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Introduction: Adverse drug events (ADEs) pose a significant challenge in current
clinical practice. Machine learning (ML) has been increasingly used to predict
specific ADEs using electronic health record (EHR) data. This systematic review
provides a comprehensive overview of the application of ML in predicting specific
ADEs based on EHR data.

Methods: A systematic search of PubMed, Web of Science, Embase, and IEEE
Xplore was conducted to identify relevant articles published from the inception to
20 May 2024. Studies that developed ML models for predicting specific ADEs or
ADEs associated with particular drugs were included using EHR data.

Results: A total of 59 studies met the inclusion criteria, covering 15 drugs and
15 ADEs. In total, 38 machine learning algorithms were reported, with random forest
(RF) being the most frequently used, followed by support vector machine (SVM),
eXtreme gradient boosting (XGBoost), decision tree (DT), and light gradient boosting
machine (LightGBM). The performance of the ML models was generally strong, with
an average area under the curve (AUC) of 76.68% ± 10.73, accuracy of 76.00% ±
11.26, precision of 60.13% ± 24.81, sensitivity of 62.35% ± 20.19, specificity of
75.13% ± 16.60, and an F1 score of 52.60% ± 21.10. The combined sensitivity,
specificity, diagnostic odds ratio (DOR), and AUC from the summary receiver
operating characteristic (SROC) curve using a random effects model were 0.65
(95% CI: 0.65–0.66), 0.89 (95% CI: 0.89–0.90), 12.11 (95% CI: 8.17–17.95), and
0.8069, respectively. The risk factors associatedwith different drugs and ADEs varied.

Discussion: Future research should focus on improving standardization, conducting
multicenter studies that incorporate diverse data types, and evaluating the impact of
artificial intelligence predictive models in real-world clinical settings.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_
record.php?ID=CRD42024565842, identifier CRD42024565842.
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Introduction

Medical treatment can pose potential risks associated with
drug-induced impairments. Adverse drug events (ADEs) are
defined as injuries resulting from medical interventions related
to drugs and may manifest as clinical signs, symptoms, or
laboratory abnormalities (Bates et al., 1995). ADEs include not
only adverse drug reactions but also medication errors,
therapeutic failures, adverse medication withdrawal events,
and overdoses (Nebeker et al., 2004). ADEs have been
recognized as a significant challenge in contemporary clinical
practice. ADEs are estimated to contribute to up to 4.5 million
ambulatory encounters, 1.3 million emergency department visits,
350,000 hospitalizations, and 106,000 deaths annually in the
United States (Sarkar et al., 2011; Food and Drug
Administration FDA, 2024). Although many of these events
occur unintentionally, some are preventable (Hartigan-Go and
Wong, 2000). Therefore, predicting ADEs has become an area of
active research.

Various methods have been used to predict ADEs, such as
drug-drug interactions (Dmitriev et al., 2019), the chemical
structures of drugs (Mantripragada et al., 2021), spontaneous
reporting systems (Bae et al., 2020), and health records
(Lippenszky et al., 2024). The prediction of potential adverse
events through drug-drug interactions and chemical structures is
based on pharmacological mechanisms but does not account for
individual patient physiological conditions or specific diseases.
Although spontaneous reporting systems can predict ADEs using
patient information, this information is often incomplete.
Compared to these approaches, using health records for ADE
prediction is more clinically practical as they encompass
comprehensive data across a patient’s hospitalization period.
Moreover, with the advent of electronic health record (EHR)
systems, these data can be rapidly compiled and analyzed to
achieve more accurate ADE prediction.

Specific ADEs are often associated with particular medications
and risk factors, and under certain conditions, specific medications
tend to induce distinct categories of ADEs. For instance,
antihypertensive medications generally do not cause nausea and
vomiting, while chemotherapy in cancer patients often results in
these side effects (Adel, 2017). Additionally, opioid-induced injuries
are more likely to occur in geriatric patients over the age of 60
(Sacerdote, 2008; Khanna et al., 2020; Horrigan et al., 2023).
Consequently, multiple studies have focused on predicting
specific ADEs and their associations with drugs. Traditional
statistical methods have encountered limitations due to the large
number of risk factors (Ji et al., 2018), leading to the introduction of
novel statistical approaches.

Machine learning (ML) is an interdisciplinary field within the
broader domain of artificial intelligence that integrates statistics and
computer science. ML is adept at managing complex non-linear
relationships between variables and outcomes, offering high
generalization capabilities and precision (Deo, 2015). It has been
widely used to predict specific ADEs based on EHR data. However,
systematic evaluations of these applications remain limited.
Therefore, this systematic review aims to provide a
comprehensive overview of the application of ML in predicting
specific ADEs using EHR data.

Method

This systematic review was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Moher et al., 2009). The review protocol
was registered with PROSPERO (CRD42024565842). As this study
used publicly available data, ethical approval was not required.

Literature search and eligibility criteria

A systematic search was conducted across PubMed, Web of
Science, Embase, and IEEE Xplore (containing a wealth of articles on
biomedical engineering, medical devices, and health informatics) to
identify relevant publications from their inception up to 20 May
2024. Search syntaxes were based on “machine learn” or “artificial
intelligence” with “predict” and “adverse drug event or reaction”.
Synonyms were determined based on MeSH terms and Emtree. The
detailed study protocol on the search strategy and inclusion criteria
were provided in the Supplementary Table S1.

Study selection

Studies were included if they met the following criteria: 1)
predicting specific ADEs or ADEs related to specific drugs, 2)
applying ML algorithms based on EHRs, 3) providing sufficient
explanations for research findings, and 4) publishing in English. The
exclusion criteria were as follows: 1) studies focused on medical
safety events rather than ADEs, 2) studies aimed at identifying and
warning ADEs rather than predicting them, 3) studies that predict
all ADEs in specific populations without sufficient specificity, 4)
studies lacked a full-text version, 5) studies published in languages
other than English, 6) studies that employed conventional
algorithms, and 7) studies not based on EHR data.

Screening process and data extraction

After removing duplicate studies, two independent reviewers
(QZ Hu and YX Chen) evaluated the titles and abstracts to exclude
studies that did not meet the eligibility criteria. The full texts of the
potentially eligible studies were assessed. Any disagreements were
resolved by consensus. The data extracted included the author, year,
database, demographic characteristics, number of patients with
ADEs, used ML algorithms, evaluation and validation
performance metrics [e.g., accuracy, sensitivity, specificity,
precision, F1 score, area under the curve of the receiver
operating characteristic curve (AUC), and area under the
precision-recall Curve (AUCPRC)], and risk factors before and
after screening.

Quality evaluation

Two reviewers independently assessed the quality of the
included studies. Given that these retrospective studies employed
medical artificial intelligence, we utilized two assessment tools to

Frontiers in Pharmacology frontiersin.org02

Hu et al. 10.3389/fphar.2024.1497397

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1497397


thoroughly evaluate both the appropriateness of the retrospective
study design and the rigor of the artificial intelligence methodologies
applied. The Agency for Healthcare Research and Quality (AHRQ)
(AHQR, 2024) tool was used to evaluate the methodological quality
and risk of bias in primary cross-sectional studies, while the
Checklist for the Assessment of Medical AI (ChAMAI) (Cabitza
and Campagner, 2021) was applied to assess the quality of artificial
intelligence studies in the medical field. AHRQ tool consists of
11 items, each rated as “yes” or “no”, with corresponding scores of
1 or 0, respectively (AHQR, 2024). The maximum AHRQ score is
11 points. ChAMAI includes 30 items in six dimensions: problem
understanding, data understanding, data preparation, modeling,
validation, and deployment (Cabitza and Campagner, 2021).
Each question is classified as high-priority (scored 0, 1, or 2) or
low-priority (scored 0, 0.5, or 1), with a maximum possible score of
50 points (Cabitza and Campagner, 2021).

Statistical analysis

The effects and 95% confidence intervals (CIs) were estimated
using random effects models. Pooled sensitivity, specificity,
diagnostic odds ratios (DORs), and their respective 95% CIs were
calculated based on contingency tables. Overall performance was
assessed using the summary receiver operating characteristic
(SROC) curve and the area under the SROC curve (AUC).
Publication bias was evaluated using the Deek funnel plot test.
Pooled sensitivity, specificity, and DORs were calculated using
Meta-DiSc 2.0, while publication bias was analyzed with Stata
16.0 software.

Results

Characteristics of the included studies

The database search yielded 7,480 relevant studies. After
removing duplicates, the titles and abstracts were screened for
relevance. Subsequently, the full texts of 80 studies were
reviewed, with 59 studies (Liu et al., 2018; Dong et al., 2019;
Imai et al., 2019; Imai et al., 2020; Lai et al., 2020; Sun et al.,
2020; Yoo et al., 2020; Heilbroner et al., 2021; Herrin et al., 2021;
Kim W. et al., 2021; Kim J. S. et al., 2021; Lewinson et al., 2021;
Satheeshkumar et al., 2021; Simon et al., 2021; Zhou et al., 2021;
2023; Chang et al., 2022; Huang et al., 2022; Huang et al., 2023; Li
et al., 2022; Mu et al., 2022; Okawa et al., 2022; On et al., 2022;
Venäläinen et al., 2022; Wu et al., 2022; Xu et al., 2022; Asai et al.,
2023; Chambers et al., 2023; Chen et al., 2023; Cheng et al., 2023;
Gong et al., 2023; Goyal et al., 2023; Güven et al., 2023; Heo et al.,
2023; Hu et al., 2023; Jeong et al., 2023; Jiang et al., 2023; Lee et al.,
2023; Liao et al., 2023; Lu et al., 2023; Ma J. et al., 2023; Ma X. et al.,
2023; Mao et al., 2023; Maray et al., 2023; Mora et al., 2023; Ruiz
Sarrias et al., 2023; Yan et al., 2023; Zhang et al., 2023; Chiu et al.,
2024; Choi et al., 2024; Lippenszky et al., 2024; Matsumoto et al.,
2024; Nguyen et al., 2024; Noda et al., 2024; Patel et al., 2024;
Surendran et al., 2024; Xiao et al., 2024; Yagi et al., 2024; Zhao et al.,
2024) included in the qualitative synthesis. Among the 59 studies
included, 33 studies that provided extractable contingency tables

could been included in the quantitative synthesis, as illustrated
in Figure 1.

Most included studies were conducted in China (n = 19),
followed by contributions from the United States, Korea, Taiwan,
and Japan. These studies were published between 2018 and 2024,
with most published in 2023. Ten studies were based on government
or commercial databases from the United States, Korea, and Spain,
while 49 used self-constructed databases based on hospital patient
data. A total of 15 drug categories were identified, with most studies
focusing on chemotherapy (n = 15), followed by tumor-targeting
drugs, antibacterial agents, and contrast agents. ADEs in the
included studies were classified into 15 categories, with the most
predicted being renal dysfunction (n = 13), followed by hepatic
dysfunction, gastrointestinal complications, cardiac events, and
hematologic toxicity. 38 mL algorithms were reported, with
random forest (RF) being the most frequently used, followed by
support vector machine (SVM), eXtreme gradient boosting
(XGBoost), decision tree (DT), and light gradient boosting
machine (LightGBM). Additionally, logistic regression (LR), a
traditional statistical method, was reported 37 times. Detailed
information is provided in Table 1 and Figure 2.

Among the 59 included studies, 6 (Sun et al., 2020;
Satheeshkumar et al., 2021; Chambers et al., 2023; Ma J. et al.,
2023; Choi et al., 2024; Yagi et al., 2024) did not provide any
information on initial features, while 53 reported initial features
associated with ADEs. Of these, 46 studies detailed the types and the
number of initial features, while 7 studies (Dong et al., 2019;
Heilbroner et al., 2021; Li et al., 2022; Güven et al., 2023; Zhou
et al., 2023; Matsumoto et al., 2024; Xiao et al., 2024) reported only
the number of initial features. The initial number of features used to
build the models ranged from 8 to 8,403. The commonly identified
features included demographic data, treatment information,
laboratory results, and disease history. Additionally, genes,
plasma concentration, and pharmacokinetics were considered risk
factors in some studies (Lai et al., 2020; Huang et al., 2022; Ruiz
Sarrias et al., 2023). Of the 59 included studies, 47 reported
conducting feature selection to identify the most important
predictors for their models, while 10 did not perform feature
screening. Two studies (Chambers et al., 2023; Ma J. et al., 2023)
did not provide details on initial or significant features. Further
details are provided in Supplementary Table S2.

Evaluating the quality of studies

The risk of bias assessment using the AHRQ tool indicated that
the overall quality of the studies was generally high, with an average
score of 9.254 points. Among the included studies, 30 scored above
10 points, 28 scored between 7 and 9 points, and one study
(Lewinson et al., 2021) scored 4 points. Items 8 and 11 had the
lowest average scores, 0.424 and 0.322 points, respectively, while the
average scores for the other items were considerably higher. Detailed
information is provided in Supplementary Table S3.

According to the ChAMAI checklist, the overall average score of
the included studies was 32.48, with scores ranging from 22.00 to
40.00 (Supplementary Table S4; Supplementary Figure S1). Of the
included studies, 39 scored higher than 30 points, 19 scored between
25 and 29 points, and one study (Lewinson et al., 2021) scored below
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25. Regarding specific categories, the highest scoring rates were
observed in modeling and problem understanding, at 100% and
99.5%, respectively, while data preparation had the lowest scoring
rate, at 37.25%.

Predictive performance for ML methods

AUC was a critical metric to assess model performance. Fifty-
four studies reported AUC values, with an average AUC of 76.68% ±
10.73, indicating generally favorable performance in all models
evaluated. Artificial neural networks (ANN), gradient boosting
machines (GBM), CatBoost, and XGBoost demonstrated high
AUC values, with average values exceeding 80%. The RF
algorithm, though the most frequently reported, had a slightly
lower average AUC of 77.00% ± 7.83. The impact of feature
selection on model performance was examined in three studies
(Sacerdote, 2008; Goyal et al., 2023; Noda et al., 2024), which showed
that, in most cases, feature selection improved model performance.

In addition to AUC, model performance was evaluated using
several other metrics: accuracy (76.00% ± 11.26), precision
(60.13% ± 24.81), sensitivity (62.35% ± 20.19), specificity
(75.13% ± 16.60), and F1 score (52.60% ± 21.10). Detailed
metrics for the machine learning algorithms are presented in
Figure 3 and Supplementary Table S5.

Meta-regression

Pooled analysis
Contingency tables from 33 prediction studies (Liu et al., 2018;

Dong et al., 2019; Sun et al., 2020; Yoo et al., 2020; Herrin et al., 2021;
Li et al., 2022; Okawa et al., 2022; Wu et al., 2022; Chen et al., 2023;
Cheng et al., 2023; Gong et al., 2023; Goyal et al., 2023; Güven et al.,
2023; Heo et al., 2023; Huang et al., 2023; Hu et al., 2023; Jeong et al.,
2023; Jiang et al., 2023; Lee et al., 2023; Liao et al., 2023; Lu et al.,
2023; Ma X. et al., 2023; Mao et al., 2023; Mora et al., 2023; Ruiz
Sarrias et al., 2023; Zhou et al., 2023; Chiu et al., 2024; Lippenszky

FIGURE 1
PRISMA flow diagram of the citation search and selection strategy. ADE: adverse drug event; PRISMA: Preferred Reporting Items for Systematic
reviews and Meta-Analyses.
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Classification of drugs

Study

Location

No: Of patients

Database

Age

No: Of patient with ADE (%)

Drugs that cause ADE

Type of ADE

No of initial features

ML algorithms

Evaluation and validation

Best performance

R
uiz

Sarrias
et

al.

(2023)

Spain
267

SB
D

63.71
±
10.76

Leukopenia
8/267

Lym
phopenia

13/267

M
ucositis

3
(1.12%

)

N
eutropenia

66
(24.72%

)

T
hrom

bocytopen
ia

5
(1.87%

)

5FU
-B
ased

C
hem

otherapy

H
em

atological
toxicity

39
B
N

①
②

A
U
C
:
N
A

A
ccuracy:

0.8

Sensitivity:
0.71

Satheeshkum
ar

et
al.

(2021)

U
nited

States
21,879

N
IS

non-A
D
E
:53.90

±
17.90

A
D
E
:
50.70

±
17.20

253
(1.2%

)
C
hem

otherapy
U
lcerative

m
ucositis

N
Lasso,

G
B
M

①
②

G
B
M
-A

U
C
:0.79

V
enäläinen

et
al.

(2022)

Finland
5,879

SB
D

A
ge

0–40:n
=
280

A
ge

40–65:
n
=
2,864

A
ge

65-:
n
=
2,727

262
(4.46%

)
C
hem

otherapy
N
eutropenic

infection
55

Lasso
①

A
U
C
:
0.84

Z
hang

et
al.

(2023)

C
hina

756
SB

D
64.00

(19.00–85.00)
vom

iting:
17

(2.3%
)

nausea:
57

(7.6%
)

C
hem

otherapy
N
V

19
R
F,

SV
M
,
C
atboost,

N
N
,
D
T
,
D
F

①
②

D
eep

forest-A
U
C
:0.850

Z
hou

et
al.(2021)

C
hina

386
SB

D
non-A

D
E
:
63.30

±
9.59

A
D
E
:
68.03

±
10.44

117
(30.31%

)
C
hem

otherapy
C
ognitive

Im
pairm

ent
14

LA
SSO

,
R
F,SV

M
①
②

LA
SSO

-A
U
C
:
0:799

Li
et

al.
(2022)

U
nited

States
36,030

SE
E
R
-

M
edicare

database

T
raining

dataset:71.56
±

9.19

T
esting

dataset:

74.96
±
8.27

6,753
(18.74%

)
FU

-B
ased

C
hem

otherapy

C
ardiac

event
30

X
G
B
oost,

R
F,LR

①
②

X
G
B
oost-A

U
C
:0.816

M
atsum

oto
et

al.

(2024)

Japan
186

SB
D

non-A
D
E
:71.00

(38.00–90.00)

A
D
E
:73.00

(48.00–83.00)

46
(24.73%

)
G
em

citabine
P
lus

P
latinum

T
hrom

bocytopenia
29

E
M

com
bine

w
ith

G
B
D
T

②
A
U
C
:
0.76

H
uang

et
al.

(2023)

C
hina

3,315
SB

D
57.00

(49.00–63.00)
121

(3.65%
)

O
xaliplatin

H
epatic

dysfunction
22

A
N
N
,
LR

①
A
N
N
-A

U
C
:
0.920

N
guyen

et
al.

(2024)

C
hina-T

aiw
an

1,321
T
M
U
C
R
D

56.00
±
11.30

112
(8.5)

C
hem

otherapy
C
ardiac

event
5
categories

A
N
N
,
LR

①
②

A
N
N
-A

U
C
:
0.897

Y
agi

et
al.

(2024)
U
nited

States
1,011

M
G
B
E
D
ata

W
arehouse

57.10
±
16.40

88
(8.70%

)
A
nthracycline

C
hem

otherapy

C
ardiac

event
N

A
I-E

F
m
odel

①
A
U
C
:0.78

O
kaw

a
et

al.

(2022)

Japan
1,240

SB
D

T
raining

dataset:62.50
±

11.00

T
esting

dataset:
63.80

±

11.60

213
(17.18%

)
P
latinum

A
K
I

8
N
N

com
bine

w
ith

G
B
D
T

①
A
U
C
:0.67

A
ntibacterial

agents
Im

ai
et

al.
(2019)

Japan
396

SB
D

non-A
D
E
:
60.00

(18.00–91.00)

A
D
E
:56.00

(19.00–96.00)

61
(15.40%

)
G
anciclovir

N
eutropenia

35
LR

,
D
T

①
②

LR
-A

ccuracy:0.846

D
T
-A

ccuracy:0.846

M
u
et

al.
(2022)

C
hina

724
SB

D
51.00

(39.00–63.00)
86

(11.88%
)

V
ancom

ycin
A
K
I

51
X
G
B
oost

①
A
U
C
:0.879

Im
ai

et
al.

(2020)
Japan

1,141
SB

D
65.00

(18.00–96.00)
179

(15.7%
)

V
ancom

ycin
R
enal

dysfunction
8

A
N
N

②
A
N
N
-A

U
C
:0.83
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on
follow

ing
page)

FrontiersinPharmacologyfrontiersin.org 06

Huetal.10.3389/fphar.2024.1497397

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1497397


T
A
B
LE

1
(C

o
n
tin

u
e
d
)
C
h
aracte

ristics
o
f
in
clu

d
e
d
stu

d
ie
s.

Classification of drugs

Study

Location

No: Of patients

Database

Age

No: Of patient with ADE (%)

Drugs that cause ADE

Type of ADE

No of initial features

ML algorithms

Evaluation and validation

Best performance

Z
hao

et
al.(2024)

C
hina

564
SB

D
non-A

D
E
:48.32

±
20.00

A
D
E
:60.64

±
22.31

89
(15.78%

)
Linezolid

T
hrom

bocytopen
ia

20
A
N
N
,
LR

①
LR

-A
U
C
:0.9796

P
atel

et
al.

(2024)
U
nited

States
2,217

SB
D

53.00
±
18.60

10,346
(7.67%

)
Linezolid

T
hrom

bocytopen
ia

and
anem

ia

53
R
FC

①
R
FC

(T
hrom

bocytopen
ia)-

A
U
C
:0.905

R
FC

(A
nem

ia)-A
U
C
:
0.783

A
sai

et
al.

(2023)
Japan

630
SB

D
78.00

(67.00–85.00)
127

(20.16%
)

C
arbapenem

H
epatic

dysfunction
24

D
T

①
②

A
U
C
:
N
A

A
ccuracy:

0.825

M
a
et

al.
(2023a)

C
hina

318
SB

D
61.00

(49.00–69.00)
70

(22.01%
)

V
oriconazole

H
epatic

dysfunction
N

A
daB

oost,
D
T
,G

B
D
T
,
LR

,N
N
,
R
F

①
②

LR
-A

U
C
:0.7933

C
hiu

et
al.

(2024)
C
hina-T

aiw
an

1,391
SB

D
T
raining

dataset:
non-

A
D
E
-74.06

±
15.70,

A
D
E
-75.00

±
15.55

T
esting

dataset:
non-

A
D
E
-73.89

±
14.24,

A
D
E
-69.91

±
15.61

524
(37.64%

)
C
olistin

R
enal

dysfunction
55

C
atboost,

LightG
B
M
,
R
F
w
ith

SM
O
T
E
,

SV
M
-SM

O
T
E
,
T
om

ek
or

SM
O
T
E
T
L

①
②

C
atboost

(SV
M
-SM

O
T
E
)-

A
U
C
:0.786

A
ntituberculotic

Lai
et

al.
(2020)

C
hina-T

aiw
an

127
SB

D
non-A

D
E
:55.50

±
21.40

A
D
E
:
64.00

±
17.90

21
(16.53%

)
A
ntituberculotic

H
epatic

dysfunction
19

A
N
N
,
SV

M
,
and

R
F
w
ith

traditional

param
eters,genetic

param
eters

or
com

bined

param
eters

①
②

A
N
N

(w
ith

com
bined

param
eters)-A

U
C
:0.898

X
iao

et
al.

(2024)
C
hina

7,071
SB

D
none-A

D
E
:47.00

±
19.00

A
D
E
:
48.00

±
18.00

1,151
(16.28%

)
A
ntituberculotic

H
epatic

dysfunction
424

LR
,
R
F,

X
G
B
oost

①
②

X
G
B
oost-A

U
C
:0.887

Liao
et

al.
(2023)

C
hina-T

aiw
an

2,248
SB

D
67.70

±
16.40

H
epatic

dysfunction:
871

(38.7%
)

A
R
F:107

(4.8%
)

M
ortality:

120
(5.3%

)

A
ntituberculotic

H
epatic

dysfunction

A
R
F

M
ortality

36
M
LP

,
R
F,LightG

B
M
,
X
G
B
oost,

SV
M
,
LR

①
②

X
G
B
oost-A

U
C

(H
epatic

dysfunction):
0.92,

R
F-A

U
C
(A

R
F):

0.884,

M
LP

-A
U
C

(M
ortality):

0.834

A
nti-in

flam
m
atory

or
O
pioid

Jeong
et
al.(2023)

K
orea

30,808
N
H
IS

in
South

K
orea

non-A
D
E
:55.44

±
14.91,

A
D
E
:
58.91

±
13.59

1,229
(3.99%

)
A
nti-in

flam
m
atory

G
astric

U
lcer

38
LR

,
SV

M
,
R
F,G

B
M
,
X
G
B
oost

①
②

LR
-A

U
C
:0.636

SV
M
-A

U
C
:0.637

R
F-A

U
C
:0.862

G
B
M
-A

U
C
:0.896

X
G
B
oost-A

U
C
:0.893

Lee
et

al.
(2023)

K
orea

344,487
N
H
IS

in
South

K
orea

D
erivation

cohort
(non-

A
D
E
:75.65

±
6.37,A

D
E
:

78.47
±
6.58)

E
xternal

validation

cohort
(non-A

D
E
:

71.83
±
5.66,

A
D
E
:

75.38
±
5.11)

8,548
(2.48%

)
A
nti-in

flam
m
atory

G
astrointestin

al

com
plications

17
LA

SSO
①
②

A
U
C
:0.79

Liu
et

al.
(2018)

U
nited

States
4,350

N
IH

45.00–79.00
371

(8.53%
)

A
nalgesics

C
ardiac

event
300

LR
,SV

M
,
D
T
,G

B
D
T
,
X
G
B
oost

②
X
G
B
oost-A

U
C
:0.92

D
ong

et
al.(2019)

U
nited

States
SP

A
R
C
S:

440,000

H
F:

110,000

SP
A
R
C
S

and
H
F

N
50,000

(9.09%
)

O
pioid

A
D
E

SP
A
R
C
S:

4,004;
H
F:

8,403

R
F,

LR
,D

T
,
D
N
N

N
R
F
(SP

A
R
C
S)-A

U
C
:
0.9494

D
L
(H

ealth
Facts)-A

U
C
:

0.9541
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Classification of drugs

Study

Location

No: Of patients

Database

Age

No: Of patient with ADE (%)

Drugs that cause ADE

Type of ADE

No of initial features

ML algorithms

Evaluation and validation

Best performance

A
nticoagulation

or

throm
bolysis

X
u
et

al.
(2022)

C
hina

345
SB

D
non-A

D
E
:70.00

(63.00–80.00)

A
D
E
:
78

.00

(68.00–82.00)

45
(13.04%

)
Intravenous

throm
bolysis

H
em

orrhage
64

LR
,R

F
①

LR
-A

U
C
:
0.795

M
ora

et
al.(2023)

Spain
Learning:49,587;V

alidation:

10,337

R
IE
T
E

T
raining

dataset:
A
D
E
-

75.00
(65.00–83.00),

no-

A
D
E
-68.00

(53.00–79.00)

T
esting

dataset:
A
D
E
-

70.00
(59.00–80.00),

no-

A
D
E
-66.00

(53.00–77.00)

Learning:837
(1.76%

)

V
alidation:227

(2.19%
)

anticoagulation
H
em

orrhage
55

X
G
B
oost

①
②

A
U
C
:0.91

C
hen

et
al.(2023)

C
hina

798
SB

D
A
ge

<
80:

n
=
116

A
ge

≥
80:

n
=
682

112
(14.0%

)
R
ivaroxaban

H
em

orrhage
26

X
G
B
oost

①
②

X
G
B
oost-A

U
C
:
0.776

H
errin

et
al.

(2021)

U
nited

States
of

A
m
erica

306,463
O
LD

W
69.00

±
12.60

12,322
(4.02%

)
A
ntithrom

botic

T
reatm

ent

G
astrointestin

al

hem
orrhage

32
R
egC

ox,
R
SF,

X
G
B
oost

①
②

X
G
B
oost-A

U
C
:0.66

R
SF-A

U
C
:0.60

R
egC

ox-A
U
C
:0.66

C
ontrast

agent
C
hoi

et
al.

(2024)
K
orea

38,481
SB

D
non-A

D
E
:
62.40

±
11.20

A
D
E
:
66.40

±
12.40

1,185
(3.1%

)
C
ontrast

agent
A
K
I

N
Lasso,

G
B
M
,
R
F,

D
T
,
A
daboost

①
②

G
B
M
-A

U
C
:0.875

Z
hou

et
al.(2023)

C
hina

2,230
SB

D
non-A

D
E
:
70.00

(61.00–78.00)

A
D
E
:75.00

(67.25–81.00)

120
(5.38%

)
C
ontrast

agent
A
K
I

51
LR

,
R
F,G

B
D
T

X
G
B
oost,

N
B

①
G
B
D
T
-A

U
C
:0.755

Sun
et

al.
(2020)

C
hina

1,495
SB

D
66.60

±
13.90

226
(15.1%

)
C
ontrast

agent
A
K
I

N
R
F,

LR
,
SV

M
①
②

R
F-A

ccuracy:0.721

Y
an

et
al.

(2023)
C
hina

4,218
SB

D
T
raining

dataset:64.80
±

13.40

T
esting

dataset:
64.80

±

13.20

E
xternal

validation

cohort:
66.90

±
14.50

440
(10.43%

)
C
ontrast

agent
A
K
I

14
D
N
N
,
LR

①
D
N
N
-A

U
C
:0.94

M
a
et

al.
(2023b)

C
hina

240
SB

D
63.00

(54.00–68.00)
37

(15.41%
)

C
ontrast

agent
R
enal

dysfunction
45

LR
,
SV

M
,
R
F,X

G
B
oost,

D
T

①
②

SV
M
-A

U
C
:0.784

T
halidom

ide
or

lenalidom
ide

M
ao

et
al.

(2023)
C
hina

164
SB

D
34.30

±
12.70

59
(36%

)
T
halidom

ide
P
eripheral

neuropathy
168

X
G
B
oost,

E
T
,
G
B
D
T
,
R
F,

LR
①
②

LR
-A

U
C
:
0.907

M
aray

et
al.

(2023)

Spain
64

SB
D

76.00
(69.00–81.00)

44
(68.75%

)
Lenalidom

ide-

dexam
ethasone

A
D
E

23
LR

,C
A
R
T

①
LR

-A
U
C
:
0.91

Y
oo

et
al.

(2020)
K
orea

119
SB

D
T
raining

dataset:

9.50
±
2.60

T
esting

dataset:

8.50
±
2.50

25
(21.00%

)
M
ethylphenidate

Sleep
side

effects
34

LR
,
SV

M
,J48

①
②

LR
-A

U
C
:
0.92

O
ther

Lu
et

al.
(2023)

C
hina-T

aiw
an

6,497
SB

D
T
raining

dataset:
non-

A
D
E
-73.00

(62.00–83.00),
A
D
E
-

858
(13.21%

)
A
m
iodarone

T
hyroid

D
ysfunction

46
X
G
B
oost,

A
daB

oost,
K
N
N
,
LR

w
ith

or

w
ithout

borderline-SM
O
T
E
,
E
N
N
,
and

B
-SM

T
-E
N
N

①
②

X
G
B
oost

+
E
N
N
-A

U
C
:0.939
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TABLE 1 (Continued) Characteristics of included studies.

C
la
ss
if
ic
at
io
n
o
f
d
ru
g
s

St
u
d
y

Lo
ca

ti
o
n

N
o
:
O
f
p
at
ie
n
ts

D
at
ab

as
e

A
g
e

N
o
:
O
f
p
at
ie
n
t
w
it
h
A
D
E
(%

)

D
ru
g
s
th
at

ca
u
se

A
D
E

T
yp

e
o
f
A
D
E

N
o
o
f
in
it
ia
lf
e
at
u
re
s

M
L
al
g
o
ri
th
m
s

E
va

lu
at
io
n
an

d
va

lid
at
io
n

B
e
st

p
e
rf
o
rm

an
ce

76.00 (66.00–83.00);

Testing dataset: non-

ADE-72.00

(61.00–81.00), ADE-

75.00 (64.00–83.00)

Simon et al.

(2021)

United States 35,639 SBD non-ADE: 54.34 ± 18.81

ADE: 58.78 ± 17.45

4,558 (12.79%) QT-prolonging

medication

Long QT syndrome 8 RF, LR, NB, DNN ① DNN-AUC: 0.71

Wu et al. (2022) China 530 SBD Age ≤ 44: n = 121

45 ≤ Age ≤ 59: n = 193

60 ≤ Age ≤74: n = 13,

Age≥ 75: n = 84

106 (20.00%) Chinese herbal

injections

ADE 83 AdaBoost, Bagging, Bernoulli NB, DT, EM,

ET, Gaussian NB, GBM, KNN, LDA, LR,

Multinomial NB, Passive Aggressive, QDA,

RF, SGD, SVM, XGBoost

①② EM-AUC:0.793

Goyal et al. (2023) United States Cl:2,159, Wa: 1855, Ci:3,151,

Es:2,597, Fluo: 2,719, Fluv:

117, Pa:1,100, Se:4,052, Vo:

149, Combined SSRI: 10,362

SBD Cl:63.10 ± 10.40

Wa: 60.20 ± 11.60

Ci:50.40 ± 14.30

Es:50.20 ± 15.50

Fluo: 48.10 ± 14.80

Fluv: 43.30 ± 14.20

Pa:51.60 ± 13.30

Se:49.00 ± 15.60

Vo:49.00 ± 15.60

Combined SSRI: 49.40 ±

15.00

Cl:234 (10.8%)

Wa: 293 (15.8%)

Ci:286 (9.1%)

Es: 156 (6.0%)

Fluo: 226 (8.3%)

Fluv:23 (19.6%)

Pa: 97 (8.8%)

Se: 336 (8.3%)

Vo: 30 (20.0%)

Combined SSRI: 996 (9.6%)

SSRI Hemorrhage 88 LR, DT, RF, XGBoost ①② LR (Cl)-AUC:0.638

XGBoost (Wa)-AUC:0.682

RF-AUC(Ci):0.698

RF(Es)-AUC:0.656

DT (Fluo)-AUC:0.664

XGBoost (Fluv)-AUC:0.771

RF(Pa)-AUC:0.632

RF(Se)-AUC:0.665

LR (Vo)-AUC:0.802

XGBoost (Combined SSRI)-

AUC:0.688

Heo et al. (2023) Korea 15,236 CDM N 3,809 (25.00%) ARB Hepatic dysfunction 133 IMV-LSTM module ① AUC: 0.87

Güven et al.

(2023)

Turkey 409 SBD 58.50 ± 10.60 50 (12.24%) ACEI Renal dysfunction 19 RF, KNN, NB, XGBoost, SVM, NN, LR ①② XGBoost-AUC: 0.99

Noda et al. (2024) Japan 204 SBD non-ADE:59.00

(18.00–88.00)

ADE:58.00 (18.00–84.00)

33 (16.18%) Tacrolimus Renal dysfunction 23 1)LR with no regularization backward, 2)

selection of features, 3) Lasso, 4) ridge

regularization, 5) both ridge regularization

and backward selection of features, 6) SVM

(linear), 7) SVM (polynomial), 8) SVM

(Gaussian), 9) Adaboost, 10) Logitboost, 11)

random under sampling boost, 12) RF, 13)

NN, with or without SMOTE

①② Logitboost (SMOTE +

Feature Selection)-AUC:0.801

Location: United States, the United States; United Kingdom, the United Kingdom. Database: SBD, Self-built database; NIS, national inpatient sample; TMUCRD, taipei medical university clinical research database; MGBE, data warehouse, Massachusetts General

Brigham Enterprise Data Warehouse; NHIS, national health insurance service; NIH, national institutes of health; SPARCS, new york state statewide planning and research cooperative system; HF, health facts; RIETE, Registro Informatizado de Enfermedad

TromboEmbólica, OLDW, OptumLabs DataWarehouse, CDM, CommonDataModel. Drugs that cause ADE: ICI, immune checkpoint inhibitor; BTK, Bruton’s tyrosine kinaseMTX, methotrexate, Cl, Clopidogre, Wa,Warfarin, Ci, Citalopram, Es, Escitalopram, Fluo,

Fluoxetine, Fluv, Fluvoxamine, Pa, Paroxetine, Se, Sertraline, Vo, Vortioxetine, Type of ADE: SSRI, selective serotonin reuptake inhibitor; NV, nausea-vomiting; FA, fatigue-anorexia; DI, diarrhea; PN, peripheral neuropathy; HS, hypersensitivity; ST, stomatitis; HFS,

hand-foot syndrome; CO, constipation; AKI, Acute Kidney Injury ADE, Adverse drug event; ML, Algorithms; RF, random forest; CNN, convolutional neural network; RFC, random forest classification; LR, logistic regression, Lasso, Least Absolute Shrinkage and

Selection Operator; EN, elastic net, XGBoost, eXtreme Gradient Boosting; DT, decision tree; GBDT, gradient boosting decision tree, LightGBM, light gradient boosting machine, AdaBoost, Adaptive Boosting, CatBoost, categorical boosting, TPOT, Tree-based Pipeline

Optimization Tool; NN, neural network; ANN, artificial neural network; SVM, support vector machine; MLR, multivariate logistic regression; MLP, Multi-Layer perceptron, KNN, K-Nearest Neighbors, BN, bayesian network; NB, Naïve Bayes; DF, deep forest; EM,

ensemble model; AI-EF, model; AI, model detecting reduced left ventricular ejection fraction from 12-lead electrocardiograms (ECG), RegCox, Cox regression, RSF, random survival forests; ET, extremely random tree; CART, classification and regression trees; GBM,

gradient boosting machine; DNN, deep neural networks; LDA, latent dirichlet allocation; QDA, quadratic discriminant analysis; SGD, stochastic gradient descent; STROBE, strengthening the reporting of observational studies in epidemiology; ENN, edited nearest

neighbor, B-SMT-ENN, borderline synthetic minority oversampling technique–edited nearest neighbor; SMOTE, synthetic minority oversampling technique, Tomek, Tomek links, SMOTETL, SMOTE, and Tomek link, SVM-SMOTE, SVM, and SMOTE, IMV-LSTM,

interpretability multivariate long short-term memory. Evaluation and validation: ①Training and Testing ②K-fold cross-validation. Performance metrics: AUC, area under the receiver operating characteristic curve statistic.
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et al., 2024; Matsumoto et al., 2024; Nguyen et al., 2024; Patel et al.,
2024; Surendran et al., 2024; Xiao et al., 2024) were extracted, which
included 13 ADEs, 33 ML models, and 15 drugs. Significant
heterogeneity was detected in the combined results for sensitivity

(I2 = 99.1%, p = 0.00), specificity (I2 = 100%, p = 0.00), and DOR (I2 =
99.8%, p = 0.00). Consequently, a random effects model was used to
evaluate the prediction accuracy of ADEs. The combined sensitivity,
specificity, DOR, and AUCwere 0.65 (95% CI: 0.65–0.66), 0.89 (95%

FIGURE 2
Distribution of included studies in (A) region, (B) publication year, (C) database, (D)medicine, (E)MLmodels, and (F) ADE. Location: United States, the
United States, United Kingdom, the United Kingdom. Database: SBD, Self-built database; NIS, National Inpatient Sample; TMUCRD, Taipei Medical
University Clinical Research Database; MGBE Data Warehouse, Massachusetts General Brigham Enterprise Data Warehouse; NHIS, National Health
Insurance Service; NIH, National Institutes of Health; SPARCS, New York State Statewide Planning and Research Cooperative System; HF, Health
Facts; RIETE, Registro Informatizado de Enfermedad TromboEmbólica; OLDW, OptumLabs Data Warehouse; CDM, Common Data Model. Drugs that
cause ADE: MTX, methotrexate; ADE, Adverse drug event. ML Algorithms: RF, random forest; LR, Logistic regression; Lasso, Least Absolute Shrinkage and
Selection Operator; EN, Elastic Net; XGBoost, eXtreme Gradient Boosting; DT, decision tree; GBDT, gradient boosting decision tree; LightGBM, light
gradient boosting machine; AdaBoost, Adaptive Boosting, CatBoost, categorical boosting; NN, Neural network; ANN, Artificial Neural Network; SVM,
Support vector machine; KNN, K-Nearest Neighbors; NB, Naïve Bayes; ET, extremely random tree; DNN, Deep neural networks; MLP, Multi-Layer
perceptron; RFC, Random forest classification.
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CI: 0.89–0.90), 12.11 (95% CI: 8.17–17.95), and 0.8069, respectively.
These results indicate that the prediction accuracy for ADEs is
relatively robust. The AUC of the SROC curve is shown in Figure 4.

Subgroup analysis and heterogeneity
A subgroup analysis was conducted to assess the predictive

performance of ML across different ADEs. The results indicated that
ML demonstrated superior performance in detecting peripheral
neuropathy and acute respiratory failure compared to other
ADEs. Specifically, for peripheral neuropathy, the sensitivity was
0.85 (95% CI: 0.83–0.93), specificity was 0.75 (95% CI: 0.65–0.84),
the DOR was 18.13 (95% CI: 7.05–46.63), and the AUC was 0.8794.
For acute respiratory failure, sensitivity was 0.78 (95% CI:
0.72–0.84), specificity was 0.80 (95% CI: 0.78–0.81), the DOR
was 13.00 (95% CI: 9.23–18.31), and AUC was 0.8561.

A subgroup analysis comparing the performance of different
models showed that the pooled sensitivity for LR was moderate at
0.59 (95% CI: 0.58–0.59). The performance of GBM and GBDT
appeared strong, with pooled sensitivities of 0.92 (95% CI:
0.88–0.95) and 0.81 (95% CI: 0.77–0.84), respectively.
Heterogeneity decreased somewhat when analyzing the same
ADEs or ML models, as shown in Supplementary Figures S2–S5
and Supplementary Table S6.

Publication bias
The Deek funnel plot (Figure 5) was used to assess the presence

of publication bias in the included studies. The results did not
indicate significant publication bias in the studies included in this
meta-analysis (p = 0.00).

Discussion

We present the first comprehensive systematic review and meta-
analysis assessing the performance of ML models in predicting
ADEs based on EHRs. This review demonstrates that ML
algorithms can complement traditional clinical decision-making
in ADE prediction. The included studies were of high quality,
and the applications of ML were diverse, covering a wide
range of ADEs.

ML has been applied to predict ADEs for various drugs, with
antitumor drugs being the most frequently studied. A total of
23 studies (15 on chemotherapy and 8 on tumor-targeting drugs)
reported predictive outcomes related to ADEs associated with
antitumor medications. Cancer remains the leading cause of
death worldwide, and the necessity for anti-cancer drugs
contributes significantly to the financial burden on individuals
and healthcare systems. Cytotoxic chemotherapy remains the
gold standard and first-line treatment for many common cancers
(Schirrmacher, 2019). Chemotherapy-related drug toxicity may also
occur more frequently than with other drugs, further increasing the
economic burden (Livshits et al., 2014). Our findings indicated that
renal dysfunction, cardiac events, and gastrointestinal events were
the most reported ADEs in predictive model studies, aligning with
the common ADEs associated with chemotherapy drugs. The
excretion of chemotherapeutic metabolites through the urinary
system can lead to nephrotoxicity, which varies depending on the
type of chemotherapy, the malignancy being treated, the patient’s
age, and the underlying conditions (Sahni et al., 2009). Many
chemotherapy agents, particularly platinum coordination

FIGURE 3
Summary of prediction model performance. (A) AUC, (B) Specificity, (C) Sensitivity (recall), (D) Precision, (E) Accuracy, (F) F1 ML Algorithms: RF,
random forest; LR, Logistic regression; Lasso, Least Absolute Shrinkage and Selection Operator; XGBoost, eXtreme Gradient Boosting; DT, decision tree;
GBDT, gradient boosting decision tree; LightGBM, light gradient boosting machine; AdaBoost, Adaptive Boosting; CatBoost, categorical boosting; NN,
Neural network; ANN, Artificial Neural Network; SVM, Support vector machine; KNN, K-Nearest Neighbors; NB, Naïve Bayes; GBM, gradient
boosting machine; MLP, Multi-Layer perceptron.
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complexes, are known to cause kidney damage (Madias and
Harrington, 1978). And nephrotoxicity has emerged as a
significant limiting factor in the therapeutic use of these
compounds. Among the included studies, multi-layer perceptron
(MLP), ANN, and GBDT were used to develop prediction models
for chemotherapy-related renal dysfunction, demonstrating good
performance with AUC values ranging from 0.67 to 0.90 (Huang
et al., 2022; Okawa et al., 2022; Chambers et al., 2023). Factors such
as age, sex, body surface area, serum creatinine levels, and genetic
predispositions may influence the occurrence of chemotherapy-
related renal dysfunction (Huang et al., 2022; Okawa et al., 2022).

The included studies also frequently reported cardiotoxicity
associated with chemotherapy, a life-threatening side effect
(Chang et al., 2022; Li et al., 2022; Nguyen et al., 2024; Yagi
et al., 2024). Anthracyclines were identified as the main agents
responsible for chemotherapy-induced cardiotoxicity (Chang et al.,
2022; Yagi et al., 2024). These drugs have been widely used and
continue to serve as the cornerstone of treatment for multiple solid
tumors and hematologic malignancies (Henriksen, 2018). The
predictive capacity of the ML models for chemotherapy-related
cardiac events showed AUC values ranging from 0.66 to 0.90
(Chang et al., 2022; Li et al., 2022; Nguyen et al., 2024; Yagi
et al., 2024). The results indicated that, in addition to aging and
male sex, pre-existing heart disease was a significant risk factor. This

included conditions such as hypertension, reduced left ventricular
ejection fraction, ischemic heart disease, arrhythmia, and coronary
artery disease (Chang et al., 2022; Li et al., 2022; Nguyen et al., 2024;
Yagi et al., 2024). In addition to cardiotoxicity, gastrointestinal
events were frequently reported as side effects of chemotherapy.
These events, including nausea, vomiting, ulcerative mucositis, and
constipation, can significantly impact patient quality of life,
although they are generally not life-threatening. The AUC values
for ML in predicting gastrointestinal events were promising, with
nausea and vomiting ranging from 0.81 to 0.85, ulcerative mucositis
from 0.79 to 0.83, and constipation at 0.88 (Satheeshkumar et al.,
2021; On et al., 2022; Zhang et al., 2023). Factors contributing to
nausea, vomiting, and constipation included the number of
treatment cycles, line of treatment, reduction in chemotherapy
doses, chemotherapy regimens, and creatinine clearance
(Satheeshkumar et al., 2021; On et al., 2022; Zhang et al., 2023).
For ulcerative mucositis, strategies to mitigate risk included
addressing conditions such as pancytopenia, agranulocytosis,
fluid and electrolyte imbalances, and chemotherapy-induced
anemia (Satheeshkumar et al., 2021).

Recently, novel targeted cancer therapies have emerged,
designed to block biological transduction pathways and/or target
specific cancer proteins to induce cancer cell death through
apoptosis, immune system stimulation, or precisely delivering

FIGURE 4
Pooled SROC of the prediction ADE.
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chemotherapeutic agents to cancer cells (Pérez-Herrero and
Fernández-Medarde, 2015). Although targeted therapies reduce
specific undesirable side effects compared to traditional
chemotherapy, they can still lead to specific ADEs. Among the
studies reviewed, immune checkpoint inhibitors (ICIs) were the
most reported, with immune-related adverse events (irAEs) being
the main associated ADE. Previous research indicates that irAEs
affect 20%–30% of patients undergoing ICI monotherapy and more
than 50% of those receiving combination ICI therapies (Martins
et al., 2019; Gumusay et al., 2022). Pneumonitis was commonly
reported in included studies, with occurrence rates exceeding 25%.
The AUC of the ML prediction models ranged from 0.74 to 0.90
(Cheng et al., 2023; Gong et al., 2023; Lippenszky et al., 2024). Other
irAEs associated with ICIs included hepatitis, colitis, thyroid
disorders, cutaneous reactions, and cardiac irAEs, with
occurrence rates around 10% and AUC values for ML prediction
models ranging from 0.65 to 0.77 (Heilbroner et al., 2021; Kim W.
et al., 2021; Lewinson et al., 2021; Lippenszky et al., 2024). These
irAEs were particularly prevalent among patients with pre-existing
underlying conditions, and an increase in inflammatory cell counts
(lymphocytes, neutrophils, or eosinophils) was often observed in
these patients (Heilbroner et al., 2021; KimW. et al., 2021; Lewinson
et al., 2021; Gong et al., 2023; Lippenszky et al., 2024).

Antibacterial agents are commonly used in inpatient settings,
and approximately 50% of hospitalized patients receive at least one
antibiotic during their stay (Tamma et al., 2017). Common
antimicrobials-associated ADEs include gastrointestinal, renal,
hepatic, and hematologic abnormalities (Tamma et al., 2017).
Among the included studies, ML models were developed to
predict hepatic (Asai et al., 2023; Ma J. et al., 2023) and renal
(Imai et al., 2020; Mu et al., 2022; Chiu et al., 2024) dysfunction,

thrombocytopenia (Patel et al., 2024; Zhao et al., 2024), anemia
(Patel et al., 2024), and neutropenia (Imai et al., 2019). Antibacterial-
related liver and kidney dysfunction were more likely to occur in
patients with abnormal blood concentrations of the drugs or those
with pre-existing liver and kidney diseases (Imai et al., 2020; Mu
et al., 2022; Asai et al., 2023; Ma J. et al., 2023; Chiu et al., 2024).
Additionally, antibacterial-related thrombocytopenia and anemia
were associated with baseline platelet counts, international
normalized ratio, hemoglobin levels, and overall liver and kidney
function (Patel et al., 2024; Zhao et al., 2024). Ganciclovir-related
neutropenia was common among patients with impaired liver and
kidney function, those who received prolonged or high doses of
ganciclovir, and individuals with low body weight (Imai et al., 2019).

Antituberculosis drugs, a specific class of antibacterial agents,
were associated with ADEs in three of the included studies (Lai et al.,
2020; Liao et al., 2023; Xiao et al., 2024). Antituberculosis drug-
induced hepatotoxicity is a serious ADE linked to first-line
tuberculosis medications such as rifampin, isoniazid, and
pyrazinamide (Tostmann et al., 2008). This condition often
requires the temporary discontinuation of these drugs to prevent
progression to fulminant liver disease or even death. In predictive
modeling, the AUC values for ML models that assess the risk of
antituberculosis drug-induced hepatotoxicity ranged from 0.89 to
0.90, indicating high accuracy in predicting which patients may be at
risk (Lai et al., 2020; Liao et al., 2023; Xiao et al., 2024). Patients with
a history of abnormal liver function, underlying liver disease, and
elevated liver enzymes had a higher risk of developing liver damage
induced by antituberculosis drugs (Lai et al., 2020; Liao et al., 2023;
Xiao et al., 2024). Genetic factors also played a significant role, and
polymorphisms such as NAT27, OATP1B11a/1a, OATP1B11a/15,
and UGT1A127/*28 contributed to the risk (Lai et al., 2020). This

FIGURE 5
Deeks’ funnel plots for the assessment of potential bias in the meta-analysis for diagnosis.
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information can help clinicians better manage treatment plans and
monitor patients more effectively to mitigate the risk of
liver damage.

Five studies reported contrast-induced nephropathy (CIN), a
common complication arising from intravascular use of contrast
media during arterial angiography, with an incidence rate ranging
from 3% to 15% (Sun et al., 2020; Ma X. et al., 2023; Yan et al., 2023;
Zhou et al., 2023; Choi et al., 2024). The incidence of CIN continues
to increase, making it the third leading cause of hospital-acquired
acute renal injury (Mehran et al., 2004). While typically transient,
CIN significantly increases the need for dialysis among affected
patients, with a poor prognosis that often leads to prolonged hospital
stays and elevated mortality rates (Subramanian et al., 2007; Ma X.
et al., 2023). Commonly reported MLmodels to predict CIN include
RF, XGBoost, GBDT, and SVM, with AUC values ranging from
0.72 to 0.94 (Sun et al., 2020; Ma X. et al., 2023; Yan et al., 2023; Zhou
et al., 2023; Choi et al., 2024). CIN was more likely to occur in
patients with pre-existing kidney dysfunction, including chronic
kidney disease, elevated serum creatinine levels, impaired creatinine
clearance, and abnormal blood pressure (Sun et al., 2020; Ma X.
et al., 2023; Yan et al., 2023; Zhou et al., 2023; Choi et al., 2024).

The application of ML algorithms in predicting ADEs induced
by various medications, including anti-inflammatory or opioid
drugs, anticoagulants or thrombolytics, antituberculosis agents,
thalidomide or lenalidomide, and methotrexate, showed
promising results. The AUC for these ML prediction models
typically ranged from 0.75 to 0.95, indicating strong performance
in ADE prediction. A total of 38 different ML algorithms were
identified in the studies reviewed, with ensemble learning techniques
being the most prevalent. Ensemble learning combines predictions
from multiple weak learners to enhance predictive accuracy (Ahn
et al., 2023). The primary ensemble learning methods include the
bagging and boosting algorithms. RF, a classic bagging algorithm,
was the most frequently reported in 30 studies. RF aggregates
predictions from multiple decision trees, each built from a
bootstrapped version of the training data set (Hu and Szymczak,
2023). Among the studies using RF, seven identified it as the optimal
model, with an average AUC of 0.770 ± 0.104 and a sensitivity of
0.630 ± 0.215. Unlike bagging, where each weak learner operates in
parallel, boosting algorithms train weak learners sequentially, with
each iteration focusing on misclassified instances from the previous
round (González-Recio et al., 2013). Boosting algorithms appeared
in 29 studies, including models such as XGBoost, LightGBM, GBDT,
AdaBoost, and CatBoost. XGBoost was frequently highlighted as the
optimal model, achieving an average AUC of 0.810 ± 0.109 and a
sensitivity of 0.680 ± 0.212. Other ML models, such as SVM, ANN,
and K-nearest neighbors (KNN), were also reported; however, their
performance did not surpass that of RF and boosting algorithms.
These findings show the effectiveness of ML algorithms, particularly
ensemble methods, in predicting ADEs associated with various
medications.

Class-imbalanced data introduce bias, particularly pronounced
in high-dimensional datasets (Blagus and Lusa, 2013). T This issue
can be mitigated through resampling methods that generate class-
balanced data. The resampling methods reported include
oversampling techniques such as the Synthetic Minority
Oversampling Technique (SMOTE), SVM-SMOTE,
undersampling with Tomek links (Tomek), and a combination of

oversampling and undersampling methods using SMOTE and
Tomek links (SMOTETL) (Chiu et al., 2024). Imbalanced data
analysis was discussed in 23 studies, three of which specifically
compared the performance of models with and without resampling
methods (Lu et al., 2023; Chiu et al., 2024; Noda et al., 2024). The
results indicated that the boosting algorithms demonstrated strong
performance when combined with the imbalance analysis. The AUC
values improved significantly, increasing from 0.601–0.936 to
0.786–0.939 (Lu et al., 2023; Chiu et al., 2024; Noda et al., 2024).
Additionally, whether imbalance analysis was applied was one of the
evaluation criteria on the ChAMAI checklist. The findings also
indicated that feature selection could improve the model
performance. Therefore, we recommend the application of
imbalance analysis and feature selection in developing ADE
prediction models to reduce bias and improve efficiency.

The quality of the included studies was assessed as high based on
the AHRQ tool and the ChAMAI. According to the AHRQ tool, all
items were considered equally important (AHQR, 2024). The results
showed that the included studies often did not score on the items
related to the control of confounding factors and follow-up
procedures. In the ChAMAI, the 30 items were categorized into
10 low-priority and 20 high-priority items (Cabitza and Campagner,
2021). As a tool for evaluating the rigor of artificial intelligence
methodologies, this tool places greater emphasis on the quality of the
data processing procedures and the model-building process. Key
aspects of data processing include outlier detection, handling
missing values, feature pre-processing, and addressing data
imbalance. The model-building process involves reporting tasks,
specifying outputs, detailing model architecture, data splitting,
training, selection, calibration, and validation procedures. Sharing
code and data is also a high-priority item, as it enhances
transparency and adaptability. While studies with high scores
had good data processing procedures and model building, there
remains room for improvement in code and data sharing.

Limitations

This study has several limitations. First, although the overall
quality of the included studies was high, there remains room for
improvement. Specifically, items 8 and 11 of the AHRQ criteria
received the lowest average scores, indicating the need for better
control of confounding factors and better follow-up procedures.
Additionally, the ChAMAI results suggested that improvements are
needed in outlier detection and analysis and in code and data
sharing. Furthermore, only two studies demonstrated the
development and implementation of prediction systems in real-
world applications (Jiang et al., 2023; Ruiz Sarrias et al., 2023). The
limited practical application of these models may hinder both the
studies’ quality and the models’ development. Second, significant
heterogeneity was observed among the included studies. Although
heterogeneity was somewhat reduced within the same ADE
category, it was difficult to avoid completely. The variability was
due to differences in the databases used, predictors, ML algorithms,
hyperparameters, and populations studied, making it challenging to
fully mitigate (Xie et al., 2022). Third, meta-regression was only
conducted on the 33 studies that provided contingency tables,
limiting our analysis. For the remaining studies, we only
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performed descriptive analyses of performance metrics. Fourth, we
did not include studies that predict all ADEs in specific populations.
We believe that the primary aim of these studies was to examine the
epidemiology of ADEs within those populations, rather than to
identify precise risk factors. Therefore, we recommend that these
studies be comprehensively analyzed in a separate study. Finally, the
included studies covered 15 different ADEs, 15 drug types, and
38 mL models, complicating the synthesis of results in these
diverse studies.

Conclusion

This systematic review and meta-analysis summarized the
current research on using machine learning to predict ADEs,
focusing on oncology-related treatments, including chemotherapy
and tumor-targeting drugs. Among the ADEs analyzed, drug-related
liver and kidney dysfunction was the most predicted due to its high
incidence and potential to cause treatment interruptions. The study
found that ML methods, particularly boosting algorithms such as
XGBoost, GBM, and GBDT, effectively predict ADEs. Given the
variability between studies, there is a need for more standardized
research on different ADEs to ensure the accuracy and robustness of
these predictive tools. Future research should prioritize multicenter
studies incorporating diverse data types and evaluate the impact of
artificial intelligence predictive models in real-world clinical settings.
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