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Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethalmalignancy
with poor prognosis. Epigenetic dysregulation plays a crucial role in PDAC
progression, but its comprehensive landscapeandclinical implications remainunclear.

Methods: We integrated single-cell RNA sequencing, bulk RNA sequencing, and
clinical data from multiple public databases. Single-cell analysis was performed
using Seurat and hdWGCNA packages to reveal cell heterogeneity and epigenetic
features. Weighted gene co-expression network analysis (WGCNA) identified key
epigenetic modules. A machine learning-based prognostic model was
constructed using multiple algorithms, including Lasso and Random Survival
Forest. We further analyzed mutations, immune microenvironment, and drug
sensitivity associated with the epigenetic risk score.

Results: Single-cell analysis revealed distinct epigenetic patterns across different cell
types in PDAC.WGCNA identified keymodules associatedwith histonemodifications
and DNA methylation. Our machine learning model, based on 17 epigenetic genes,
showed robust prognostic value (AUC >0.7 for 1-, 3-, and 5-year survival) and
outperformed existing models. High-risk patients exhibited distinct mutation
patterns, including higher frequencies of KRAS and TP53 mutations. Low-risk
patients showed higher immune and stromal scores, with increased infiltration of
CD8+ T cells and M2 macrophages. Drug sensitivity analysis revealed differential
responses to various therapeutic agents between high- and low-risk groups, with
low-risk patients showing higher sensitivity to EGFR and MEK inhibitors.

Conclusion: Our study provides a comprehensive landscape of epigenetic
regulation in PDAC at single-cell resolution and establishes a robust
epigenetics-based prognostic model. The integration of epigenetic features
with mutation profiles, immune microenvironment, and drug sensitivity offers
new insights into PDAC heterogeneity and potential therapeutic strategies. These
findings pave the way for personalized medicine in PDAC management and
highlight the importance of epigenetic regulation in cancer research.
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1 Introduction

Pancreatic cancer is an extremely dangerous malignant tumor.
Despite significant advances in cancer treatment over the past few
decades, the prognosis for pancreatic cancer remains poor. Statistics
show that the 5-year survival rate for pancreatic cancer patients is
only 9% (Rawla et al., 2019). More worryingly, the incidence of
pancreatic cancer has been on the rise in recent years. Pancreatic
ductal adenocarcinoma (PDAC) is the main type of pancreatic
cancer, accounting for over 90% of cases, and is projected to
become the second deadliest cancer by 2030 (Nakaoka et al.,
2023; Mizrahi et al., 2020). The poor treatment outcomes for
PDAC are primarily due to its unique biological characteristics.
First, its high metabolic plasticity and adaptability allow it to survive
and proliferate rapidly in harsh tumor microenvironments (Bi et al.,
2024; Shah et al., 2024). Second, the dense stroma specific to PDAC
not only hinders drug penetration but also enables it to evade
immune system surveillance (Wilson et al., 2014; Timmer et al.,
2021). Third, PDAC exhibits high tumor heterogeneity (Bailey et al.,
2016; Wang X. et al., 2023). These characteristics collectively lead to
its resistance to traditional treatment methods.

In recent years, two major epigenetic mechanisms - DNA
methylation and histone modification - have been recognized as
playing crucial roles in the occurrence, progression, and treatment
resistance of PDAC. Lomberk et al. elucidated that data from many
laboratories have demonstrated that oncogenicmutations in PDAC (such
as Kras) lead to downstream signaling events that regulate histone and
DNA modifications, partly through direct regulation of histones and
histone and DNA modifying enzymes, thereby stimulating cell growth
(Lomberk et al., 2019). Cedar et al. and Liu et al. also described the
interdependence and crosstalk between DNA methylation and histone
modification patterns (Cedar and Bergman, 2009; Liu et al., 2016). DNA
methylation primarily occurs on CpG islands and is usually associated
with gene silencing (Nishiyama and Nakanishi, 2021). In PDAC, several

key tumor suppressor genes, such as CDKN2A (Goodwin et al., 2023),
RASSF1A (Amato et al., 2016), and BRCA1 (Lai et al., 2021), have been
found to be inactivated due to hypermethylation in their promoter
regions, leading to dysregulation of important pathways such as cell
cycle regulation, DNA repair, and apoptosis, promoting tumor formation
and progression. On the other hand, histone modifications regulate gene
expression by altering chromatin structure and transcription factor
accessibility. In PDAC, abnormalities in histone acetylation and
methylation have been widely reported. For example, overexpression
of histone deacetylases (HDACs) leads to silencing of multiple tumor
suppressor genes (Schneider et al., 2010), while upregulation of the
histone methyltransferase EZH2 is associated with increased
invasiveness and metastatic potential of PDAC (Versemann et al., 2022).

To date, although there have been numerous studies on the
molecular mechanisms of DNA methylation and histone
modification in PDAC, no research has constructed a
comprehensive epigenetic regulatory landscape and prognostic
model. Clinically, there is still no application of epigenetic regulation
in disease stratification and treatment. This study aims to construct an
epigenetic regulatory landscape of PDAC through integrated analysis of
DNAmethylation and histonemodification data. By applying advanced
machine learning algorithms, single-cell analysis, and other techniques,
we will identify key epigenetic regulatory modules and explore their
associations with gene expression, signaling pathway activation, and
clinical phenotypes. Combining patient clinical follow-up data, we will
identify PDAC heterogeneity from an epigenomic perspective and
develop a prognostic prediction model based on epigenetic features.
This model will not only help identify high-risk patients but may also
provide guidance for individualized treatment decisions.

2 Materials and methods

The flow chart are shown in Figure 1.

FIGURE 1
Flow chart.
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2.1 Data source

This study integrates multiple public database resources.
Specifically, the single-cell sequencing data included was obtained
from the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/), accession number GSE212966, which
contains single-cell sequencing data from 6 PDAC adjacent
normal tissue samples and 6 PDAC samples. Additionally, bulk
sequencing expression profiles and survival information were
sourced from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/), including gene expression data
and corresponding survival information for 179 PDAC samples
(Tomczak et al., 2015). The external validation set was obtained
from the International Cancer Genome Consortium (ICGC)
database (https://dcc.icgc.org/), comprising 234 Canadian samples
and 91 Australian samples (Zhang et al., 2019).

Furthermore, in the selection of specific gene sets, we focused on
genes related to epigenetics. Histone modification-related genes
were primarily sourced from two origins: first, the cancer-related
histone modification study reported by Füllgrabe et al. (2011), and
second, genes with a histone modification relevance score greater
than 20 in the GeneCards database (https://www.genecards.org/).
For methylation-related genes, we referenced the research findings
of Lee et al. (2020) and supplemented them with genes having a
DNA methylation modification relevance score greater than 20 in
the GeneCards database.

2.2 Single cell analysis and hdWGCNA

The single-cell RNA-seq data in this study was processed using
the Seurat package and hdWGCNA package (Stuart et al., 2019;
Morabito et al., 2023). First, we read the data in 10X Genomics
format from the GSE212966 dataset. Quality control was performed
to filter out cells with <100 or >5,000 detected genes, >15%
mitochondrial gene content, and <1000 UMI counts. After data
filtering and normalization, we performed dimensionality reduction
using PCA and UMAP, and integrated different samples using the
Harmony algorithm (Cristian et al., 2024). For cell type annotation,
we identified specific marker genes for each cell type: cancer cells
(EPCAM, KRT19, CEACAM6), fibroblasts (COL1A1, DCN, FAP),
endothelial cells (PECAM1, VWF, CDH5), macrophages (CD68,
CD163, CSF1R), T cells (CD3D, CD8A, CD4), and B cells (CD79A,
CD19, MS4A1). Subsequently, we applied clustering analysis and
calculated gene expression differences of the corresponding clusters
for cell type annotation. To construct epigenetic scores, we used the
ssGSEA method (Chen et al., 2022) to calculate enrichment scores
for histone gene sets and methylation gene sets for each cell, and
divided cells into high-score and low-score groups based on the
median score. On one hand, we performed differential expression
analysis using Seurat’s FindAllMarkers function with a logfc
threshold of 0 and a minimum percentage of 0.35. On the other
hand, we applied the hdWGCNA package to construct weighted
gene co-expression networks, determine the optimal soft threshold
parameters, identify co-expression modules and hub genes. By
calculating module characteristic genes and module connectivity,
we analyzed the relationships between modules and cell types and
phenotypes, thereby comprehensively revealing the expression

patterns of histone modifications and DNA methylation in
different cell types and their potential biological functions.

2.3 Weighted gene co-expression network
analysis (WGCNA)

The Weighted Gene Co-expression Network Analysis
(WGCNA) method was used to further explore the association
between epigenetics and PDAC (Langfelder and Horvath, 2008).
We calculated histonemodification andDNAmethylation scores for
samples using the ssGSEA algorithm with the Gaussian kernel.
Subsequently, we extracted gene expression data for PDAC
samples from the TCGA database and selected genes related to
histone modification and DNA methylation for WGCNA analysis.
By determining the optimal soft threshold parameters (power = 5 for
both histone modification and DNA methylation analyses), we
constructed gene co-expression networks using the unsigned
TOM type with a minimum module size of 50 genes. We
identified biologically significant gene modules by setting the
merge cut height to 0.15. Notably, we found that histone
modification-related genes were mainly enriched in the grey
module, while DNA methylation-related genes were primarily
enriched in the brown module. We further analyzed the
relationships between these modules and sample characteristics
(such as histone modification scores and DNA methylation
scores) using Pearson correlation. Through correlation analysis of
Module Membership and Gene Significance, we identified key genes
in each module. The correlation between module membership and
gene significance for the grey module (histone modification) and
brown module (DNA methylation) was visualized using scatter
plots. By performing intersection analysis on these genes, we
were able to obtain genes that showed high correlation (absolute
correlation coefficient >0.4 and p-value <0.05) across multiple
states, thereby providing a research foundation for subsequent
model construction.

2.4 Machine learning based prognosis
signature construction

To further evaluate the potential of epigenetic-related genes in
PDAC prognosis prediction, this study employed a comprehensive
and advanced set of machine learning methods. We integrated
multiple algorithms, including Random Survival Forest (RSF)
(Ishwaran et al., 2008), Elastic Net (Enet) (Zou and Hastie, 2005;
Cho et al., 2009), Stepwise Cox Regression (StepCox) (Liu et al.,
2023), CoxBoost (Binder and Binder, 2015), Partial Least Squares
Cox Regression (plsRcox) (Bertrand et al., 2022; Bertrand et al.,
2014), SuperPC (Bair et al., 2006), Gradient Boosting Machine
(GBM) (Ayyadevara and Ayyadevara, 2018), Survival Support
Vector Machine (survival-SVM) (Van Belle et al., 2011), Ridge
Regression (Arashi et al., 2021), and Lasso Regression (Ranstam
and Cook, 2018), to construct a series of prognostic prediction
models. To ensure the reliability and generalization ability of the
models, we used the TCGA dataset as the training set and selected
two independent ICGC datasets as external validation sets. In the
data preprocessing stage, we standardized all features to eliminate
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the influence of scale differences. Subsequently, we not only evaluated
the performance of each algorithm individually but also explored up
to 63 algorithm combinations, such as RSF + CoxBoost, Lasso +GBM,
etc., aiming to obtain more stable and accurate prediction results. We
used the C-index as the primary evaluationmetric to comprehensively
assess the discriminative ability of each model on both the training
and validation sets, and presented the results in heatmap form for
quick identification of the best models. For RSF, we used 1,000 trees
and optimized the node size. Enet models were built with α values
ranging from 0.1 to 0.9. CoxBoost models were optimized using cross-
validation to determine the optimal number of boosting steps. For
GBM, we used 10,000 trees with a maximumdepth of 3 and a learning
rate of 0.001. Lasso and Ridge regression models were fitted using 10-
fold cross-validation to select the optimal λ value. Finally, we
conducted in-depth analysis of the best-performing models,
including feature importance ranking and result visualization,
aiming to reveal the crucial role of epigenetic-related genes in
PDAC prognosis and provide reliable data support for clinical
individualized treatment decisions.

2.5 Relevant genes and risk score signature
evaluation

For epigenetic-related genes, we conducted a series of network-
based analyses. We performed univariate Cox regression analysis
using the expression data of these genes, selecting genes significantly
associated with patient survival (p < 0.05). We calculated their
hazard ratios (HR) and p-values. Next, we computed the Spearman
correlation coefficients (Pripp, 2018) between these genes and
conducted correlation significance tests. Finally, we retained only
gene pairs with absolute correlation coefficients greater than 0.4 and
p-values less than 0.05 to ensure that the connections in the network
have biological significance. Based on these data, we constructed a
gene interaction network, where red represents positive correlations,
blue represents negative correlations, and the thickness of the lines
reflects the strength of the correlation. The igraph package was used
for visualization (Csardi and Tamas, 2005).

Furthermore, to evaluate the predictive value of our developed
epigenetic-related gene prognostic model in PDAC, we conducted
comprehensive Cox regression analyses based on sample clinical
characteristics. First, we performed univariate Cox regression analysis
on clinical variables, including age, gender, T stage, N stage, M stage,
clinical stage, and our risk score. After calculating the hazard ratio (HR),
95% confidence interval (CI), and p-value for each variable, we selected
variables with statistical significance in the univariate analysis for
multivariate Cox regression analysis. We used the forestplot package
to create forest plots to display the HR and 95% CI for each variable.

2.6 Enrichment analysis

This study continued to employ various bioinformatics methods
to explore the relationship between gene expression patterns and
prognostic risk. We used the Gene Set Variation Analysis (GSVA)
method (Hänzelmann et al., 2013), utilizing the GSVA package to
perform ssGSEA on the PDAC dataset, quantifying the activity of
specific pathways in each sample. We chose the Hallmark gene set

(Liberzon et al., 2015) as a reference, ensuring biological relevance of
the analysis. Subsequently, we compared the pathway activity
differences between high-risk and low-risk groups, using the
limma package for differential analysis (Ritchie et al., 2015). To
visually present the results, we generated a bar plot showing
significantly different pathways and their t-values. Additionally,
we calculated the correlation between GSVA scores and risk
scores, visualizing these relationships through a heatmap. For
pathways with significant statistical differences, we used Cox
proportional hazards regression analysis to quantify the
association strength between pathway activity and survival risk.

2.7 Mutation analysis

To further explore the association between the gene risk model
and tumor mutation characteristics, we conducted a comprehensive
mutation analysis on the PDACdataset. First, we calculated the tumor
heterogeneity (MATH) score for each sample using the maftools
package (Mayakonda et al., 2018), and compared the differences
between high and low-risk groups. Subsequently, we divided the
samples into high and low-risk groups, generating mutation
landscape plots (oncoplots) for each group, showing the 20 most
common mutated genes and their frequencies. To understand the
mutation patterns more deeply, we also performed somatic mutation
interaction analysis, revealing the co-occurrence and mutual
exclusivity of gene mutations in high and low-risk groups. This is
significant for revealing and understanding the potential link between
risk scores and tumor mutation burden and heterogeneity.

2.8 Immune analysis

The epigenetic-related gene risk model is closely related to the
tumor immunemicroenvironment.We used the IOBR package (Zeng
et al., 2021) to assess ESTIMATE, CIBERSORT, and immune cell
subpopulation infiltration in PDAC samples. First, we used the
ESTIMATE algorithm to calculate stromal scores, immune scores,
and ESTIMATE scores for each sample, and compared the differences
between high and low-risk groups. Subsequently, we used the ssGSEA
method to perform enrichment analysis on immune-related
pathways, and visualized the significantly different pathway
activities between high and low-risk groups through heatmaps. To
understand the composition of tumor immune cells in more detail, we
used the CIBERSORT algorithm to perform deconvolution analysis
on 22 immune cell subpopulations (Chen et al., 2018). Through violin
plots, we visually demonstrated the differences in immune cell
composition between high and low-risk groups. Additionally, we
calculated the Spearman correlation between these immune cell
subpopulations and risk scores, and used bubble plots to show the
correlation strength and statistical significance.

2.9 Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) database
(https://www.cancerrxgene.org/) is commonly used to predict
tumor sensitivity to drugs (Yang et al., 2013). In this study, we
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utilized the GDSC database and the pRRophetic package (Geeleher
et al., 2014) to explore the potential application of our epigenetic-
related gene risk model in drug sensitivity prediction. We first
obtained drug sensitivity data and gene expression data from the
GDSC database, then used the pRRopheticPredict function to
predict drug sensitivity for each sample in the TCGA-PDAC
dataset. Based on some clinical drugs in the GDSC database, we
predicted and compared drug sensitivity differences between high
and low-risk groups. For each drug, we used theWilcoxon rank-sum
test to compare the differences in predicted IC50 values between
high and low-risk groups, and created box plots for visualization
(Sebaugh, 2011). These results not only revealed potential
connections between our risk model and drug responses but also
provided new insights for personalized treatment of PDAC.

2.10 Pathological validation

To validate the biological significance of ourmodel and examine the
gene expression trends, we conducted further pathological verification
on the top five genes with the highest weights in our model. On one
hand, we utilized the Human Protein Atlas (HPA) database (https://
www.proteinatlas.org/) to compare the protein expression levels of these
genes in pancreatic cancer tissues and adjacent relatively normal
pancreatic tissues (Uhlén et al., 2015). For genes lacking data in the
HPA database, we performed immunohistochemical staining
verification in our laboratory. All patients provided written informed
consent, and this research protocol was approved by the Medical Ethics
Committee of the Affiliated Hospital of Qingdao University (approval
number: QYFYWZLL28682).

Besides, gene expression was further validated by qRT-PCR.
PANC-1 (pancreatic cancer) and hTERT-HPNE (normal pancreatic
ductal) cell lines were cultured in DMEM supplemented with 10%
FBS and 1% penicillin/streptomycin under standard conditions
(37°C, 5% CO2). Total RNA was extracted using RNAios Plus
reagent following the manufacturer’s protocol. RNA was reverse
transcribed using ABScript III RT Master Mix, and qRT-PCR was
performed using Universal SYBR Green Fast qPCR Mix. The
sequences of primers used for qRT-PCR are listed in Table 1.
Relative gene expression was calculated using the 2−ΔΔCT method.

3 Results

3.1 Single-cell RNA sequencing reveals
cellular heterogeneity and epigenetic
characteristics in the PDAC
microenvironment

We performed single-cell RNA sequencing analysis on 6 PDAC
adjacent normal tissue samples (ADJ) and 6 PDAC samples from the
GSE212966 dataset. Fourteen major cell types were identified and
annotated (Figure 2A). These cell types include cancer cells,
fibroblasts, endothelial cells, smooth muscle cells, and various
immune cell subpopulations such as macrophages, T cells, and B cells.

Comparison of cell composition between ADJ and PDAC
samples (Figure 2B) revealed significant microenvironment
remodeling in PDAC tissues. The proportions of cancer cells,
fibroblasts, mast cells, and Treg cells were markedly increased in
PDAC samples, while the proportions of endothelial cells and B cells
substantially decreased (Figure 2C). To further validate the accuracy
of cell type annotation, we plotted a heatmap showing the expression
of marker genes for each cell cluster (Figure 2D).

3.2 Single-cell level histone modification
characteristics in PDAC

To investigate the role of epigenetic regulation in PDAC in
depth, we conducted a detailed analysis of the expression patterns of
histone modification-related genes. Using the ssGSEA method, we
calculated a histone modification score (Histone score) for each
single cell. Figure 3A shows the distribution of histone modification
scores on the UMAP plot. Further comparison revealed that cells in
PDAC samples generally had higher histone modification scores,
showing significant differences compared to ADJ samples (p =
0.0032, Figure 3B). This suggests that PDAC cells may enhance
histone modifications to regulate gene expression, thereby
promoting tumor progression. Cell type-specific analysis showed
no significant differences in histone modification levels among
different cell populations in PDAC (Figure 3C).

To further reveal the co-expression patterns of histone
modification-related genes, we applied the hdWGCNA method to
construct a weighted gene co-expression network. By analyzing soft
threshold parameters (Figure 3D), we determined the optimal
network construction parameters. The final hierarchical clustering
dendrogram (Figure 3E) shows the gene module structure under high
histone modification states, with different colors representing
different co-expression modules. These modules may reflect
functionally coordinated gene sets during PDAC progression.

3.3 Single-cell level DNA methylation
characteristics in PDAC

Similar to the previous section, we further analyzed the
expression patterns of DNA methylation-related genes in PDAC.
By calculating a DNA methylation score (Methylation score) for
each single cell and displaying it on a UMAP plot (Figure 4A), we
found that cells in PDAC samples generally have higher DNA

TABLE 1 Primer sequences for qRT-PCR.

Gene Direction Primer sequence (5′-3′)

KRTCAP2 Forward CTCTTCGTGTTCTCGCTCACT

Reverse CAGGTGGTGACACAGACTCG

NENF Forward AGATCAGCCCATCTACTTGGC

Reverse CTTCCCCGTCAAGGCATTG

PSAP Forward CCCGGTCCTTGGACTGAAAG

Reverse TATGTCGCAGGGAAGGGATTT

MRPL41 Forward GTTCGTCGTCCCGGATCTG

Reverse GTAGCTCACGTAGGGCTTGA

S100A16 Forward ATGTCAGACTGCTACACGGAG

Reverse GTTCTTGACCAGGCTGTACTTAG
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methylation scores, showing highly significant differences
compared to ADJ samples (p = 2.4e-11, Figure 4B). This
finding suggests that PDAC cells may enhance DNA
methylation to regulate gene expression. Cell type-specific
analysis revealed no significant differences in DNA methylation
levels among different cell populations in PDAC (Figure 4C).
Subsequently, we applied the hdWGCNA method to construct a
weighted gene co-expression network. By analyzing soft threshold
parameters (Figure 4D), we determined the optimal network
construction parameters. The final hierarchical clustering
dendrogram (Figure 4E) shows the gene module structure
under high DNA methylation states.

3.4 WGCNA reveals key gene modules of
epigenetic regulation in PDAC

To further explore the role of epigenetic regulation in PDAC, we
performed WGCNA on the TCGA-PDAC dataset. We analyzed
histone modification and DNA methylation-related genes
separately.

The WGCNA results for histone modification-related genes are
shown in Figures 5A–D. Sample clustering and trait heatmap
(Figure 5A) display sample similarity and the distribution of
histone modification scores. The gene dendrogram and module
assignment (Figure 5B) reveal three main co-expression modules.

Module-trait relationship analysis (Figure 5C) indicates that the grey
module shows the strongest positive correlation with histone
modification scores (correlation coefficient = 0.45, p = 1e-09).
Further module membership vs. gene significance scatter plot
(Figure 5D) shows that genes in the grey module have high
module membership and gene significance.

Similarly, WGCNA results for DNA methylation-related genes
are shown in Figures 5E–H. Module-trait relationship analysis
(Figure 5G) shows that the brown module has the strongest
positive correlation with DNA methylation scores (correlation
coefficient = 0.55, p = 2e-15). The module membership vs. gene
significance scatter plot (Figure 5H) further confirms the
importance of genes in the brown module.

3.5 Integrated analysis reveals key genes and
pathways of epigenetic regulation in PDAC

We found that 108 genes were simultaneously identified in
differential expression analysis, hdWGCNA, and WGCNA for
histone modifications (Figure 6A). In DNA methylation-related
analysis, 285 genes were commonly identified (Figure 6B).
Functional enrichment analysis revealed the biological processes
and molecular functions involved in these epigenetic key genes
(Figure 6C). Among them, protein folding and mitochondrial
function processes were significantly enriched. KEGG pathway

FIGURE 2
Single-cell RNA sequencing reveals cellular heterogeneity in PDAC and its adjacent tissues. (A) UMAP plot of single-cell transcriptomes from PDAC
and adjacent tissue samples, showing 14 major cell types. (B) UMAP plot of cell type distribution in PDAC and ADJ samples. (C) Stacked bar plot showing
the proportion of each cell type in PDAC and ADJ samples, demonstrating tumormicroenvironment remodeling. (D)Heatmap ofmarker gene expression
for each cell cluster, validating the accuracy of cell type annotation.
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analysis further identified several signaling pathways closely related
to PDAC, including Chemical carcinogenesis - reactive oxygen
species, Oxidative phosphorylation, etc. (Figure 6D). Differential
expression analysis results between normal samples and PDAC are
shown in a volcano plot (Figure 6E), where red and blue dots
represent upregulated and downregulated genes, respectively. The
circular plot (Figure 6F) visually displays the top 50 PDAC DEGs
with the most significant expression changes. Furthermore, we
compared the overlap between epigenetic-related genes and
PDAC DEGs (Figure 6G). The results show that 126 genes are
both related to epigenetic regulation and differentially expressed in
PDAC. Finally, we constructed a protein-protein interaction
network of these key genes (Figure 6H), showing a high positive
correlation between NDUFA13 in protective genes and PABPC4 in
risk genes.

3.6 Machine learning models for predicting
PDAC patient prognosis

To assess the potential of epigenetic-related genes in predicting
PDAC prognosis, we applied various machine learning algorithms
to build prognostic models. Figure 7A shows a performance
comparison of different algorithm combinations, with the Lasso
+ RSF combination performing best across multiple evaluation
metrics. Figures 7B, C illustrate the feature selection process of
Lasso regression. Through L1 regularization (Figure 7B), we
gradually increased the penalty coefficient λ to select the optimal
feature subset. Figure 7C’s partial least squares path graph shows the

change trend of different feature coefficients as λ increases, helping
us identify the most stable and important prognostic-related genes.
The final weight calculation formula is as follows: Riskscore =
(0.005)*HSPB1 + (0.0111)*BST2 + (0.0176)*BLVRB + (−0.0262)
*TMEM176A + (0.0054)*IFI27 + (−0.0408)*PPP2R1A + (0.1781)
*S100A16 + (−0.2303)*NENF + (0.0952)*LY6E + (−0.0303)
*TBCB + (0.1254)*COA4 + (0.0909)*CEBPB + (−0.1997)
*MRPL41 + (−0.2693)*KRTCAP2 + (0.1462)*SNRPG + (0.0278)
*NUPR1 + (−0.2068)*PSAP.

Based on the selected features, we calculated a risk score for
each patient and divided patients into high-risk and low-risk
groups. Figure 7D clearly shows the separation of the two
patient groups in the risk score distribution plot. Figure 7E’s
Kaplan-Meier survival curve further confirms the significant
difference in survival time between high-risk and low-risk
groups (p < 0.001). Figure 7F’s heatmap shows the expression
patterns of key genes in the model for high-risk and low-risk
groups. We observed clear differential expression of these genes
between the two groups, further supporting the rationality of
our risk score model. Finally, Figure 7G’s time-dependent ROC
curve analysis evaluated the predictive accuracy of our model.
The results show that the model demonstrates good
discriminative ability in predicting 1-year, 3-year, and 5-year
prognosis, with AUC values of 0.746, 0.81, and 0.822,
respectively.

These results suggest that machine learning models based on
epigenetic-related genes can effectively predict the prognosis of
PDAC patients, providing a potential tool for individualized
treatment decisions.

FIGURE 3
Single-cell level histone modification characteristics and co-expression network analysis in PDAC. (A) Single-cell UMAP plot showing the
distribution of histone modification scores (Histone score). Color depth represents score levels. (B) Box plot comparing histone modification scores
between PDAC and ADJ samples. (C) Violin plot showing the distribution of histone modification scores across different cell types in PDAC. (D) Soft
threshold parameter selection plot for hdWGCNA network construction. Includes curves of scale-free topology fit index R2 and mean connectivity
versus soft threshold. (E) Hierarchical clustering dendrogram of gene co-expression modules under high histone modification states. Different colors
represent different co-expression modules.
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FIGURE 4
Single-cell level DNAmethylation characteristics and co-expression network analysis in PDAC. (A) Single-cell UMAP plot showing the distribution of
DNA methylation scores (Methylation score). (B) Box plot comparing DNA methylation scores between PDAC and ADJ samples. (C) Violin plot showing
the distribution of DNA methylation scores across different cell types in PDAC. (D) Soft threshold parameter selection plot for hdWGCNA network
construction. Includes curves of scale-free topology fit index R2 andmean connectivity versus soft threshold. (E)Hierarchical clustering dendrogram
of gene co-expression modules under high DNA methylation states.

FIGURE 5
WGCNA analysis of TCGA-PDAC dataset reveals key genemodules related to epigenetic regulation. (A–D)WGCNA analysis of histonemodification-
related genes. (A) Sample clustering dendrogram and histone modification score heatmap. (B) Gene dendrogram and module assignment. (C)Module-
trait relationship heatmap. (D) Module membership vs. gene significance scatter plot for the grey module. (E–H) WGCNA analysis of DNA methylation-
related genes. (E) Sample clustering dendrogram and DNAmethylation score heatmap. (F)Gene dendrogram andmodule assignment. (G)Module-
trait relationship heatmap. (H) Module membership vs. gene significance scatter plot for the brown module.
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3.7 The role of gene expression features and
clinical factors in PDAC prognosis

To further validate our prognostic model and explore the role of
gene expression features and clinical factors in PDAC prognosis, we
conducted a series of analyses. Based on our risk score model, we
plotted Kaplan-Meier survival curves, which showed that high-risk

group patients had significantly lower survival rates than the low-
risk group (p = 0.0061, Figure 8A). We performed univariate Cox
regression analysis, revealing multiple factors associated with
prognosis, including age, T stage, N stage, and our risk score
(Figure 8B). Multivariate Cox regression analysis further
confirmed that our risk score is an independent prognostic
indicator beyond other clinical factors (p = 0.005, Figure 8C).

FIGURE 6
Integrated analysis of key genes in epigenetic regulation in PDAC. (A) Venn diagram of histone modification-related genes in different analysis
methods. (B) Venn diagram of DNA methylation-related genes in different analysis methods. (C) GO functional enrichment analysis results of epigenetic
key genes. (D) KEGG pathway enrichment analysis results of epigenetic key genes. (E) Volcano plot of differentially expressed genes between normal
samples and PDAC. (F) Circular plot of top 50 PDAC DEGs. (G) Venn diagram showing overlap between epigenetic-related genes and PDAC
differentially expressed genes. (H) Protein-protein interaction network of key genes.

FIGURE 7
PDAC prognostic prediction model based on epigenetic-related genes. (A) Performance comparison heatmap of different machine learning
algorithm combinations. (B) L1 regularization path diagram of Lasso regression, showing the feature selection process. (C) Trend graph of Lasso
regression coefficients changing with penalty coefficient λ. (D) Patient risk score distribution plot based on selected features. (E) Kaplan-Meier survival
curves for high-risk and low-risk groups. (F) Expression heatmap of key prognostic-related genes in themodel for high-risk and low-risk groups. (G)
Time-dependent ROC curve analysis of the prognostic model.
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To gain deeper insights intomolecular differences between high-
risk and low-risk groups, we conducted GSVA analysis. The results
showed significant differences in multiple pathways between high-
risk and low-risk groups, with pathways such as MYC V2 targets,
E2F targets, G2M checkpoint, and DNA repair enriched in the high-
risk group (Figure 8D). We further constructed a correlation
heatmap of these significant pathways, revealing potential
functional connections between them (Figure 8E). Finally, we
plotted a forest plot of Hazard Ratios for major pathways based
on GSVA analysis, further highlighting the importance of these
pathways in PDAC prognosis (Figure 8F).

3.8 Mutation characteristic analysis of
epigenetic regulation genes in PDAC

To investigate the mutation characteristics of epigenetic
regulation genes in PDAC, we conducted a detailed analysis of
genomic data from high-risk and low-risk patients. First, we
compared the mutation burden between high-risk and low-risk
patients. The results showed no significant difference in mutation
burden between high-risk and low-risk groups (p = 0.8, Figure 9A).

We further analyzed frequently mutated genes in high-risk and
low-risk groups. The results showed that in 82 high-risk samples, 81
(98.78%) had at least one mutation in the analyzed genes
(Figure 9B). Among them, KRAS, TP53, and SMAD4 were the

three genes with the highest mutation frequencies, occurring in 87%,
70%, and 28% of samples, respectively. In 83 low-risk samples, 65
(78.31%) had at least one mutation in the analyzed genes
(Figure 9C). The genes with the highest mutation frequencies
were highly consistent with previous analysis results, further
confirming the importance of these genes in PDAC development.

We observed some significant gene mutation co-occurrence and
mutual exclusivity patterns in both high-risk (Figure 9D) and low-
risk groups (Figure 9E). In the high-risk group, KRAS and
TP53 frequently co-occurred, while GNAS rarely appeared
simultaneously with KRAS and TP53 in the same patient. In
low-risk patients, the co-occurrence of KRAS and TP53 remained
strong, while more genes showed co-occurrence patterns, and there
were no obvious mutual exclusivity patterns.

3.9 Association analysis of epigenetic
regulation and immune microenvironment
in PDAC

To explore the relationship between epigenetic regulation and
the immune microenvironment in PDAC, we conducted a series of
immune-related analyses on high-risk and low-risk patients. First,
we compared the Stromal Score, Immune Score, and ESTIMATE
Score between the two groups. Results showed that low-risk patients
had significantly higher Stromal Score (Figure 10A, p = 3.3e-15),

FIGURE 8
Comprehensive analysis of gene expression features and clinical factors in PDAC prognosis. (A) Kaplan-Meier survival curve based on risk scores. (B)
Forest plot of univariate Cox regression analysis. (C) Forest plot of multivariate Cox regression analysis. (D) Bar plot of GSVA score differences between
high-risk and low-risk groups. (E) Correlation heatmap of significantly different pathways. (F) HR forest plot of major pathways based on GSVA analysis.
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Immune Score (Figure 10B, p = 3.3e-10), and ESTIMATE Score
(Figure 10C, p = 7.8e-14) than high-risk patients, suggesting that
low-risk patients may have richer tumor stromal components and
immune cell infiltration.

Correlation analysis (Figure 10D) revealed significant associations
between various immune cells and risk scores. Among them,
M0 macrophages, memory B cells, follicular helper T cells, and Treg
cells showed positive correlations with high risk scores, while CD4+

active memory T cells, monocytes, and CD8+ T cells showed positive
correlations with low risk scores. The heatmap (Figure 10E) displayed
differences in the activity of multiple immune-related pathways
between high-risk and low-risk groups. The low-risk group generally
showed higher immune pathway activity, consistent with previous
immune score results. Finally, we compared the proportions of
various immune cell subsets between the two groups (Figure 10F).
Results showed significant differences in multiple immune cell subsets
between high-risk and low-risk groups. For example, the proportions of
CD8+ T cells, monocytes, and M2 macrophages were significantly
higher in the low-risk group, while the proportion of
M0 macrophages was significantly increased in the high-risk group.

3.10 Drug sensitivity analysis of high-risk and
low-risk PDAC patients

To investigate the potential impact of epigenetic regulation
patterns on drug responses in PDAC patients, we conducted a
series of drug sensitivity analyses on high-risk and low-risk

patients. We selected multiple drugs commonly used in PDAC
treatment or clinical trials for evaluation.

Erlotinib and Trametinib are EGFR and MEK inhibitors,
respectively. Results showed that low-risk patients had
significantly higher sensitivity to these drugs compared to high-
risk patients (p = 0.0259, Figure 11A; p = 1.9e-06, Figure 11D). 5-
Fluorouracil is a commonly used chemotherapy drug, and we
similarly found that low-risk patients had significantly higher
sensitivity to this drug (p = 0.000392, Figure 11B). This suggests
that low-risk patients may be more suitable for EGFR and MEK
targeted therapies, as well as 5-FU-based chemotherapy regimens.

Pazopanib and Sunitinib are both multi-target tyrosine kinase
inhibitors. Analysis results showed that high-risk patients had
significantly higher sensitivity to these drugs compared to low-risk
patients (p = 1.32e-09, Figure 11C; p = 0.00385, Figure 11E). Imatinib,
Ruxolitinib, Tamoxifen, BEZ235, and AZD8055 also showed similar
differential patterns (Figures 11F–J). This indicates that these drugs
may be more suitable for high-risk PDAC patients.

Overall, these drug sensitivity analysis results emphasize the
close association between epigenetic regulation patterns and drug
responses in PDAC patients, providing new perspectives and
potential strategies for precision treatment of PDAC.

3.11 Pathological validation

We performed immunohistochemistry validation for the top five
weighted genes: KRTCAP2, NENF, PSAP, MRPL41, and S100A16.

FIGURE 9
Mutation characteristic analysis of epigenetic regulation genes in PDAC. (A) Violin plot comparing mutation burden between high-risk and low-risk
patients. (B) Mutation frequency and types of major genes in 82 high-risk samples. (C) Mutation frequency and types of major genes in 83 low-risk
samples. (D) Co-occurrence and mutual exclusivity relationship heatmap of major mutated genes in the high-risk group. (E) Co-occurrence and mutual
exclusivity relationship heatmap of major mutated genes in the low-risk group.
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For KRTCAP2, we used patient samples from the hospital. For the
remaining 4 genes, we cited results from the HPA database. In
Figure 12, compared to adjacent tissue, KRTCAP2 are significantly
downregulated in PDAC tissues, NENF, PSAP, MRPL41, and
S100A16 are significantly upregulated in PDAC tissues.

To further validate the expression patterns observed in tissue
samples, we examined the mRNA levels of these genes in PDAC
cell line PANC-1 and normal pancreatic ductal cell line hTERT-

HPNE using qRT-PCR (Figure 13). Consistent with the tissue
results, KRTCAP2 showed significantly lower expression in PANC-1
cells compared to hTERT-HPNE cells (Figure 13A, p < 0.01).
Conversely, the expression levels of NENF, PSAP, MRPL41, and
S100A16 were significantly higher in PANC-1 cells than in hTERT-
HPNE cells (Figures 13B–E, all p < 0.01). These findings in cell lines
were in agreement with our observations in clinical specimens, further
confirming the differential expression patterns of these genes in PDAC.

FIGURE 10
Association analysis of epigenetic regulation and immunemicroenvironment in PDAC. (A)Comparison of Stromal Score between high-risk and low-
risk patients. (B) Comparison of Immune Score between high-risk and low-risk patients. (C) Comparison of ESTIMATE Score between high-risk and low-
risk patients. (D) Correlation analysis between different immune cell types and risk scores. (E) Activity heatmap of immune-related pathways in high-risk
and low-risk groups. (F) Comparison of various immune cell subset proportions between high-risk and low-risk patients.

FIGURE 11
Drug sensitivity analysis of high-risk and low-risk PDAC patients. (A) Erlotinib. (B) 5-Fluorouracil. (C) Pazopanib. (D) Trametinib. (E) Sunitinib. (F)
Imatinib. (G) Ruxolitinib. (H) Tamoxifen. (I) BEZ235. (J) AZD8055. Each subplot shows the distribution of IC50 values for the respective drug in high- and
low-risk groups, with p-values indicating the statistical significance of the difference between groups.
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4 Discussion

This study comprehensively investigated the role and clinical
significance of epigenetic regulation in PDAC by integrating single-
cell RNA sequencing, epigenetic analysis, and machine learning
methods (Wang Q. et al., 2023; Li et al., 2024). We first performed
single-cell RNA sequencing analysis on PDAC and adjacent normal
tissues, revealing cellular heterogeneity and compositional changes
in the tumor microenvironment. Subsequently, we analyzed histone
modifications and DNAmethylation characteristics at the single-cell
level, discovering that cells in PDAC samples generally exhibited
higher levels of epigenetic modifications. Through WGCNA, we
identified key gene modules highly correlated with histone
modifications and DNA methylation, and conducted functional
enrichment analysis. Based on key epigenetic-related genes, we
constructed a machine learning model for PDAC prognosis
prediction. Additionally, we analyzed the associations between
epigenetic features and gene mutation patterns, immune
microenvironment, and drug sensitivity.

Overall, the findings of this study not only deepen our
understanding of PDAC molecular mechanisms but also provide

new perspectives for PDAC diagnosis, prognosis assessment, and
treatment. Epigenetic regulation plays a central role in the
occurrence and development of PDAC, influencing multiple
stages from tumor initiation to progression (Montalvo-Javé et al.,
2023). Our research reveals that PDAC cells generally exhibit high
levels of histone modifications and DNAmethylation activity, which
may confer stronger adaptability and survival advantages to tumor
cells. Meanwhile, abnormal epigenetic regulation may also be one of
the important factors driving PDAC tumor heterogeneity (Espinet
et al., 2022). Different subclones may maintain their unique
phenotypic and functional characteristics through specific
epigenetic regulatory patterns, thereby promoting the overall
adaptability of the tumor (Orlacchio et al., 2024). Furthermore,
our analysis revealed significant immune microenvironment
differences between risk groups, with the low-risk group showing
higher immune and stromal scores, particularly increased
infiltration of CD8+ T cells and M2 macrophages, suggesting
stronger anti-tumor immune responses. These findings have
crucial clinical implications, providing not only a theoretical basis
for differential immunotherapy responses but also new evidence for
immunotherapy strategy selection. For instance, high-risk patients

FIGURE 12
Immunohistochemical staining of KRTCAP2, NENF, PSAP, MRPL41, and S100A16. Representative immunohistochemical staining images showing
the protein expression of KRTCAP2, NENF, PSAP, MRPL41, and S100A16 in PDAC tissues and adjacent normal pancreatic tissues. Images were obtained
from both our hospital cohort and the HPA database.

FIGURE 13
Differential expression analysis of prognostic genes in pancreatic cell lines (A–E). The relative mRNA expression levels of KRTCAP2, NENF, PSAP,
MRPL41, and S100A16 were quantified by qRT-PCR in pancreatic cancer cell line PANC-1 and normal pancreatic epithelial cell line hTERT-HPNE.
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might benefit from additional immune modulatory treatments,
particularly immune checkpoint inhibitors, given their higher
proportions of immunosuppressive cells. Notably, the
association between immune microenvironment differences and
epigenetic regulation suggests that epigenetic alterations may
influence disease progression by modulating the immune
microenvironment, opening new avenues for therapeutic
strategies that target epigenetic regulation to enhance anti-
tumor immunity (Wang et al., 2024; Zhou et al., 2024; Ding
et al., 2024).

This study has validated previous epigenetic research on PDAC
in multiple aspects while also presenting some innovative findings.
Consistent with previous studies, our research reaffirms the
importance of epigenetic regulation in PDAC development,
aligning with earlier research results. For instance, we observed
generally high levels of histone modifications and DNAmethylation
in PDAC cells, which is consistent with Lomberk et al.’s findings that
KRAS mutations can promote PDAC progression by regulating
histone and DNA modifications (Lomberk et al., 2019). The
innovative aspects of our study are mainly reflected in the
following areas: First, we employed single-cell RNA sequencing
technology, enabling us to study PDAC epigenetic characteristics
at the single-cell level, revealing similarities and differences in
epigenetic regulation across different cell types. This high-
resolution analysis method provides a new perspective for
understanding PDAC cellular heterogeneity. Second, by
integrating various bioinformatics methods, including
hdWGCNA and WGCNA, we systematically identified key
epigenetic regulatory genes and pathways. This comprehensive
analysis approach allows us to understand more fully the role of
epigenetic regulatory networks in PDAC. Lastly, we innovatively
linked epigenetic features with the immune microenvironment and
drug sensitivity, providing new insights for PDAC immunotherapy
and personalized medication.

Compared to existing PDAC prognostic models, our epigenetic
feature-based prognostic model has several significant advantages.
First, most previous PDAC prognostic models are primarily based
on gene mutations or transcriptome data (Chen et al., 2021; Zhang
et al., 2015), while our model focuses on epigenetic features,
providing a new dimension for prognosis assessment. The
importance of epigenetic regulation in tumor progression is
increasingly recognized, so our model may capture some
important information overlooked by traditional models. Second,
our model demonstrates good predictive performance across
multiple independent datasets, with AUC values exceeding
0.7 for 1-year, 3-year, and 5-year prognosis predictions. The
stability and generalizability of our model highlight the potential
of epigenetic features in PDAC prognosis prediction. Additionally,
our model not only provides prognostic predictions but also
combines them with immune microenvironment and drug
sensitivity analyses, giving it greater potential in guiding
individualized treatment decisions (Lomberk et al., 2016). In
contrast, many existing models primarily focus on prognosis
prediction, lacking direct applications for treatment guidance.

Although this study provides many valuable findings, some
limitations remain. First, our analysis is primarily based on
bioinformatics methods, requiring further experimental validation
and mechanistic exploration. Second, while our prognostic model

performs well, it still needs validation in larger independent
cohorts. Most importantly, the drug sensitivity tests include
many drugs not yet clinically applied, necessitating
pharmacological research and clinical verification. Future
research should focus on in-depth study of the causal
relationship between epigenetic regulation and PDAC
progression, integrate multi-omics data to construct a more
comprehensive PDAC molecular typing system, and
investigate the dynamic relationships between epigenetic
regulation and PDAC immune microenvironment and drug
responses. Based on this, large-scale generalization studies
and drug application exploration integrating multi-center data
should be conducted.

In conclusion, this study has made significant contributions to
epigenetic research in PDAC through multi-level, multi-faceted
analysis. We revealed cellular heterogeneity and epigenetic
characteristics of the PDAC microenvironment at the single-cell
level, systematically identified key epigenetic regulatory genes and
pathways, and constructed a high-performance prognostic
prediction model based on epigenetic features. Additionally, we
uncovered close connections between epigenetic regulation and
PDAC mutation characteristics, immune microenvironment, and
drug sensitivity. These findings not only deepen our understanding
of PDAC molecular mechanisms but also provide new insights for
precision medicine, individualized treatment, and immunotherapy
optimization. Our research opens new directions for PDAC
diagnosis, prognosis assessment, and treatment strategies,
potentially advancing clinical practice and ultimately improving
patient prognosis and quality of life. However, translating these
findings into clinical applications requires further validation and
large-scale prospective studies. Overall, this study lays an important
foundation for epigenetic research and precision medicine
development in PDAC, demonstrating the enormous potential of
epigenetics in cancer research.
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