino acid position. The resulting interpretation along with
the output for population frequencies were recorded (Table 1).

Pathogenicity prediction tools are helpful means for estimating
the ability of genetic variants to cause disease. To classify variants as
pathogenic or benign CancerVar uses seven tools, which are
FATHMM (Shihab et al., 2013), GERP++RS (Davydov et al.,
2010), MetaLR (Chen et al., 2023), MetaSVM (Kim et al., 2017),
Mutation Assessor (Reva et al., 2011), Polyphen2_HDIV (Adzhubei
et al., 2013), and SIFT (Ng and Henikoff, 2003). We have selected a
different set of tools [BayesDel_addAF (Feng, 2017), CADD_Phred
(Rentzsch et al., 2019), DANN (Quang et al., 2015), FATHMM-
MKL (Shihab et al., 2015), MPC (Samocha et al., 2017), REVEL
(Ioannidis et al., 2016), PrimateAI (Sundaram et al., 2018)] to
improve pathogenicity predictions of identified variants. The
reason behind selecting this tool set is to increase the diversity of
principles used in prediction while offering alternative tools with
more advanced algorithms. We have chosen FATHMM-MKL, for
example, since it is an updated version of FATHMM, which uses
multiple kernel learning to capture different types of data. Selecting
CADD_phred and REVEL was based on their ability to combine the
results of several tools into one comprehensive prediction. DANN
and PrimateAI were selected for their advanced deep neural network
algorithms that enable them to analyze complex patterns. We chose
CADD_Phred and BayesDel_addAF since they incorporate diverse
data types, including functional annotations, evolutionary
conservation, and allele frequencies. MPC was chosen since it is
tailored for missense mutations to increase prediction precision.
PrimateAI is built with specific primate data, which enhances
prediction for human variants; thus, it was added to our set.
Therefore, this combination was consolidated to provide a more
holistic approach with an expectation for increased overall
prediction accuracy. We compared the performance of these
tools with CancerVar by testing truly pathogenic (14 identified
variants—Table 1) and truly benign (≥1% minor allele frequency)
datasets. Variant Effect Predictor (VEP) was used to generate the
prediction scores (McLaren et al., 2016) by inputting genomic
coordinates for pathogenic variants and SNP IDs for benign
variants. CancerVar tools prediction scores were obtained
through its webserver, which were normalized to match the
selected tools’ cutoff points. The scores for both sets (14 tools)
were plotted in a receiver operating characteristic curve (ROC) using
the EasyROC webtool (http://www.biosoft.erciyes.edu.tr/
app/easyROC).

2.5 Genotype-protein-phenotype analysis of
variants in CRC actionable genes

Gene-protein-phenotype characterization of cancer genes offers
insights for assigning new predictive or prognostic biomarkers or
designing targeted drugs. Multiple bioinformatics analyses were
performed for variants found in samples that tested positive for

at least one clinically actionable CRC gene (BRAF, KRAS, or NRAS)
(Sepulveda et al., 2017). Other concomitant variants found only
upon examining raw DNA sequences were also included in the
analyses. Functional domain mapping, pathogenicity predictions,
secondary structure analysis, thermodynamic stability analysis, 3D
structure superimposition, and molecular docking of BRAF wild-
type and mutant proteins to Encorafenib (a BRAF inhibitor) were
performed. All actionable gene variants, including concomitant
variants, were missense variants in the coding region. To identify
novel or rare variants, a thorough search was conducted in major
population databases [1000 genomes, Avon Longitudinal Study of
Parents and Children (ALSPAC), The Exome Aggregation
Consortium (ExAC), The Genome Aggregation Database
(GnomAD), National Center for Biotechnology Information
Allele Frequency Aggregator (NCBI ALFA), NHLBI Exome
Sequencing Project (ESP6500), TWINSUK, UK10K], and cancer-
specific databases (COSMIC, MCG, and TCGA).

2.5.1 Functional domain mapping
All of the identified missense variants in BRAF, KRAS, and

NRAS genes were mapped to exons, domains, and subdomains
based on the primary sequence of amino acids from literature
consensus. The chromosome mapping location, mRNA
transcripts, and corresponding exon numbers were collected from
the Ensembl Database (https://www.ensembl.org/index.html).

2.5.2 Secondary structure and stability analyses
Secondary structure analysis illustrates differences in secondary

structure elements caused by variations in amino acids. Amino acid
sequences of wild-type proteins (BRAF, KRAS, and NRAS) were
manually substituted in a text file with each variation, and sequences
were analyzed using the NetSurfP 3.0 webtool (https://www.dtu.
biolib.com/NetSurfP-3) to generate graphical images. Those images
were visually compared to see whether any changes occurred in α-
helices, ß-pleated sheets, or loops between wild-type and variant
secondary structures.

Thermodynamic stability analysis estimates the mutational
effect on protein stability. BRAF, KRAS, and NRAS missense
variants were analyzed using the DUET webserver, predicting the
effect of SNVs on protein stability in the form of ΔΔG (kcal/mol).
DUET integrates mCSM and SDM estimations to predict a
combined score (Pires et al., 2014).

2.5.3 3D structure mapping and superimposition
Variant tertiary structure generation and alignment to the

respective wild-type model were achieved using the homology
modeling method. Obtained from the Protein Databank (PDB)
(https://www.rcsb.org), folded human 3D structures of BRAF
(PDB: 6UAN), KRAS (PDB: 7KYZ), and NRAS (PDB: 6ZIO)
were used as templates to generate the wild-type forms of the
proteins. Wild-type 3D structures were generated using SWISS-
MODEL webserver (https://www.swissmodel.expasy.org)
(Waterhouse et al., 2018), except for BRAF, which was achieved
throughthe I-Tasser webserver (https://www.zhanggroup.org)
(Zhang, 2008; Roy et al., 2010; Yang et al., 2015), since it needed
input frommultiple structures to generate the full form. The mutant
forms were made by the DUET webserver (Pires et al., 2014).
Deviations were estimated by superimposing mutant residues on
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wild-type counterparts on YASARA software (https://www.yasara.
org) (Land and Humble, 2018), with root mean square deviation
(RMSD) values generated as outputs. The PyMol2 software (PyMOL
Molecular Graphics System Ver. 2.6.0, Schrödinger, LLC) was used
to visualize the aligned protein structures along with affected
amino acids.

2.5.4 Computational binding of BRAF with
Encorafenib

According to American guidelines, Encorafenib (a kinase inhibitor)
in addition to Cetuximab (an EGFR inhibitor) can be used as a second
line of treatment for mCRC patients with the BRAF V600E mutation
(Morris et al., 2023). Moreover, the maximum inhibitory concentration
(IC50) of Encorafenib in vitro is known to be similar in wild-type and
V600E mutant BRAF proteins (Koelblinger et al., 2018). To gain more
insight on Encorafenib binding behavior, molecular docking assays
were performed to compare the binding affinities of Encorafenib with
wild-type and V600E mutant BRAF proteins. AutoDock Vina
algorithm of the SWISS-DOCK webserver (https://www.swissdock.
ch) was utilized to assess two assays: one for the drug-wild-type and
the other for the drug-variant (Eberhardt et al., 2021; Bugnon et al.,
2024). For the docking setup, the ligand was obtained from the ZINC
database in MOL2 format (zinc.docking.org) (catalogue no.:
ZINC68249103) and uploaded into the SWISS-DOCK server. The
molecule sketcher option was used to prepare the uploaded ligand.
The previously generated wildtype and variant models (methods 2.5.3)
were used in PDBQ format to prepare targetmolecules. For eachmodel,
specific amino acid coordinates (inhibitor binding residues) were
entered in the search box center of grid box settings (Martinez
Fiesco et al., 2022). The search box size and sample exhaustivity
options were left on default. The drug-protein complexes with the
lowest binding energies were chosen, and PyMol2 was used to record
hydrogen bonds and interacting residues and visualize the results.

3 Results

3.1 Data collection

The sample’s data collected for a 4-year period (2018–2021)
comprise information on clinical diagnosis, demographics,
histopathology diagnosis, and molecular screening results for the
3 CRC actionable genes (BRAF, KRAS, NRAS). Some raw DNA
sequence files for the full gene panel were also collected. Upon
curation and filtration, the data collection process has yielded a total
of 86 CRC sample data, with 49 raw DNA sequence files
corresponding to some of those samples. Among the 86 samples,
41 harbored somatic mutations in CRC actionable genes, and
45 were negative for those genes. All 86 samples’s data displayed
diverse clinical presentations. These include colon or rectal polyps,
transverse, descending, sigmoid, rectosigmoid, non-specified colon,
or rectal cancers, and chronic colon inflammation. The
demographic data shows a higher number of samples for males
(n = 51, 59.30%) compared to females (n = 35, 40.70%). Themajority
of these samples belonged to patients between the ages of 50 and
59 years old (n = 29, 33.72%), followed by patients between 60 and
69 years old (n = 22, 25.58%), 70 and 79 years old (n = 18, 20.93%),
40 and 49 years old (n = 12, 13.95%), and 30 and 39 (n = 3, 3.49%).

Other remaining samples were for a patient between <30 years old
(n = 1, 1.16%) and a patient >80 years old (n = 1, 1.16%). The
histopathology diagnosis data of 86 patients shows a diverse range of
histologic types, with each type present in small numbers. Therefore,
to simplify observation for these data, each patient tissue diagnosis
was broadly grouped into either adenoma (precursor lesion),
adenocarcinoma (malignant form), or chronic colon
inflammation. The majority of sample tissues were diagnosed
with adenocarcinoma (n = 71, 82.5%), followed by adenoma (n =
9, 10.5%), and chronic colon inflammation (n = 6, 7%).

3.2 Molecular screening and variant
interpretation

The 14 detected variants in 3 actionable genes among 86 samples
were as follows: BRAF, n = 1 (1.16%); KRAS, n = 11 (12.79%); and
NRAS, n = 2 (2.32%). The single BRAF variant was V600E. Among the
11 KRAS variants, 5 were in codon 12 (G12A, G12D, G12R, G12S,
G12V) and 1 in codon 13 (G13D). Two variants of KRAS, E49K and
G138E, were a concomitant pair from a single patient. The other
variants of KRAS included codon 61 Q61H, codon 117 K117N, and
codon 146 A146T. The 2 NRAS variants included a codon 61 mutation
(Q61K) and a rare mutation at codon 102 (R102Q). The 14 variant
identifications were based on molecular screening records and
49 corresponding raw DNA sequence files. All variants found in the
molecular screening records were present in raw DNA sequence files,
except for NRAS R102Q, which was only identified in those files.
Moreover, all 14 variants were found above the 5% VAF threshold
except for NRAS R102Q, which was detected at 1.4%. It was included,
however, in subsequent computational analyses as it may hold potential
clinical relevance upon further investigation. Furthermore, the NRAS
R102Q variant was found concomitantly with another variant (KRAS
G12D) in the same patient. The most common variant detected was
KRAS G12D (n = 16, 18.60%). According to CancerVar interpretation,
BRAF V600E and KRAS G12D were classified as Tier 1 (strong clinical
significance), while KRAS E49K and NRAS R102Q were Tier III
(unknown clinical significance). KRAS E49K is a rare variant, and
NRAS R102Q is a novel variant. According to the COSMIC database,
KRAS E49K is only reported twice from large intestine samples and
once from a lung sample (COSV55695731), while the NRAS R102Q is
reported only once from a thyroid sample (COSV106063871), but never
from large intestines. No clinical significance data, however, for these
variants is available or reported in other databases. The remaining
variants were Tier II (potential clinical significance): KRAS G12A,
G12R, G12S, G12V, G13D, Q61H, K117N, G138E, A146T, and
NRAS Q61K. KRAS G138E is a rare variant, only reported in
COSMIC twice from large intestine samples and once from an
endometrium sample (COSV55967074). Moreover, this variant was
found in the ExAC database at a very low allele frequency
(0.00000824%). Furthermore, all 14 variants are mostly absent or
present at very low allele frequencies in population databases (Table 1).

3.3 Functional domain mapping

The single variant of BRAF (V600E) is situated at exon 15 in the
BRAF kinase binding domain’s CR3 lobe (residues ~442–724) (Cope
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FIGURE 1
Genomic architecture and variant mapping for BRAF, KRAS, and NRAS. This figure is divided into three parts: (A) for BRAF, (B) for KRAS, and (C) for
NRAS, each illustrating the chromosome location, exon structure, functional domains, and the specific locations of the 14 variants identified in the study.
HVR, Hypervariable region. Numbers indicate exons.
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TABLE 2 Pathogenicity prediction analysis: comparison of pathogenicity prediction scores generated by 2 different sets of tools (CancerVar tools versus study selected tools) for 14missense variants identified in CRC
patients.

Serial
No.

Gene AA
position

CancerVar pathogenicity prediction tools Study selected pathogenicity prediction tools

SIFT GERP++RS MetaSVM PolyPhen2 HDIV MetaLR FATHMM Mutation
Assessor

MPC BayesDel
addAF

CADD
phred

REVEL FATHMM-
MKL

PrimateAI DANN

1 BRAF V600E 0.99 0.9375 0.192 0.971 0.259184 0.501025 0.043279381 0.98012 0.89859 0.85358 0.98378 0.83898 0.9559 0.42049

2 KRAS G12A 0.7 0.941106 0.534281 0.956 0.574 0.485573 0.536671058 0.97803 0.79266 0.66338 0.95026 0.83094 0.95412 0.89353

3 KRAS G12D 0.76 0.941106 0.542977 0.517 0.581 0.487634 0.643719807 0.96146 0.89791 0.55279 0.9628 0.77787 0.98933 0.86433

4 KRAS G12R 0.8 0.941106 0.5301 0.802 0.557 0.486397 0.581137462 0.95402 0.88153 0.71141 0.94276 0.83094 0.98714 0.99279

5 KRAS G12S 0.7 0.941106 0.0365 0.682 0.061224 0.480214 0.076706545 0.96251 0.8702 0.76569 0.93068 0.77787 0.95359 0.94547

6 KRAS G12V 0.9 0.941106 0.58913 0.999 0.699 0.488046 0.631642512 0.96812 0.89074 0.71712 0.97587 0.82057 0.96271 0.87839

7 KRAS G13D 0.68 0.941106 0.593478 0.803 0.69 0.467436 0.657992973 0.97311 0.91571 0.55802 0.94691 0.77787 0.98766 0.91714

8 KRAS E49K 0.71 0.951923 0.133 0.083673 0.2 0.477329 0.099929627 0.94702 0.74091 0.49447 0.75074 0.8248 0.98822 0.92925

9 KRAS Q61H 0.92 0.951923 0.542475 0.080612 0.613 0.510595 0.636583224 0.92349 0.80121 0.52932 0.86636 0.56224 0.9584 0.82054

10 KRAS K117N 0.88 0.049545 0.648997 1 0.948 0.527683 0.836407554 0.43041 0.84787 0.63498 0.92004 0.54318 0.98302 0.92576

11 KRAS G138E 0.99 0.921875 0.573579 0.967 0.687 0.469085 0.524044796 0.38983 0.86851 0.71935 0.86986 0.8027 0.99825 0.83409

12 KRAS A146T 0.91 0.921875 0.66689 1 0.89 0.531442 0.720575318 0.35994 0.92729 0.79742 0.97549 0.97329 0.93982 0.96049

13 NRAS Q61K 0.91 0.86899 0.615719 0.948 0.742 0.507861 0.696969697 0.80574 0.90961 0.75616 0.95026 0.9545 0.94521 0.68618

14 NRAS R102Q 0.62 0.91226 0.16025 0.378571 0.239796 0.4831 0.066502463 0.76201 0.73138 0.5419 0.82968 0.73196 0.90151 0.94815

AA position, Change in amino acid, Cutoff values: variants are predicted pathogenic if score is >0.5 (red color) and benign if <0.5 (green color).

Fro
n
tie

rs
in

P
h
arm

ac
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
8

A
lju

h
an

i
e
t
al.

10
.3
3
8
9
/fp

h
ar.2

0
2
4
.14

9
8
2
9
5

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1498295


et al., 2018) (Figure 1A). KRAS codon 12 and 13 variants (G12A,
G12D, G12R, G12S, G12V, and G13D) are located at the second
exon in the catalytic (G) domain’s embedded P-loop region
(residues ~10-16 and 56–59). KRAS E49K and Q61H are in exon
3, with Q61H within the S2 domain (residues ~58–76). KRAS
K117N, G138E, and A146T variants are located in exon 5 near
the hypervariable region (HVR) (residues ~167–188) (Figure 1B).
The NRAS Q61K and R102Q variants are within the G domain
(residues ~1–165), with Q61K in exon 3 and the S2 domain, and
R102Q in exon 4, not associated with other domains (Johnson et al.,
2017) (Figure 1C).

3.4 Pathogenicity predictions

Our pathogenicity prediction analysis was performed on the
14 variants using two sets of tools: 7 CancerVar tools and our

7 study-selected tools. The output was evaluated based on the
0.5 threshold (>0.5 = pathogenic and <0.5 = benign). For each
set, we consider a variant to be pathogenic if >3 tools scored above
the threshold, while we consider the variant to be benign if ≤3 tools
scored above the threshold. Between the 7 CancerVar tools and our
7 selected tools, with better prediction algorithms, there was great
variability in pathogenicity predictions. CancerVar tools predicted
three variants—KRASG12S, E49K, andNRAS R102Q—to be benign
(42.85%, 28.57%, and 28.57, respectively), but our tools identified
them as pathogenic (100%, 85.71%, and 100%, respectively).

KRAS G12S, predicted benign by 3 CancerVar tools (SIFT,
GERP++RS, and PolyPhen2_HDIV), and other 4 tools
considered it as pathogenic. But all selected tools (100%)
predicted it as pathogenic. Similarly, KRAS E49K was predicted
as benign by CancerVar (2 tools: SIFT, GERP++RS) but pathogenic
by 6 tools (85.71%) in our study (MPC, BayesDel_addAF, REVEL,
FATHMM-MKL, PrimateAI, DANN). Lastly, NRAS R102Q,

TABLE 3 Overall pathogenicity predictions of 14 missense variants identified in CRC Patients.

Serial
No.

Gene AA
position

SNP
Ref. ID

AMP/ASCO/CAP
interpretation

CancerVar
pathogenicity
prediction

Selected tools
pathogenicity prediction

1 BRAF V600Ea rs113488022 Tier I - strong clinical
significance

Pathogenic Pathogenic

2 KRAS G12Aa rs121913529 Tier II - potential clinical
significance

Pathogenic Pathogenic

3 KRAS G12Da rs121913529 Tier I - strong clinical
significance

Pathogenic Pathogenic

4 KRAS G12Ra rs121913530 Tier II - potential clinical
significance

Pathogenic Pathogenic

5 KRAS G12Sa rs121913530 Tier II - potential clinical
significance

Benign Pathogenic

6 KRAS G12Va rs121913529 Tier II - potential clinical
significance

Pathogenic Pathogenic

7 KRAS G13Da rs112445441 Tier II - potential clinical
significance

Pathogenic Pathogenic

8 KRAS E49Kb rs2141510396 Tier III - variant of unknown
significance

Benign Pathogenic

9 KRAS Q61Ha rs17851045 Tier II - potential clinical
significance

Pathogenic Pathogenic

10 KRAS K117Na rs770248150 Tier II - potential clinical
significance

Pathogenic Pathogenic

11 KRAS G138Eb rs754870563 Tier II - potential clinical
significance

Pathogenic Pathogenic

12 KRAS A146Ta rs121913527 Tier II - potential clinical
significance

Pathogenic Pathogenic

13 NRAS Q61Ka rs121913254 Tier II - potential clinical
significance

Pathogenic Pathogenic

14 NRAS R102Qc rs1247510820 Tier III - variant of unknown
significance

Benign Pathogenic

Predictions of both CancerVar and study selected tools are shown for comparison.

AA, amino acid position; SNP Reference ID, Single Nucleotide Polymorphism Cluster ID; AMP/ASCO/CAP Interpretation, Association for Molecular Pathology/American Society for Clinical

Oncology/College of American Pathologists standard clinical interpretation.
aActionable variants identified through initial standard screening.
bNon-actionable variants identified through initial standard screening.
cNon-actionable variants identified through raw DNA sequence analysis.
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predicted benign by CancerVar (2 tools: SIFT, GERP++RS), was
considered pathogenic by all 7 tools (100%) in our study (MPC,
BayesDel_addAF, CADD_Phred, REVEL, FATHMM-MKL,
PrimateAI, DANN). All other variants (BRAF V600E, KRAS
G12A, G12D, G12R, G12V, G13D, Q61H, K117N, G138E,
A146T, NRAS Q61K) were predicted as pathogenic by both sets
of tools (Tables 2, 3).

ROC curves can be a good indicator of the performance of
different pathogenicity prediction tools. By plotting the true positive
and true negative rates, area under the curve (AUC) can be
calculated. A perfect performance for a given tool is 1, and
unreliable tools score 0.5 or below. Upon comparison in ROC
analysis, CancerVar’s 7 tools (SIFT, GERP++RS, MetaSVM,
PolyPhen2_HDIV, MetaLR, FATHMM, MutationAssessor) and
our 7 selected tools (MPC, BayesDel_addAF, CADD_Phred,
REVEL, FATHMM-MKL, PrimateAI, DANN) displayed wide
variations in terms of performance (Figure 2). Five of the
selected tools (PrimateAI, BayesDel_addAF, REVEL, FATHMM-
MKL, and CADD_Phred) demonstrated outstanding performance,
with AUC values above 0.90 (0.98292, 0.96854, 0.92479, 0.90957,
and 0.90922, respectively). Additionally, DANN showed a slightly
lower AUC value (0.87218), which also indicates a high
performance. MPC was the least performing among this group
with an AUC of 0.72212. Therefore, the top six performing
prediction tools in this analysis (PrimateAI, BayesDel_addAF,
REVEL, FATHMM-MKL, CADD_Phred, and DANN) were
among our study-selected tools. CancerVar tools showed lower
AUC values for GERP++RS, SIFT, and Mutation Assessor
(0.84312, 0.83093, and 0.80124, respectively) compared to the top
6 performing selected tools. FATHMM and MetaSVM had even
lower AUC values (0.77022, 0.73343, respectively) but were still
better than the selected MPC tool. MetaLR and PolyPhen2_HDIV
were the least performing among all other tools, with AUC values

below 0.70 (0.63529 and 0.44089, respectively). All results were
statistically significant (p-value <0.05) (Table 4). Overall, our
selected tools, with an average AUC of 0.89848, significantly
improved prediction ability by approximately 24.4% compared to
CancerVar tools, which had an average AUC of 0.72216.3.5.

3.5 Secondary structure, stability, and
structural deviation analyses

Secondary structure analysis determines how amino acid
changes in the protein may affect the size or shape of secondary
structure elements (α-helices, ß-pleated sheets, and loops).
Interestingly, the output generated by the NetSurfP 3.0 tool
showed that 12 variants are falling within loop regions without
notable changes in length or shape of the loops (BRAFV600E, KRAS
G12A, G12D, G12R, G12S, G12V, G13D, Q61H, K117N, G138E,
A146T, and NRAS Q61K). KRAS E49K variant falls within a ß-
pleated sheet region, and NRAS R102Q within an α-helix. Both of
these variants did not cause any visible change in their respective
secondary structure elements (Supplementary Figure 1).

Thermodynamic stability analysis predicts the impact of
mutations on protein folding. Variants making changes to
protein thermodynamic stability are predicted to affect protein
function. Actionable gene missense variants were analyzed using
different measurements to estimate changes in energy. The DUET
webtool combines the output of two different tools, mutation cutoff
scanning matrix (mCSM) and site-directed mutator (SDM), to make
its final prediction. DUET webserver predicted the BRAF V600E
variant to be destabilizing the protein structure due to the negative
free energy value (−2.118 kcal/mol). Seven KRAS variants were also
shown to have a destabilizing effect: G12D (−0.323 kcal/mol), G12R
(−0.044 kcal/mol), G12S (−0.274 kcal/mol), G13D (−0.461 kcal/

FIGURE 2
Comparative performance of 14 pathogenicity prediction tools. Two different sets of pathogenicity prediction tools, each containing 7 tools are
compared to demonstrate their ability to detect pathogenic from benign variants. One set (SIFT, GERP++RS, MetaSVM, PolyPhen2 HDIV, MetaLR,
FATHMM, and Mutation Assessor) are used by the CancerVar somatic variant interpretation tool, and the other set (MPC, BayesDel addAF, CADD phred,
REVEL, FATHMM-MKL, PrimateAI, and DANN) are selected by our study to be used as a better predictor for pathogenicity.
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mol), K117N (−0.455 kcal/mol), G138E (−1.28 kcal/mol), and
A146T (−0.737 kcal/mol). Other 4 KRAS variants were found to
further stabilize the protein structure due to the positive energy

change: G12A (0.056 kcal/mol), G12V (0.168 kcal/mol), E49K
(0.063 kcal/mol), and Q61H (0.256 kcal/mol). Both NRAS
variants were also found to cause increased protein stability:

TABLE 4 Performance evaluation of 14 pathogenicity prediction tools.

Pathogenicity prediction tools AUC SE AUC Lower limit Upper limit Z-score p-value

CancerVar Tools SIFT 0.83093 0.08408 0.66614 0.99572 3.93604 0.000080*

GERP++RS 0.84312 0.07597 0.69422 0.99202 4.51648 0.000010*

MetaSVM 0.73343 0.09717 0.54298 0.92388 2.40224 0.016300*

PolyPhen2_HDIV 0.44089 0.11113 0.22307 0.65871 −0.53185 0.594830

MetaLR 0.63529 0.10843 0.42277 0.8478 1.24773 0.212130

FATHMM 0.77022 0.09454 0.58492 0.95552 2.85812 0.004260*

MutationAssessor 0.80124 0.08556 0.63355 0.96892 3.52092 0.000430*

Study Selected Tools MPC 0.72212 0.09669 0.5326 0.91163 2.29716 0.021610*

BayesDel_addAF 0.96854 0.13875 0.69659 1 3.37677 0.000730*

CADD_phred 0.90922 0.07915 0.75408 1 5.16998 0*

REVEL 0.92479 0.10432 0.72034 1 4.07216 0.000050*

FATHMM-MKL 0.90957 0.07578 0.76104 1 5.40443 0.000000*

PrimateAI 0.98292 0.19461 0.60149 1 2.4815 0.013080*

DANN 0.87218 0.07979 0.71579 1 4.66442 0*

Each tool, including CancerVar and our selected set, was tested on pathogenic and benign datasets, with results plotted on an ROC curve. This table summarizes the associated statistics.

AUC, area under curve; SE AUC, Standard error of area under curve. The color intensity illustrates the performance each prediction tool. The darker the green shade the better performing, and

the lighter the less performing. * = A statistically significant difference from random classification (p-value <0.05).

TABLE 5 RMSD and thermodynamic stability scores of 14 missense variants identified in CRC patients.

Serial
No.

Gene AA
position

SNP
reference ID

Residue
level RMSD

mCSM stability
change (kcal/mol)

SDM stability
change

(kcal/mol)

DUET stability
change

(kcal/mol)

1 BRAF V600E rs113488022 1.7216 −1.957 (Destabilizing) −2.11 (Destabilizing) −2.118 (Destabilizing)

2 KRAS G12A rs121913529 1.1634 −0.193 (Destabilizing) −0.35 (Destabilizing) 0.056 (Stabilizing)

3 KRAS G12D rs121913529 1.1833 −0.554 (Destabilizing) −0.74 (Destabilizing) −0.323 (Destabilizing)

4 KRAS G12R rs121913530 1.1612 −0.252 (Destabilizing) −0.25 (Destabilizing) −0.044 (Destabilizing)

5 KRAS G12S rs121913530 1.1833 −0.437 (Destabilizing) −1.01 (Destabilizing) −0.274 (Destabilizing)

6 KRAS G12V rs121913529 1.1651 −0.313 (Destabilizing) 0.73 (Stabilizing) 0.168 (Stabilizing)

7 KRAS G13D rs112445441 1.5183 −0.23 (Destabilizing) −2.92 (Destabilizing) −0.461 (Destabilizing)

8 KRAS E49K rs2141510396 1.3381 −0.152 (Destabilizing) −0.58 (Destabilizing) 0.063 kcal/mol
(Stabilizing)

9 KRAS Q61H rs17851045 2.3574 0.01 (Stabilizing) 0.7 (Stabilizing) 0.256 (Stabilizing)

10 KRAS K117N rs770248150 2.798 −0.766 (Destabilizing) 0.44 (Stabilizing) −0.455 (Destabilizing)

11 KRAS G138E rs754870563 1.4388 −1.074 (Destabilizing) −2.62 (Destabilizing) −1.28 (Destabilizing)

12 KRAS A146T rs121913527 1.5958 −0.963 (Destabilizing) −0.57 (Destabilizing) −0.737 (Destabilizing)

13 NRAS Q61K rs121913254 4.263 0.072 (Stabilizing) 0.25 (Stabilizing) 0.486 (Stabilizing)

14 NRAS R102Q rs1247510820 2.4139 −0.16 (Destabilizing) −0.13 (Destabilizing) 0.012 (Stabilizing)

AA, amino acid position; Ref/Alt Allele, Reference and alternative alleles; SNP Reference ID, Single Nucleotide Polymorphism Cluster ID; RMSD, Root-Mean-Square Deviation; mCSM,

mutation cutoff scanning matrix; SDM, Site-directed mutator.
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Q61K (0.486 kcal/mol) and R102Q (0.012 kcal/mol). Compared to
other analyzed variants, BRAF V600E was shown to be severely
destabilizing the protein structure due to its large negative value, and
NRAS R102Q to be weakly stabilizing its protein due to the small
positive value (Table 5).

The 3D structure superimposition of the folded mutant proteins
on their wild-type counterparts was performed to estimate
deviations at the amino acid level. Three variants revealed
significant structural deviations (>2Å) by RMSD analysis scores.
These were KRAS Q61H (2.3574 Å), K117N (2.798 Å), and NRAS
R102Q (2.4139 Å). The remaining 11 variants fell below the 2Å
threshold (BRAF V600E, KRAS G12A, G12D, G12R, G12S, G12V,
G13D, E49K, G138E, A146T, and NRAS Q61K) (Table 5). Overall,

the superimposed 3D structures of all 14 variants showed subtle
changes at residue level (Figure 3).

3.6 Computational binding of BRAF with
Encorafenib

BRAF is a promising drug target for mCRC patients with the
V600E mutation. Moreover, Encorafenib (a kinase inhibitor) can be
used as a targeted therapy for those patients as a second- or third-
line treatment option. To catch a glimpse of the efficacy of this drug,
molecular docking was performed to estimate the binding affinity of
this kinase inhibitor against wild-type BRAF protein and its V600E

FIGURE 3
3D structural analysis of variant and wild-type BRAF, KRAS, and NRAS proteins. The figure shows 14 variant amino acid 3D structures superimposed
on their wild-type counterparts. Each superimposed structure highlights the effect of its respective mutation on protein shape. Contrasting colors are
shown for each variant and wild-type pair. Wild-type BRAF is shown in dark purple, wild-type KRAS in dark blue, and wild-type NRAS in dark brown.

Frontiers in Pharmacology frontiersin.org12

Aljuhani et al. 10.3389/fphar.2024.1498295

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1498295


variant. The binding affinity between Encorafenib and wild-type
BRAF protein was computed to −5.915 kcal/mol. It is predicted to
form hydrogen bonds with two residues, D742 and A762, in the
protein. However, the BRAF V600E mutant protein showed lower
binding affinity with Encorafenib, with a computed value
of −3.539 kcal/mol and one hydrogen bond at residue Y746 of
the protein (Figure 4).

4 Discussion

CRC is a challenging disease. Twenty percent of patients present
at a metastatic stage and 50% of localized cases progress to mCRC
(Dekker et al., 2019). Despite the genetic heterogeneity of CRC
tumors, targeted treatments remain limited. BRAF, KRAS, and
NRAS express vital cascade signaling proteins that act in the
RAS-RAF-MEK-MAPK pathway, ultimately influencing the cell
cycle G1 checkpoint. While cell commitment to DNA synthesis
is largely controlled by retinoblastoma tumor suppressor protein
(Rb), mutations in these signaling proteins can promote cell cycle
progression from G1 to S phase by increasing expression of cyclins
and cyclin-dependent kinases that are known to nullify the effects of
Rb. Such mutations in these actionable genes disrupt normal cell
cycle regulation, leading to uncontrolled proliferation and
carcinogenesis (Sherr, 1995; Smalley et al., 2008; Puyol et al.,

2010). In this study, we collected 86 samples from KAUH
hospital: 40 (46.5%) were positive and the rest were negative for
mutations in these actionable genes. Fourteen variants were
identified through molecular screening and raw DNA sequence
analysis: 1 in BRAF, 11 in KRAS, and 2 in NRAS, including
NRAS R102Q, previously unreported in CRC data. BRAF
mutations, particularly the V600E variant, occur in 66% of
melanomas and less frequently in other cancers (OMIM:164757).
Mutations in BRAF codon 600, KRAS codons 12 and 13, and NRAS
codon 61 confer resistance to anti-EGFR treatments, while BRAF
V600E mutations indicate aggressive disease but potential benefit
from VEGF inhibitors (Ciardiello et al., 2022). This variant disrupts
kinase activity, increasing signaling independently of RAS, with a
138-fold rise in oncogenic activity (Oikonomou et al., 2014). It is a
key biomarker in thyroid (Koh et al., 2013), melanoma (Cheng et al.,
2018), and CRC (Ciardiello et al., 2022). BRAFmutations are present
in 8%–12% of European mCRC patients and associated with poor
survival (Van Cutsem et al., 2016; Tabernero et al., 2022). In this
study, CancerVar identified this variant as Tier I (Table 1),
consistent with ClinVar (RCV001030023.12). The frequency of
BRAF mutations in our data is 2.32% (Table 1), aligning with
Saudi data (0.4%–4%) (Siraj et al., 2014; Beg et al., 2015; Al-
Shamsi et al., 2016; Alharbi et al., 2021; Alfahed, 2023).

The BRAF gene, located at chromosome 7q34, consists of
18 exons encoding a 766-amino acid protein (Huang et al.,

FIGURE 4
Molecular docking analysis of BRAF protein with Encorafenib. This figure shows the binding configuration of wild-type BRAF (A) and BRAF V600E
variant protein (B) with Encorafenib. Encorafenib is depicted as a small molecule in a ball-and-stick illustration, with white shaded pockets indicating
hydrogen bond formation sites. The dotted lines represent hydrogen bonds. In (A), the wild-type BRAF protein is shown in purple on the left, with an
enlarged view of the protein-ligand interaction site on the right. In (B), the BRAF V600E variant protein is shown in red on the left, with an enlarged
view of the protein-ligand interaction site on the right.
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2013). BRAF is a serine/threonine kinase that performs several
functions in the RAS-RAF-MEK-MAPK pathway (Rauch et al.,
2011). Under physiological conditions, growth factors activate
RAS proteins at the cell membrane, which then activate RAF
proteins, thus amplifying the signal. Balanced regulatory signals
autoinhibit RAF as a means of turning off growth signals when not
needed. BRAF V600E, a type 1 mutation, functions as a monomer,
increasing signaling without RAS dimerization and resisting
regulated inhibition (Ciombor et al., 2022). BRAF protein has
three conserved domains: CR1, CR2, and CR3. CR1 (residues
120–280), near the N-terminus, includes cysteine-rich and RAS-
binding (residues 155–227) subdomains. The cysteine-rich
subdomain controls kinase activity by autoinhibition (Cutler
et al., 1998; Zaman et al., 2019), while the RAS-binding domain
upregulates BRAF at the plasma membrane (Freeman et al., 2013).
CR2, a serine/threonine-rich region, links CR1 and CR3 and
contains a 14-3-3 scaffold binding site. CR3 (residues 457–717)
(Zaman et al., 2019), near the C-terminus, is a kinase-binding
domain that activates upon phosphorylation, comprising a
glycine-rich ATP-phosphate binding lobe (residues 462–469) and
a longer C-terminal lobe (residues 593–623) (Śmiech et al., 2020;
Maloney et al., 2021). The most common mutation, V600E, is
situated in the CR3 region of BRAF, disrupting its autoinhibition
mechanism, hence contributing to oncogenic activity due to
destabilization within the inactive form of BRAF (Park et al., 2019).

In our secondary structure analysis, we predicted that BRAF
V600E falls into a loop structure identified by Park et al. (2019), as
the inhibitory loop (Park et al., 2019). Loops are one important
determinant in the stability and functions of proteins.
Superimposing BRAF V600E on its wild-type counterpart gave a
high RMSD value of 1.7216; DUET thermodynamic stability
analysis also predicted that this mutation would highly be
destabilizing, with a value of −2.118 kcal/mol. The results predict
that this missense variant will have a profound impact on the
structure of the protein and severely disrupt normal function.
Computational binding assays for Encorafenib with BRAF wild-
type and its V600E variant in Figure 3 showed differential binding
behavior. The binding energy of the wild-type-Encorafenib complex
was −5.915 kcal/mol, displaying two hydrogen interactions at
D742 and A762. By contrast, V600E-Encorafenib had only one
hydrogen bond interaction at Y746 shown with a binding energy
of −3.509 kcal/mol for the conformational pose. With this low
binding energy score with two hydrogen bond interactions in the
case of a wild-type-Encorafenib complex, it indicates that the wild-
type protein binds with the inhibitor very tightly and, hence, is
effective under normal conditions. The V600E-Encorafenib has a
higher binding energy score and, therefore, a weaker binding
affinity, though it is still predicted to be able to inhibit its target
protein. Both complexes interacted in proximity to the residues
expected to interact with the inhibitors near the C-tail inhibition
binding sites, F743 and A749, respectively (Martinez Fiesco et al.,
2022), and both complexes interacted nearby. Our results indicate
that Encorafenib may have a reduced efficacy in V600E variant
proteins. The lower inhibition ability of Encorafenib in patients with
the V600E variant could be a factor explaining why these patients
may not respond to monotherapy, and often require a combination
with other drugs such as Cetuximab (an EGFR inhibitor), and
Binimetinib a (MEK inhibitor) to gain benefit from the

treatment. It is because blocking the BRAF activity causes an
over activation of EGFR, the latter must also be inhibited to gain
a better response (Kopetz et al., 2019). Therefore, Encorafenib might
be better at targeting wildtype BRAF proteins whether blocking this
member of the pathway is needed in designing a new drug regimen
for patients without the V600E variant. KRAS and NRAS are gene
homologs belonging to the RAS superfamily, which play crucial
roles in the RAS-RAF-MEK-MAPK signaling pathways (Fernández-
Medarde and Santos, 2011) and PI3K-AKT-mTOR pathways
(Castellano and Downward, 2011). Approximately 19% of cancer
patients develop a RAS mutation, including approximately
3.4 million new cases yearly that are positive for RAS. Moreover,
75% of mutated RAS isoforms are KRAS (Prior et al., 2020). KRAS
mutations occur in 11.6% of all cancer types, as per TCGA data.
They are mostly prevalent in pancreatic ductal adenocarcinoma
(PDAC) (81.72%), CRC (37.97%), and non-small cell lung cancer
(NSCLC) (21.20%) (Yang et al., 2023). In mCRC patients, ~60%
have KRAS mutations (Peeters et al., 2015), primarily in codons 12,
13, 61, 117, and 146 (Serebriiskii et al., 2019). Over 90% of KRAS
mutations occur at codons 12 and 13, part of the p-loop of the GTP
binding domain, with codon 12 being more associated with
oncogenesis and higher mortality than codon 13 (Colussi et al.,
2013). The most prevalent KRAS mutations in CRC are G12D
(28.04%), followed by G12V (18.50%) and G13D (18.10%),
according to http://cBioPortal.org (Yang et al., 2023). Among the
86 samples in our study, 18.60% carried the G12D mutation, 5.81%
carried the G12Vmutation, and 3.48% carried the G13D, G12A, and
G138E mutations. Additionally, 2.32% of samples had K117N and
A146T mutations, while 1.16% of samples had G12R, G12S, E49K,
or Q61H mutations. Except for E49K and G138E, all identified
KRAS mutations are within hotspots. KRAS mutations have been
reported in Saudi Arabia in the past at a frequency of 28.6%–56%,
with G12D and G12V being the most prevalent variants (Siraj et al.,
2014; Beg et al., 2015; Al-Shamsi et al., 2016; Alfahed, 2023). In
comparison, our data demonstrated ~10% lower incidences of G12D
than international and regional studies, which may be related to the
limited sample size. Surprisingly, G138E, a rare variant that was only
reported in COSMIC twice from large intestine samples, was
detected in three cases and thus could be more common in Saudi
or Arab CRC patients. One patient carried a rare KRAS mutation
(E49K), which was concomitantly found with another KRAS
mutation (G138E). It was reported only twice so far from large
intestine samples in COSMIC. CancerVar has classified G12D as
Tier I, strong clinical significance, and nine variants as Tier II,
potential clinical significance: G12A; G12R; G12S; G12V; G13D;
Q61H; K117N; G138E; and A146T. E49K was classified as Tier III
with unknown clinical significance. The clinical significance of these
variants aligns with expectations, except for G138E and E49K, which
lack sufficient clinical data.

In the cell, KRAS is expressed in two isoforms (KRAS-4B and
KRAS-4A) due to alternative splicing of the exon 4. The term KRAS
refers to the KRAS-4B transcript, as it is more highly expressed than
KRAS-4A (Nuevo-Tapioles and Philips, 2022). The KRAS gene,
located at chromosome 12p11.1-12p12.1, encodes a protein of
188 amino acids, divided into five exons (Huang et al., 2021).
KRAS is a cascade signaling protein that is activated by GTP and
deactivated by GDP, a process that needs to be balanced for normal
protein function (Zhu et al., 2021). KRAS and NRAS share two main
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conserved domains. The GTP-binding (G) catalytic domain
(residues 1–165) is highly conserved and identical in both RAS
forms. It comprises two lobes: the effector lobe (residues 1–86)
contains switch 1 (S1) (residues 30–38), switch 2 (S2) (residues
60–76), and the phosphate-binding region (P-loop) (residues
10–17), all essential for GTP binding. The allosteric lobe
(residues 87–166) is less conserved, with 70%–80% similarity.
The hypervariable region (HVR) (residues 167–188) at the
C-terminus is the least conserved and crucial for post-
translational modifications for membrane anchoring (Jancík
et al., 2010; Zeitouni et al., 2016; Pantsar, 2020; Han et al., 2021;
Nuevo-Tapioles and Philips, 2022). Our identified mutations in
codons 12 and 13 (G12A, G12D, G12R, G12S, G12V, and G13D) are
in the P-loop region of the G domain. These mutations disturb the
active site’s geometry, preventing GTP hydrolysis and locking the
RAS protein in its active state (Malumbres and Barbacid, 2003). The
rare E49K and the Q61H mutations, located in exon 3, affect the G
domain; Q61H is in the S2 region, potentially disrupting GTPase
activity by blocking GTP transition to GDP. Mutations K117N,
G138E, and A146T are in exon 5, near the HVR. K117N and A146T,
found in hotspot codons, are known to predict resistance to
Cetuximab plus Irinotecan (Loupakis et al., 2009). Codon
146 mutations occur in ~4% of CRCs and are more common
than codon 61 mutations (Edkins et al., 2006). Functional studies
on Q61H and K117N show increased proliferation and high levels of
GTP-bound KRAS, indicating they affect GTPase activity by
maintaining the active form (Stolze et al., 2015). G138E is a rare
mutation located near the HVR with no current functional data.
Secondary structure analysis of KRAS variants revealed all variants
were in loop regions except E49K, which is on a ß-pleated sheet. No
obvious changes were seen in secondary structure elements, except
an increased loop size in the G138E mutant (Supplementary
Figure 1). Loop regions are important for protein stability, and
mutations can disturb this stability. E49K showed no obvious effects.
Superimposing KRAS mutant and wild-type forms revealed
significant alterations at affected residues for all variants
(Figure 3), with deviations ranging from 1.1634 to 1.5958, except
for Q61H and K117N, which showed higher deviations (2.3574 and
2.789, respectively). These deviations likely affect the binding site
geometry, particularly at codon 12, where sidechain addition
disturbs GTP hydrolysis complex binding. Q61H and K117N
significantly disrupt the amino acid structure, altering overall
protein function and GTPase activity. Protein stability analysis
indicated seven KRAS variants to destabilize the structure (G12D,
G12R, G12S, G13D, K117N, G138E, A146T). Other four variants
further stabilize the structure (G12A, G12V, E49K, and Q61H). The
increased or decreased free energy values demonstrate the influence
of these mutations on protein stability. A146T and K117N are highly
destabilizing, predicting decreased catalytic ability, while Q61H is
highly stabilizing. E49K weakly increases stability, demonstrating
low impact on function.

NRAS is a homolog to KRAS, with similar protein structure and
function (Colicelli, 2004). NRAS mutations occur in 3.03% of all
cancers (Consortium et al., 2017), predominantly in skin (10%–
25%) (Jakob et al., 2012), acute myeloid leukemia (9.76%)
(Consortium et al., 2017), and colon (~4%) (Cicenas et al., 2017).
In CRC, the majority ofNRASmutations occur at codons 12, 13, and
61, with codon 61 being the most frequently mutated (Vaughn et al.,

2011). In this study, two NRAS variants were identified, Q61K and
R102Q (2.32%). Previous studies from Saudi Arabia have reported
NRAS variants occurring at a rate of 2%–4% (Al-Shamsi et al., 2016;
Alharbi et al., 2021; Alfahed, 2023). Our findings align with this but
are 2% lower than the international CRC prevalence. The R102Q
variant, although present in low VAF, is considered novel and has
not been previously reported in CRC. The low VAF suggests it could
be an artifact, present in a small subset of cancer cells, or with
potential biological relevance (i.e., low- frequency driver mutations
arising in later-stage subclones). CancerVar classifies Q61K as Tier
II—potential clinical significance, as expected. R102Q is predicted to
be benign by CancerVar pathogenicity prediction tools and is
classified as a Tier III variant of unknown significance, though
our study’s selected tools suggest it is pathogenic. Therefore, its true
pathogenicity remains to be functionally tested for confirmation.
NRAS is located at chromosome 1p13.2 (Mitchell et al., 2008) and
encodes a protein of 189 amino acids across seven exons (Eisfeld
et al., 2014). The Q61K variant is mapped to the S2 region of exon 3,
within the G catalytic domain. Due to this location, it is expected to
affect NRAS proteins by disrupting GTP hydrolysis, thus activating
the protein. R102Q is located in exon 4, also a part of the catalytic
domain. Therefore, it is predicted to similarly influence the catalytic
site’s conformation. 3D structural modeling showed significant
deviations between the variant and wild-type structures of Q61K
(4.263) and R102Q (2.4139). Both variants increased protein
stability (Q61K: 0.486; R102Q: 0.012). Q61K likely makes the G
domain more rigid, altering the binding site, while R102Q’s impact
on G domain function cannot be predicted based on our data.

We compared our selected tools with better algorithms against
CancerVar tools to make accurate predictions for identified somatic
variants. Our pathogenicity prediction tools showed a significant
difference against CancerVar tools. Variants such as KRAS G12S,
E49K, and NRAS R102Q were predicted as benign by CancerVar but
pathogenic by our tools. The other variants were consistently
identified as pathogenic (Tables 2, 3). KRAS G12S, located at
codon 12, is expected to confer drug resistance due to increased
activation. CancerVar’s tools mostly predicted it as benign, while our
tools as pathogenic. ROC analysis demonstrated the superior
performance of 6/7 (85%) of our selected tools (PrimateAI,
BayesDel_addAF, REVEL, FATHMM-MKL, CADD_Phred).
Significant z-scores further supported these findings, highlighting
tool performance variability. Overall, study-selected tools
outperformed CancerVar tools, probably due to the advanced
machine learning algorithms these tools use to integrate diverse
data sources. The best-performing tools in this study rely on the
more complex algorithms such as deep learning, multiple kernel
learning, support vector machines, deep neural networks, and
advanced Bayesian statistical frameworks (PrimateAI, REVEL,
FATHMM-MKL, CADD_Phred, DANN, and BayesDel_addAF,
respectively). They also incorporate additional features, such as
evolutionary conservation, functional annotations, and population
allele frequencies, providing different angles of prediction. By
comparison, the CancerVar tools SIFT, FATHMM, and
PolyPhen2_HDIV are older and employ simpler algorithms and
most likely out-of-date training data. Being foundational models,
their much lower complexity may be affecting their accuracy relative
to newer tools. The newer tools also have the largest and most
diverse training datasets, covering more variant types and contexts.
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This study emphasizes that advanced and diverse prediction tools,
when possible, must be used in combination for comprehensive
variant assessment. It is, however, paramount to complement such
predictions with clinical or functional evidence for the correct
determination of pathogenicity for a somatic variant.

5 Conclusion

In conclusion, our study, one of the few from Saudi Arabia, supports
pathogenicity for some known variants and predicts the pathogenicity of
other rare variants. Functional studies, however, are needed for
validation. We reported on the prevalence of somatic variants from
CRC patients in a Saudi hospital, identifying 14 variants in actionable
genes, including one novel variant (NRAS R102Q) and two rare variants
(KRAS E49K and G138E). KRAS G138E, present in three patients, was
previously reported only twice from large intestine samples andmight be
more common in Saudi orMiddle Eastern populations. The KRAS E49K
co-occurred with KRAS G138E, while the NRAS R102Q co-occurred
with KRAS G12D. Wild-type BRAF proteins showed higher binding
affinity to Encorafenib, suggesting more effective inhibition compared to
the variant protein V600E. Our genotype-protein-phenotype analyses
emphasized the pathogenicity of identified variants, highlighting the
necessity of effective targeted therapies. Whether the identified rare or
novel variants were functionally shown to be activating their respective
proteins, clinical decisions can be made to tailor treatment for patients
harboring these variants. The prevalence of somatic variants in Saudi
Arabia within theBRAF,KRAS, andNRAS genes is roughly 47.7%, which
is consistent with global estimates. As cell cycle modulators, these genes
continue to be attractive therapeutic targets. Overall, this study highlights
the significance of comprehensive molecular screening and
bioinformatics in understanding the mutational landscape of CRC in
the Saudi population, with the goal of improving targeted drug therapy.
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